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ABSTRACT

Proper cell fate determination is largely orches-
trated by complex gene regulatory networks cen-
tered around transcription factors. However, exper-
imental elucidation of key transcription factors that
drive cellular identity is currently often intractable.
Here, we present ANANSE (ANalysis Algorithm for
Networks Specified by Enhancers), a network-based
method that exploits enhancer-encoded regulatory
information to identify the key transcription factors
in cell fate determination. As cell type-specific tran-
scription factors predominantly bind to enhancers,
we use regulatory networks based on enhancer prop-
erties to prioritize transcription factors. First, we
predict genome-wide binding profiles of transcrip-
tion factors in various cell types using enhancer ac-
tivity and transcription factor binding motifs. Sub-
sequently, applying these inferred binding profiles,
we construct cell type-specific gene regulatory net-
works, and then predict key transcription factors
controlling cell fate transitions using differential
networks between cell types. This method outper-
forms existing approaches in correctly predicting
major transcription factors previously identified to
be sufficient for trans-differentiation. Finally, we ap-
ply ANANSE to define an atlas of key transcription
factors in 18 normal human tissues. In conclusion,
we present a ready-to-implement computational tool
for efficient prediction of transcription factors in
cell fate determination and to study transcription
factor-mediated regulatory mechanisms. ANANSE is

freely available at https://github.com/vanheeringen-
lab/ANANSE.

INTRODUCTION

Every multicellular organism develops from a single cell.
During this process, cells undergo division and differenti-
ation, eventually forming a diversity of cell types that are
organized into organs and tissues. How one cell develops
into different cell types, a process known as cell fate deter-
mination, is critical during development. It has been shown
that transcription factors (TFs) play key roles in cell fate
determination (1–6). TFs bind to specific cis-regulatory se-
quences in the genome, including enhancers and promoters,
and regulate expression of their target genes (7,8). The in-
teractions between TFs and their downstream target genes
form gene regulatory networks (GRNs), controlling a dy-
namic cascade of cellular information processing which
shapes cell fate and identity (9,10). Cell fate determination
is orchestrated by a series of TF regulatory events, largely
by complex GRNs (11). The key role of TFs and GRNs in
cell fate determination is further corroborated by examples
of cell fate conversions, often referred to as cellular repro-
gramming (12,13). Cellular reprogramming includes gener-
ating induced pluripotent stem cells (iPSCs) from somatic
cells, and trans-differentiation that converts one mature so-
matic cell type to another without undergoing an intermedi-
ate pluripotent state (1–6). These reprogramming processes
are initiated by enforced expression of combinations of key
TFs, which is believed to alter the GRNs at the level of gene
expression and the epigenetic landscape (14–16).

In the past, identification of key TFs driving cellular dif-
ferentiation or reprogramming was often performed by ex-
perimental screening or testing candidate genes, which is
labor-intensive and inefficient. Therefore, there is a need
for better predictions of key TFs in cell fate determination,

*To whom correspondence should be addressed. Tel: +31 24 3616850; Email: s.vanheeringen@science.ru.nl
Correspondence may also be addressed to Huiqing Zhou. Email: j.zhou@science.ru.nl
Present address: Georgios Georgiou, Cergentis BV, Utrecht, the Netherlands.

C© The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

http://orcid.org/0000-0003-1686-7883
http://orcid.org/0000-0002-2434-3986
http://orcid.org/0000-0002-0411-3219
https://github.com/vanheeringen-lab/ANANSE


Nucleic Acids Research, 2021, Vol. 49, No. 14 7967

which can help to understand developmental processes and
serve to instruct experimental cellular reprogramming ap-
proaches. Different computational methods for predicting
key transcription factors or master regulators in the context
of cellular transitions have been reported. Some are based
on gene expression differences between cell types (17–20).
Other methods use GRNs in combination with expression
differences to identify candidate key TFs (21–25). However,
these GRNs are usually inferred based on a measure of co-
expression (26,27), which requires many different samples
and which cannot easily distinguish directionality.

The use of (predicted) transcription factor binding sites
allows for directionality and has been shown to improve
GRN inference (28–30). Mogrify is an example of a method
that uses not only gene expression but also GRNs con-
structed based on TF binding motifs in promoters to pre-
dict TFs that are capable of inducing conversions between
cell types (25). However, most GRN-based approaches that
incorporate TF motifs only include promoters or promoter-
proximal regulatory elements. It has been well established
that TFs that control tissue- and cell type-specific gene ex-
pression in cell fate determination and development often
bind to enhancers (15,31–33). Binding of tissue- and cell
type-specific TFs largely to enhancers is also confirmed by
a large number of genome-wide chromatin immunoprecipi-
tation followed by sequencing analyses (ChIP-seq) (34,35),
e.g. TP63 in keratinocytes and ZIC2 in embryonic stem
cells (15,36). Furthermore, analysis of enhancers and en-
hancer clusters allows for identification of master regula-
tors, corroborating their relevance in cell type-specific gene
regulation (37,38). Large compendia of transcription factor
binding profiles and enhancer-associated histone modifica-
tions can also be used to prioritize transcriptional regula-
tors (39,40). Therefore, we reasoned that a computational
method that uses enhancer properties to infer enhancer-
based GRNs would improve the prediction of directed reg-
ulatory interactions at a genome-wide scale. Furthermore,
most current computational tools require comprehensive
training or background data, such as cell/tissue expression
data or pre-constructed networks. This means that they can-
not be applied in new biological contexts or in non-model
species that are less well-studied. Finally, these datasets and
the computational algorithms are not always publicly acces-
sible, which prevents the general usage of these methods in
studying transcriptional regulation or designing new trans-
differentiation strategies.

Here, we established an enhancer GRN-based method,
ANalysis Algorithm for Networks Specified by Enhancers
(ANANSE), that infers genome-wide regulatory programs
and identifies key TFs for cell fate determination. We pre-
dicted cell type-specific TF binding profiles with a model
that incorporates activities and sequence features of en-
hancers. Second, combining TF binding profiles and gene
expression data, we built cell type-specific enhancer GRNs
in each cell type or tissue. We used reference GRNs, con-
structed from known TF-target gene interactions and ex-
perimental data of TF perturbations, to evaluate the qual-
ity of the inferred GRNs. Third, we predicted the key TFs
underlying cell fate conversions based on a differential net-
work analysis. Compared with other reported prediction al-
gorithms, ANANSE recovers the largest fraction of TFs

that were validated by experimental trans-differentiation
approaches. The results demonstrate that ANANSE can
prioritize TFs that drive cellular fate changes. Finally, to
demonstrate the wide utility of ANANSE, we applied it to
18 human tissues and generated an atlas of key TFs under-
lying human tissue identity.

MATERIALS AND METHODS

Analysis of the genomic distribution of TF binding sites

For every transcription factor, we combined all the peaks
in the ReMap database (41) by taking the peaks in all cell
types and tissues for this specific TF. TFs that had <600
peaks were removed. This resulted in a data set of ChIP-
seq peaks from 296 unique TFs. The percentage of peaks in
each genomic location was calculated using the ChIPseeker
R package (version 1.20.0) (42). The fgsea R package (ver-
sion 1.10.1) was used to do the gene set enrichment analysis
(GSEA) (43).

We used the classification of the Human Protein Atlas
(44) to determine tissue-specific TFs. This classification is
divided in several groups based on gene expression patterns
using RNA-seq from human tissues. We took the union of
tissue enriched genes (at least a 5-fold higher FPKM level
in one tissue compared to all other tissues), group enriched
genes (5-fold higher average FPKM value in a group of 2–
7 tissues compared to all other tissues) and tissue enhanced
genes (at least a 5-fold higher FPKM level in one tissue com-
pared to the average value of all 32 tissues).

Datasets

All H3K27ac ChIP-seq, ATAC-seq, and RNA-seq data
used in this study was obtained from GEO or ENCODE
(45–63). For all data sets with ENCODE identifiers we
downloaded the BAM files (ATAC-seq; H3K27ac ChIP-
seq) or the FASTQ files (RNA-seq) from the ENCODE
portal (64) (https://www.encodeproject.org/). For data sets
with a GSM accession, FASTQ files were downloaded and
further processed using seq2science (version v0.4.3) (65),
see paragraph below. All data sets and accession numbers
are summarized in Supplementary Table S1.

ChIP-seq, ATAC-seq and RNA-seq analyses

Analysis of publicly available ChIP-seq, ATAC-seq and
RNA-seq analysis was performed with seq2science (ver-
sion v0.4.3) (65). Genome assembly hg38 was downloaded
from UCSC with genomepy 0.9.1 (66). The reads of the
ChIP-seq experiments were mapped to the human genome
(hg38) using STAR (version 2.5.3a) with default settings
(67). Duplicate reads were marked and removed using Pi-
card (68). Peaks were called on the ChIP-seq data with only
the uniquely mapped reads using MACS2 (version 2.7) rel-
ative to the Input track using the standard settings and a q-
value of 0.01 (69). The measurement of consistent peaks be-
tween replicates was identified by IDR (version 2.0.3) (70).

ATAC-seq reads were trimmed with fastp (version 0.20.1)
(71) and aligned with bwa-mem (version 0.7.17) (72) to the
hg38 genome. Mapped reads were removed if they did not
have a minimum mapping quality of 30, were a (secondary)
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multimapper or aligned inside the ENCODE blacklist (73).
Reads were shifted for tn5 bias. Duplicate reads were re-
moved with picard MarkDuplicates (version 2.23.8) (68).
Peaks were called with macs2 (version 2.2.7) (69) with op-
tions ‘–shift -100 –extsize 200 –nomodel –keep-dup 1 –
buffer-size 10000’ in BAM mode.

Quantification of expression levels was performed on
RNA-seq data, using salmon (version 0.13.0) (74) with de-
fault settings and Ensembl transcript sequences (version
GRCh38 release-103) (75). Salmon’s transcript-level quan-
tifications results were imported and aggregated to gene
level counts by the tximport R package (version 1.12.3) (76).
The expression level (transcript-per-million, TPM) of each
cell type and the differential expression fold change between
two cell types were calculated using the DESeq2 R pack-
age (version 1.24.0) (77). The expression TPM data used to
predict key TFs for trans-differentiation is shown in Sup-
plementary Table S2 and differential gene expression data
is shown in Supplementary Table S3.

Defining putative enhancer regions

To generate a collection of putative enhancer regions,
we collected all transcription factor ChIP-seq peaks
from ReMap 2018 (http://remap.univ-amu.fr/storage/
remap2018/hg38/MACS/remap2018 all macs2 hg38 v1 2.
bed.gz) (41). We took the summit of all peaks and extended
these 25 bp up- and downstream. Based on this file, we
generated a coverage bedGraph using bedtools genomecov
(78). We performed peak calling on this bedGraph file
using bdgpeakcall from MACS2 (version v2.7.1) (69), with
the following settings: l = 50 and g = 10. We performed
the peak calling twice, setting c to 4 and 30, respectively.
All peaks from c = 30 were combined with all peaks of c
= 4 that did not overlap with the peaks of c = 30. We then
removed all regions on chrM and extended the summit of
the peaks 100 bp up- and downstream to generate a final
collection of 1 268 775 putative enhancers of 200 bp. This
collection of enhancers is available at Zenodo with doi
10.5281/zenodo.4066423.

The coverage table script from GimmeMotifs (ver-
sion 0.15.3) (79,80) was used to determine the ATAC-
seq and H3K27ac intensity, as expressed by the number
of reads, in all enhancer peaks (2000 bp centered at the
enhancer summit for H3K27ac; 200 bp for ATAC-seq).
All counts were quantile normalized using qnorm (version
0.4.0) (81).

Prediction of transcription factor binding

To train the ANANSE models we used ChIP-seq peaks
for 237 TFs from REMAP in 6 cell types: hESC, Hep-
G2, HeLa-S3, K562, MCF-7 and GM12878. ATAC-seq
and H3K27ac ChIP-seq data for these cell types was down-
loaded from public repositories, see Supplementary Table
S1. For both assays, the number of reads was determined in
regions of 200 bp (ATAC-seq) or 2kb (H3K27ac) centered
at the enhancer summit. Read counts were log-transformed
and quantile normalized. To test the prediction perfor-
mance of the ANANSE model a cross-validation proce-
dure was used. For each TF, models were trained on bind-
ing in all enhancers, except those on chromosomes chr1,

chr8 and chr21 (held-out chromosomes). The evaluation
was only performed on those TFs for which peaks in mul-
tiple cell types were available. Each cell type was left out
(held-out cell types) and the classifier was trained on data
of the other cell type(s). In this manner, performance met-
rics (ROC AUC and PR AUC) were calculated based on en-
hancers located on held-out chromosomes in held-out cell
types.

Binding was predicted using four type(s) of input fea-
tures: TF motif scores, ATAC-seq signal in enhancers,
H3K27ac ChIP-seq signal in enhancers and (optionally) the
average ChIP-seq signal of REMAP peaks in enhancers.
ANANSE uses a standard logistic regression model as im-
plemented in scikit-learn (82). Equation (1) shows an exam-
ple of a model, using all four types of input.

log
p f,l

1 − p f,l
= β1Sf,l + β2 EAT AC,l

+β3 EH3K27ac,l + β4 EChI P,l (1)

where p f,l is the probability of a transcription factor f bind-
ing to enhancer l. Sf,l is the highest motif z-score of all
motifs associated with transcription factor f in enhancer
l and EAT AC, l , EH3K27ac, l and EChI P, l represent the en-
hancer intensity of enhancer l, based on scaled and nor-
malized ATAC-seq signal, scaled and normalized H3K27ac
ChIP-seq signal and average REMAP ChIP-seq signal, re-
spectively.

ANANSE incorporates a flexible selection of models, the
choice of which depends on the type of input that is avail-
able. The minimal input consists of the motif score and ei-
ther ATAC-seq or H3K27ac ChIP-seq signal in enhancers.

The non-redundant database of 1796 motifs was created
by clustering all vertebrate motifs from the CIS-BP database
using GimmeMotifs (80,83) as described in (79). The Gim-
meMotifs package (version 0.15.3) (79,80) was used to scan
for motifs in enhancer regions. The GC normalization set-
ting in GimmeMotifs package was used to normalize the
GC% bias in different enhancers. To correct for the bias of
motif length, z-score normalization was performed on the
motif scores. Normalization was done per motif, based on
motif matches in random genomic regions using the same
motif scan settings. The highest z-score was chosen if a TF
had more than one motif.

Gene regulatory network inference

The weighted sum of the TF binding probability, predicted
on the basis of the enhancer intensity and the motif score,
within 100kb around TSS is defined as the TF–gene binding
score (Equation 2). The distance weight is based on a linear
genomic distance between the enhancer and the TSS of a
gene according to Equation (3).

Bx, r =
∑

k

wk,r sk,x (2)

where Bx,r is the binding score between TF x and target gene
r , wk is the weighted distance between an enhancer and the
target gene and where sk is predicted binding intensity at ge-
nomic position kof TF x. The distance weight calculation
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was similar to the method previously described in (84), ex-
cept that only the signal in predetermined enhancers is used
and the weight of enhancers within 5kb of the TSS is set
to 1.

wk =
{

1, kε(0 kb, 5 kb]
2e−μ|k−tr |

1+e−μ|k−tr | , kε(5 kb, 100 kb]
(3)

where tr is the genomic position of the TSS of gene r and the
parameter μ, which determines the decay rate as a function
of distance from the TSS, is set such that an enhancer 10 kb
from the TSS contributes one-half of an enhancer within 5
kb from TSS.

We determined a measure of genome-wide TF activity,
Ax, based upon the motif activity. The motif activity for
all TF motifs was calculated based on ridge regression as
implemented in scikit-learn (82) using GimmeMotifs 0.15.3
(79). Here, the motifs scores were used as input to predict ei-
ther ATAC-seq and/or H3K27ac ChIP-seq signal. The TF
activity is the maximum activity of the motifs associated
with a TF, where the motif activity is defined as the mean of
the ATAC-seq motif coefficients and the H3K27ac ChIP-
seq coefficients.

The expression level of the TF Ex and the target gene Er ,
expressed as transcripts per million (TPM), and the TF ac-
tivity Ax and TF–gene binding score Bx,r were ranked and
scaled, from 0 to 1, where 0 represents the lowest value and
1 represents the highest value. For ranking the the TF ex-
pression, only the expression levels of TFs where used. The
interaction score was calculated (Equation 4) by mean aver-
aging the individual ranked scores (mean rank aggregation).

Ix,r = 1
4

(F(Ex) + F(Er ) + F(Bx,r ) + F(Ax)) (4)

where Ix,r is the interaction score between TF x and tar-
get gene r and F(X) represents the rank aggregated and
scaled score. Ideally, the contributions of these individ-
ual scores would be determined by a supervised method,
such as a linear regression, however, due to the lack of a
high-quality gold standard reference data set we chose to
combine the scores through mean averaging. To create the
network, ANANSE uses dask (https://dask.org) (85) and
pyranges (86).

Gene regulatory network evaluation

We obtained GRNs from different sources. GRNBoost2,
as implemented in arboreto (version 0.1.5), was used
with default settings to infer networks from GTEx data.
The GTEx expression data (GTEx Analysis 2017–06–
05 v8 RNASeQCv1.1.9 gene tpm.gct.gz) was down-
loaded from the GTEx portal (https://www.gtexportal.
org/home/datasets). Tissue-specific PANDA networks
were downloaded from https://sites.google.com/a/
channing.harvard.edu/kimberlyglass/tools/gtex-networks.
Tissue-specific networks inferred from single cell
data using SCENIC (87) were downloaded from
http://www.grndb.com/ (88). GRNs inferred from GTEx
data with corto and ARACNE were downloaded from
https://giorgilab.org/corto-the-correlation-tool/ (26,29,89).

To evaluate the quality of the predicted GRNs, four
different types of reference datasets were used: gene co-

expression, Gene Ontology (GO) annotation (The Gene
Ontology, 2019), four regulatory interaction databases
(DoRothEA (90), RegNetwork (91), TRRUST (92) and
MSigDB C3 (93)) and differential expression measure-
ments after TF perturbations. The expression correlation
database was downloaded from COXPRESdb (94), and
the original mutual rank correlation score was scaled to
0 to 1 for each TF, with 1 being the highest and 0 the
lowest, and all scaled correlation score higher than 0.6
or 0.8 were considered as true interaction pairs. The hu-
man GO validation Gene Association File (GAF) (ver-
sion 2.1) was downloaded from http://geneontology.org.
We used all TF–gene pairs that were annotated with at
least one common GO term as true positives. The TF
perturbation data set was obtained by downloading the
‘TF Perturbations Followed by Expression’ data set from
Enrichr (95,96). For the random network we used the same
network interaction structure, but here we randomized the
interaction score (the edge weight) by permutation of the
scores. The AUC of ROC and PR for each cell type GRN
and corresponding random GRN were calculated.

Influence score inference

To calculate the influence score for the transition from a
source cell type to a target cell type, we used the GRNs for
both cell types. In each network, we selected the top 100k
interactions based on the rank of its interaction score. We
obtained a differential GRN by taking the interactions only
located in the target cell type. The difference of the interac-
tion score was used as the edge weight for the differential
GRN.

Based upon the differential GRN a local network was
built for each TF, up to a maximal number of three edges.
Using Equation (5), a target score was calculated for each
node in the network, based on 1) its edge distance from the
TF of interest, 2) the interaction score and 3) the change in
expression between the source cell type and the target cell
type.

Ns
x =

s∑
r∈Vt

∣∣Gs
r

∣∣ Ps
x,r

Ls
x,r

(5)

where r ∈ Vt is each gene (r ) in the set of nodes (Vt) that
make up the local sub-network of TF x. In other words, Vt
represents all target genes that are directly or indirectly tar-
geted by TF x. To incorporate indirect target genes, only
genes up to three steps away are considered. This distance
(number of edges or steps) is represented by Ls

x,r , the level
(or the number of steps) that gene r is away from TF x in the
network s. Nodes located further from the TF have less ef-
fect on the target score. Ps

x,r is the interaction score between
TF x and target gene r and Gs

r , the expression score, is the
log-transformed fold change of the expression of gene r .

The target score (Ns
x) for each TF is the sum of the scores

from all the nodes in its local network. Nodes present in
multiple edges are calculated only for the edge closest to
the TF of interest. Self-regulating nodes are not considered.
The target score and the Gs

r of each TF are scaled to 0 to 1,
and the mean of them was defined as the influence score of

https://www.gtexportal.org/home/datasets
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http://geneontology.org
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this TF. Subsequently, all TFs are ranked by their influence
score.

Trans-differentiation evaluation

To evaluate the performance the ANANSE influence score
calculation we used key TFs from trans-differentiation ex-
periments. We compared ANANSE results to previously re-
ported methods: Mogrify, LISA, BART, VIPER, CellNet
and the method of D’Alessio et al. (20,21,24,25,39,40). Mo-
grify and Mogrify full prediction results were downloaded
from https://mogrify.net/. For LISA (version 1.2), all differ-
entially expressed genes from fibroblast to each target cell
type were used as input (39). For BART, we uploaded the
top 1000 differentially expressed genes to http://bartweb.
org/, using BART 2.0. The DoRothEA network was down-
loaded from https://github.com/saezlab/dorothea. All dif-
ferentially expressed genes from fibroblast to each target cell
type and networks (ANANSE or DoRothEA) were used
as input of VIPER (version 1.24.0). The CellNet predic-
tions were obtained from (25). The prediction results of the
method of D’Alessio et al. were obtained from the original
paper (20). Results were compared with the experimentally
validated TFs as true positives and all other TFs as false
positives.

Regulatory profile analysis of human tissues

The RNA-seq data of 18 human tissues was downloaded
from (https://www.proteinatlas.org/humanproteome/tissue)
(97). The H3K27ac ChIP-seq and ATAC-seq accession
numbers are listed in Supplementary Table S1. The gene ex-
pression score of each tissue was calculated by taking the
log2 TPM fold change between a tissue and the average of
all other tissues. The GRN of each tissue was inferred using
ANANSE. For prediction for TFs of one tissue, GRN inter-
action scores of all other tissues were averaged as the source
GRN. All correlation analyses were clustered using hierar-
chical clustering. The modular visualization of anatograms
and tissues was done using the gganatogram package (ver-
sion 1.1.1) (98).

RESULTS

Cell type-specific transcription factors predominantly bind to
enhancers

To systematically examine TF binding patterns in the
genome in relation to cell type specificity, we downloaded
the binding sites of 296 human TFs from the ReMap
project, which re-analyzed all publicly available ChIP-seq
data in various cell types and tissues (41). To determine
the genomic distribution of these binding sites, we divided
the genome into different genomic categories according to
human UCSC known gene annotation (99), and assigned
binding sites to these categories based on the locations of
the binding sites (Figure 1). We grouped these categories
into two main classes: (i) a promoter-proximal class, con-
taining promoter (≤2 kb), 5′ UTR and 1st exon peaks,
and (ii) a promoter-distal class, referred to as ‘Enhancers’,
containing all exons except the first, the first intron, other
introns and intergenic categories. The percentage of TF

binding sites in each genomic category was calculated, and
TFs were ordered according to their percentages in the
promoter-proximal class (Figure 1A) (Supplementary Ta-
ble S4).

As expected, we found that the majority of TFs (77.5%)
mainly bind in cis-regulatory regions that are distal from
the promoter (Figure 1A). These binding sites will not nec-
essarily all be functional, however, they are not close to
gene promoters and contain the majority of the enhancers.
For the purpose of this study we will refer to them as en-
hancers. However, different TFs show different binding dis-
tributions, with a preference in either the promoter range or
in the enhancer range (Figure 1B). Given the relevance of
enhancers in cell type-specific gene regulation, we reasoned
that cell type-specific TFs would have a larger fraction of
peaks in enhancers than constitutively expressed TFs and
performed Gene Set Enrichment Analysis (GSEA) (43) on
TF expression in different tissues. We defined tissue-specific
TFs using previously established categories based on gene
expression patterns using RNA-seq from human tissues,
including tissue-enriched genes, group-enriched genes, and
tissue-enhanced genes (Human Protein Atlas; see methods
for details) (44) (Figure 1C). GSEA showed that TFs mostly
binding to enhancers are enriched for tissue-specific expres-
sion (adjusted P value = 2.0e−4) (Figure 1C) (Supplemen-
tary Table S4). For example, SOX10 is a critical TF dur-
ing neural crest and peripheral nervous system development
(100), while TP63 is a master regulator in epithelial develop-
ment (58). Both of these tissue-specific TFs showed a very
high percentage of enhancer-binding, 93% for SOX10 and
82% for TP63 (Figure 1A).

Taken together, our analysis of transcription binding sites
confirmed that distal cis-regulatory elements are especially
relevant for tissue-specific TFs. This emphasizes that in-
cluding enhancer information in computational methods
for predicting key TFs in cell fate determination could be
highly beneficial.

ANANSE: an enhancer network-based method to identify
transcription factors in cell fate changes

Starting from the premise that the majority of TFs predom-
inantly bind to enhancer regions, we developed ANANSE,
a network-based method that uses properties of enhancers
and their GRNs to predict key TFs in cell fate determina-
tion (Figure 2). As trans-differentiation is an ideal model
for studying cell fate conversions controlled by key TFs, we
set out to use this model to validate our computational ap-
proach. In the following paragraphs a conceptual overview
of ANANSE is provided. Subsequently we will validate
each of the steps involved.

First, we inferred cell type-specific TF binding profiles
for each cell type (Figure 2A). The input data of ANANSE
consists of genome-wide measurements of enhancer activity
(defined below) and transcription factor motifs. We inferred
the TF binding probability based on a supervised model
that integrates the enhancer activity combined with TF mo-
tif scores.

Second, we constructed cell type-specific GRNs based on
the inferred TF binding probability, the transcription fac-
tor activity, and the expression levels of the TF and pre-

https://mogrify.net/
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Figure 1. Tissue-specific TFs predominantly bind to enhancers. (A) The percentage of TF binding sites in putative enhancers. The human genome was split
into several categories: Promoter (≤1 kb), Promoter (1–2 kb), 5′ UTR and first exon, other exons, first intron, other introns and intergenic; these categories
were further grouped into a promoter-proximal class (Promoter (≤1 kb), Promoter (1–2 kb), 5′ UTR and first exon) and an enhancer class (other exons,
first intron, other introns and intergenic). Out of 296 human TFs, 77.5% have at least 50% of their binding sites in the enhancer class of the genome. (B)
Genomic location analysis of binding sites of 296 human TFs. The percentage of binding sites of each TF in different categories (as described in A) was
calculated, and indicated with different colors. TFs were ordered by the percentage of binding sites within the promoter–proximal class. Several example
TFs are marked at the bottom of the figure. (C) Gene Set Enrichment Analysis (GSEA) on tissue-specific TFs and their enhancer binding. The red bars
mark the tissue-specific TFs. The order of TFs is consistent with (B). Gray bars represent TFs that do not show tissue-specific gene expression. The GSEA
enrichment score is represented by the green line (Padj: 2.0e–4).

dicted target genes (Figure 2B and C). The nodes in the
network represent the TFs and their target genes. In this
network, a TF node can also be a target gene of another
TF. The TF–gene interaction scores, represented by edges
of the network, are calculated based on the predicted TF
binding probability, the distance between the enhancer and
the target gene, the genome-wide TF activity and the ex-
pression of both the TF and the target gene. By integrating
these data, ANANSE determines the interaction score of
each TF–gene pair.

Third, we calculated the ‘influence score’ (21,25), a mea-
sure of importance of a TF in explaining transcriptional dif-
ferences between two cell types (Figure 2D). In this step, the
difference in TF–gene interaction scores (the inferred net-
works, 2C) between the source and the target cell types is
calculated. This differential network is combined with the
expression differences between the cell types to determine
the influence score.

The details of the algorithms are described in the follow-
ing sections.

Transcription factor binding can be predicted by the motif
score in combination with the enhancer activity

Sequence-specific TFs bind to their cognate DNA motifs in
the genome and activate or repress their target genes. To in-
fer the target genes of a TF, the genomic binding sites of
this TF are informative. ChIP-seq has been broadly used to
identify TF binding sites at a genome-wide scale. However,
it is unfeasible to perform ChIP-seq for every TF in all cell
types, e.g. due to the availability and quality of the TF anti-

bodies. Therefore, it would be highly beneficial to be able to
predict binding sites of individual TFs in a given cell type.

Here, we used a conceptually simple logistic regression
classifier to predict the TF binding probability in putative
enhancers based on the TF motif z-score, the enhancer ac-
tivity and (optionally) the average TF binding signal in these
regions (see Materials and Methods for details). Our model
uses a predefined set of putative enhancers as input. In this
work, we used a set of 1.3 million putative enhancer re-
gions based on an integration of all TF ChIP-seq peaks
from ReMap 2018 (41). Alternatively, putative enhancers
can be based on genome-wide measurements that provide
relatively accurate estimates of enhancer locations, such as
ATAC-seq, DNaseI-seq or EP300 ChIP-seq. The enhancer
activity is based on two genome-wide assays: chromatin ac-
cessibility as measured by Assay for Transposase Accessi-
ble Chromatin with high-throughput sequencing (ATAC-
seq) (101) and the presence of the post-translational histone
modification H3K27 acetylation as measured by ChIP-seq.

To train and evaluate our model, we used ChIP-seq peaks
of 237 TFs in six cell lines (hESC, Hep-G2, HeLa-S3, K562,
MCF-7 and GM12878) from REMAP (41). We examined
the locations of the TF peaks by overlapping with our en-
hancer reference, and only the subset of peaks that over-
lapped with these enhancer regions was kept. We down-
loaded and mapped public ATAC-seq and H3K27ac ChIP-
seq data for these cell lines (see Supplementary Table S1).
For both assays, we determined the number of reads in re-
gions of 200 bp (ATAC-seq) or 2kb (H3K27ac) centered
at the enhancer summit. Read counts were log-transformed
and quantile normalized. For each enhancer, we scanned for
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Figure 2. An overview of the ANANSE method. ANANSE consists of three different modules: binding prediction, network inference and influence score
calculation. (A) TF binding prediction using a supervised model. The binding probability of all TFs with an associated motif is calculated using on the
basis of four input data types: 1) a set of reference cis-regulatory regions (here based on REMAP (41) ChIP-seq integration), 2) genome-wide enhancer
activity measurements (ATAC-seq and/or H3K27ac ChIP-seq), 3) the REMAP average ChIP-seq intensity and 4) TF motif scores. The bars in the right
panel represent the predicted binding probability of four TFs in the enhancers shown in the left panel. (B) A schematic overview of the first step in gene
regulatory network inference, calculation of the TF–gene binding score. A binding score of each TF and gene combination is calculated by aggregation
of all enhancers near a gene, weighted by a distance function. The orange line shows 100 kb up- and downstream of the TSS of the corresponding target
gene, the range that is used to include enhancers for calculation. The bars represent the predicted TF binding probabilities within the 100 kb range around
the gene. The height of the shaded light blue area represents the weight calculated based on the linear genomic distance from TSS of the target gene to
the enhancers (84). For example, the distance weight is 1 for the distance of 1 kb from the TSS, and 0 for the distance of 100 kb from the TSS. (C) A
schematic overview of the gene regulatory network inference using rank aggregation. The heatmap on the left represents the input for each TF and target
gene (TG) combination: the binding score (according to B), the genome-wide TF activity, the TF expression level (transcripts-per-million; TPM) and the
target gene expression level (TPM). All four scores are ranked and scaled from 0 to 1, and the mean of the four scores of each TF–gene pair is defined as
the interaction score (right heatmap) of the corresponding TF–gene pair. (D) Overview of the influence score calculation. The influence score represents
how well the expression differences between two cell types can be explained by a TF. First, a differential GRN is calculated between source and target cell
type (left). Then, the influence score is calculated based on the gene expression log2 fold change, the distance from the TF to the gene in the predicted
network, and the interaction score in the differential network between TF and gene (middle). The barplot (right) shows the ranked influence score of all
TFs calculated from the differential GRN.
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motifs in a 200 bp region centered at the peak summit us-
ing GimmeMotifs (79,80). The motif z-score was calculated
by GimmeMotifs with the GC%-normalization option. The
log-odds score based on the positional frequency matrix is
normalized by using the mean and standard deviation of
scores of random genomic regions. These random regions
are selected to have a similar GC% as the input sequence.

The goal of the binding model in ANANSE is to predict
binding for all TFs, based on a supervised model. How-
ever, not all TFs have ChIP-seq available for training. There-
fore, we implemented a two-pronged approach. We trained
a TF-specific supervised model for each TF for which we
had training data, but we also trained a general classifier
based on all TFs. In this manner, we can use a more perfor-
mant TF-specific model for TFs that have ChIP-seq train-
ing data, but can still predict binding for all other TFs, as
long as they have an associated motif. In both cases, the in-
put data for the final trained model is identical, however,
the TF-specific models will be better tuned to the binding
patterns of their associated TF. To test the prediction per-
formance of our model, we established a stringent cross-
validation procedure (102). For each TF we trained on bind-
ing in all enhancers, except those on chromosomes chr1,
chr8 and chr21 (held-out chromosomes). In addition, we
only included the TFs in the evaluation for which we had
more than one cell type available. In turn, each cell type was
left out (held-out cell types) and the classifier was trained
on data of the other cell type(s). In this manner, perfor-
mance metrics are calculated based on enhancers located
on held-out chromosomes in held-out cell types. We evalu-
ated the performance of the ANANSE binding model us-
ing the AUC (Area Under Curve) of the Precision Recall
curve (PR) as well as the (Receiver Operating Characteris-
tic) ROC curve (Figure 3A). For comparison, we included
two baselines. The ‘random’ baseline represents the perfor-
mance that would be observed by ‘random guessing’ (0.5 for
the ROC AUC; the proportion of positives in the evaluation
set for the PR AUC). The more stringent ‘Average ChIP-seq’
baseline represents the performance that would be observed
if the binding is predicted only by the number of different
TFs in REMAP that bind to an enhancer (i.e. the predicted
binding probability is directly proportional to the number
of REMAP peaks overlapping an enhancer). We compared
two versions of the ANANSE model, one with the average
ChIP-seq peak signal of REMAP included, and one where
this is not included (Figure 3A; ‘With average’ and ‘Without
average’, respectively). The model where the average signal
is not included is more representative of the performance
on other reference enhancer sets, or in other species. The
median PR AUC of 0.28 is significantly higher than that of
the random baseline (median PR AUC 0.02, P Wilcoxon
< 1e−58) as well as the average baseline (median PR AUC
0.18, P Wilcoxon < 1e−38). When we include the average
signal, the performance is significantly improved (median
PR AUC 0.38, P Wilcoxon < 1e−39). The full ANANSE
model also improves on the individual components, as mod-
els based on motif scores (median PR AUC 0.06), ATAC-
seq (median PR AUC 0.19) or H3K27ac alone (median PR
AUC 0.13), while higher than the random baseline, do not
significantly outperform the average ChIP-seq baseline. Fi-
nally, the model performs well, even when only one of the

assays is used (median PR AUC of 0.28 and 0.31 for ATAC-
seq and H3K27ac respectively).

For comparison to methods that train more com-
plex supervised transcription factor-specific models, we
also validated our model on the validation chromosomes
(chr1, chr8, and chr21) in the validation cell types of
the ENCODE-DREAM transcription factor binding chal-
lenge (Available from: https://www.synapse.org/ENCODE)
(103). As a comparison, we used the Virtual ChIP-seq pre-
dictions (104). This is a newly developed supervised ar-
tificial neural network method to predict individual TF
binding, which shows comparable results compared to the
top ENCODE-DREAM entries. In this evaluation (Supple-
mentary Figure S1A and B), our model scores better for
some factors, such as CEBPA in liver and MAX in liver and
K562 cells, while Virtual ChIP-seq performs better for other
factors, most notably CTCF. This illustrates that the bind-
ing prediction of ANANSE is comparable to state-of-the-
art approaches. A caveat here is that other methods, such
as Virtual ChIP-seq, predict binding genome-wide, while
ANANSE needs a set of putative enhancers as input. An ad-
vantage of the relatively simple model of ANANSE is that
it generalizes to other TFs and other species, which will not
have the abundance of training data provided by ENCODE
for mouse and human. As another evaluation, we compared
the ANANSE binding predictions to predictions based on
DNase I footprinting (Supplementary Figure S1C and D)
(105). Compared to DNase I footprints, ANANSE predic-
tions have higher recall at the same precision (median 0.78
vs 0.01).

In total, these analyses illustrated that we established a
TF binding site prediction method, which can be applied on
the basis of one or two experimental measurements (ATAC-
seq and/or H3K27ac ChIP-seq) and which shows state-of-
the-art performance in prediction of TF binding.

ANANSE predicts cell type-specific gene regulatory net-
works

Using the inferred cell type-specific binding profiles, we
sought to determine the interactions of TFs and their tar-
get genes (TF–gene) to establish cell type-specific GRNs,
represented by the TF–gene interaction score. To calculate
these scores, we first identified all enhancers for each target
gene and their associated binding scores. In our TF binding
prediction model, we used H3K27ac ChIP-seq and ATAC-
seq as training data. For each gene, we took all enhancers
that are located within a maximum distance of 100 kb of
the transcription start site (TSS). Subsequently, the strength
of a TF–gene interaction in the network was defined by the
sum of the predicted TF binding strength in all identified en-
hancers of the target gene weighted by the distance (Figure
2B), similar to the regulatory potential (84). The distance
weight was calculated from the linear genomic distance be-
tween the enhancer and the TSS of a gene, such that distal
enhancers receive a low weight and nearby enhancers have a
high weight (Figure 2B). This model resulted in a TF–gene
binding score, indicating the TF-target gene binding inten-
sity for all combinations of TF and target gene pairs.

Next to the incorporation of the genome-wide measure-
ments of enhancer activity via the TF–gene binding score,

https://www.synapse.org/ENCODE
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Figure 3. The performance of predicting TF binding sites using TF motif scores and enhancer activities. (A) Evaluation of the TF binding prediction model
in ANANSE. Shown is the area under the curve (AUC) of the Precision-Recall (PR; left) and Receiver-operator characteristic (ROC; right) of the prediction
performance using REMAP ChIP-seq peaks as a reference. Plotted is the performance of 237 TFs in six cell lines. PR AUC and ROC AUC metrics were
calculated using cross-validation. The performance is compared to two baselines (grey): random (proportion of positives for PR, 0.5 for ROC) and the
average number of REMAP TF ChIP-seq peaks per enhancer. Performance on individual input data types is shown as reference: ATAC-seq (orange),
H3K27ac ChIP-seq (yellow) and motif scores (green). Two ANANSE predictions (integration of ATAC-seq, H3K27ac ChIP-seq and motif scores; blue)
are compared, based on the inclusion of the average REMAP ChIP-seq signal. Both models perform better than the baselines. (B) The scatterplot shows
the improvement of the full ANANSE model compared to the random baseline, with some example factors highlighted. (C) An overview of how many
human TFs have an associated model in ANANSE. Out of 1412 TFs, 17% have a trained model available, 32% of TFs have a model trained on a related
TF (based on motif similarity, see D) and 10% have a motif and can use the general model. The remaining 41% of TFs do not have an associated motif. (D)
An example of determining related TFs for model sharing. The network illustrates the similarity between a selection of nuclear receptors, as determined
by the Jaccard index of their associated motifs (edge color and size). There is no trained model for PPARD, but it shares many motifs with PPARG, so it
uses the PPARG model weights with PPARD motif scores.

we also calculated a measure of TF activity directly from
the genome-wide enhancer activity. Here, we used a method
similar to the motif activity response analysis (106,107) as
implemented in GimmeMotifs (79). In this approach, the
enhancer activity (ATAC-seq and H3K27ac signal) is mod-
eled as a linear function of motif scores using penalized re-
gression. The coefficients of the motif scores can be inter-
preted as an estimate of motif activity. For all TFs we used
the maximum activity of all associated motifs as TF activity.

Finally, based on the assumption that the interaction of
every TF–gene pair in a specific cell type is proportional to
their relative expression, we included the expression level of
the TF and the target gene, the TF and target expression
scores. We ranked the expression level of the TF and the tar-
get gene, initially expressed as transcripts per million (TPM)

within each cell type to a normalized expression between 0
and 1, with the lowest expression as 0 and highest as 1.

To calculate the TF–gene interaction score, we combined
the TF–gene binding score, the TF activity, and the TF and
target expression scores using mean rank aggregation (Fig-
ure 2C). This score represents the strength of the regula-
tory interaction between a TF and a target gene. In this ap-
proach, a ‘target gene’ can also be a TF gene; a TF–gene
interaction can represent a TF regulating the expression of
a TF gene. Together, all TF–gene interaction scores repre-
sent a cell type-specific GRN.

To evaluate the quality of the GRNs inferred by
ANANSE, we created GRNs for 15 tissues: adrenal gland,
brain, colon, esophagus, heart, liver, lung, ovary, pancreas,
prostate, skeletal muscle, skin, small intestine, spleen and
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stomach. We collected ATAC-seq, H3K27ac and RNA-seq
from public repositories (see Supplementary Table S1) and
predicted binding profiles and GRNs using ANANSE. As
comparison, we included five other GRN inference meth-
ods. We downloaded ARACNE, corto and PANDA net-
works created using GTEx expression data (26,29,89). We
downloaded the GTEx expression data and created GRNs
using GRNBoost2 (108). Finally, we downloaded GRNs
created by SCENIC (87) with tissue single cell data as in-
put from GRNdb (88).

To provide a comprehensive overview of GRN qual-
ity, we used four different types of reference datasets to
calculate performance metrics: (i) regulatory interaction
databases containing known TF–target gene interactions,
(ii) differential expression measurements after TF pertur-
bation, (iii) gene co-expression data and (iv) Gene Ontol-
ogy (GO) annotation (109). We obtained the TF–gene in-
teractions from four databases of regulatory interactions,
DoRothEA (90), RegNetwork (91), TRRUST (92) and
MSigDB C3 (93). DoRothEA is a gene set resource net-
work containing different types of TF and target interac-
tions. For this comparison, we only used the literature-
curated interactions. RegNetwork is an integrated database
of transcriptional and post-transcriptional regulatory net-
works in human and mouse, TRRUST is an expanded ref-
erence database of human and mouse transcriptional reg-
ulatory interactions and MSigDB C3 is a collection of
gene sets that represent potential targets of regulation by
TFs. While the TF-target gene databases are usually cu-
rated, they contain relatively few interactions. As a source
of a more genome-wide validation we downloaded the
‘TF Perturbations Followed by Expression’ data set from
Enrichr (95,96). This is a curated collection of genes
that significantly change expression after TF perturba-
tion. We downloaded co-expression data for human genes
from the COXPRESdb database (94). All TF–gene pairs
with either a correlation ≥0.6 or ≥0.8 were used as true
positives. Finally, we used TF–gene pairs that were an-
notated with at least one common GO term as true
positives.

To compare with the tissue-specific GRNs inferred by
other methods, we selected per reference the Cartesian
product of TFs and target genes of the sets of TFs and tar-
get genes in the reference. If a specific interaction was not
present in the inferred GRN, we used the minimum inter-
action score. Supplementary Note S1 contains more details
on the benchmark procedure. We evaluated the GRNs by
calculating the PR AUC and ROC AUC, as compared to
the reference interactions (Figure 4A and B; Supplementary
Figure S2). For the ANANSE networks, the median AUC
ranges from 0.61 using the RegNetwork reference (Supple-
mentary Figure S2A) to 0.77 using DoRothEA (Figure 4A),
while the median AUC of randomized networks is close to
0.5. When we compared ANANSE with other published
GRN inference methods, all five methods show a signif-
icantly lower AUC using DoRothEA (Figure 4A) or TF
perturbation references (Figure 4B). This holds true for all
other references, except for the correlation reference, where
PANDA scores higher (Supplementary Figure S2A). Some
of the reference databases contain very few interactions (the
positives in this evaluation) as compared to all possible in-

teractions (which determine the negatives). For instance,
the fraction of positive interactions is 0.09% in TRRUST,
0.07% in RegNetwork, and 0.33% in MSigDB C3. There-
fore, we also evaluated the predicted networks using the PR
AUC (Figure 4D and Supplementary Figure S2B). In ab-
solute terms, the PR AUC is considerably lower than the
ROC AUC, especially for the DoRothEA, TF perturba-
tion, MSigDB C3, TRRUST and RegNetwork reference
sets (median PR AUC of 0.0168, 0.0601, 0.0297, 0.0123 and
0.0187, respectively), but for all tissues there is a relatively
large and statistically significant difference between the pre-
dicted GRN and the randomized network (p Wilcoxon =
9.86e–22) (Figure 4A and B, Supplementary Figure S2B).
The expression-based networks of the other five published
methods show significant lower mean PR AUC when com-
pared with ANANSE for all seven different types of refer-
ence datasets (Figure 4A and B and Supplementary Figure
S2B).

To further evaluate the ANANSE networks, we com-
pared them to all different types of interactions present in
DoRothEA, using the TF perturbations as a reference. In
Figure 4C the PR curves of the inferred networks for the
different tissues are plotted, and the different interactions
present in DoRothEA are represented by dots. These in-
clude interactions predicted by TF ChIP-seq binding near
genes (ChIP-seq), curated interactions from the literature
(Curated), interactions inferred using ARACNe-VIPER
(Inferred) and interactions predicted by TF motif scores in
the promoter (TFBS). In addition the union of all sets is
shown (All). The difference in recall at the same precision,
and precision at the same recall between the ANANSE net-
works and the union set (All) of DoRothEA is shown in Fig-
ure 4D. These results illustrate that, using this benchmark,
ANANSE-inferred networks better predict genes deregu-
lated by TF perturbation.

The inclusion of enhancer information in the GRN in-
ference is one of the unique features of ANANSE. To test
if incorporating enhancer activity indeed leads to an im-
proved performance, we compared the enhancer-based ap-
proach of GRN with an expression-based model and two
promoter-based models (Supplementary Figure S3). Over-
all we found that the incorporation of enhancer information
leads to better network inference, as tested by these bench-
marks. The choice of distance and the method of combin-
ing enhancers has a smaller effect, with a 100 kb distance
performing marginally better than 250kb and the distance-
weighted sum performing better than the mean or sum with
a uniform weight (Supplementary Figure S4).

To qualitatively assess the cell type-specific GRNs pre-
dicted by ANANSE, we chose one well-studied cell type
(iPSC) and two tissues (heart and liver) and constructed
their GRNs using the top ten predicted TFs of each cell
type, as ranked by outdegree. The GRN of iPSCs in-
cludes well-known pluripotency factors such as POU5F1,
NANOG and SOX2 (Figure 4E). The GRNs of heart and
liver tissues contain marker genes, such as the myocyte
factors MEF2A and MEF2C in heart (Figure 4F), and
HNF4A and FOXA3 in liver (Figure 4G).

Taken together, our benchmarks and examples demon-
strate that GRNs generated by ANANSE allow for mean-
ingful cell type-specific prioritization of TFs.
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Figure 4. Prediction of tissue-specific enhancer gene regulatory networks. (A) Evaluation of the predicted networks using the curated interactions of the
DoRothEA database. The left panel shows the AUC of ROC for 15 different tissues in a boxplot, with individual tissues marked as dots. The right panel
shows the PR AUC. The ANANSE predicted networks (blue) are compared to other GRN inference approaches trained on GTEx expression data for
the same tissues (PANDA in orange, GRNBoost2 in red; ARACNE in purple and corto in brown) and on the GRNdb networks inferred using SCENIC
on single cell RNA-seq data from the same tissues (green). The random baseline is shown in gray. (B) The same evaluation as in A) using a reference of
differentially expressed genes after TF perturbation. (C) Comparison of the tissue-specific GRNs inferred by ANANSE to the different types of interactions
in DoRothEA, using the TF perturbations as a reference. The PR curves of the inferred networks for the different tissues are plotted (ANANSE; blue),
and the different interactions present in DoRothEA are represented by dots: interactions predicted by TF ChIP-seq binding near genes (orange), curated
interactions from the literature (green), interactions inferred using ARACNe-VIPER (red) and interactions predicted by TF motif scores in the promoter
(purple). The union of all DoRothEA interactions is shown in brown. (D) The difference of the ANANSE GRNs with the union of DoRothEA interactions
in C) expressed as the difference in precision at the same recall (left panel) and the difference in recall at the same precision (right panel). (E) Example
network predicted for iPSCs. The blue circles show the top 10 TFs in this cell type, ranked by the outdegree in the top 100 000 edges. The size of the circle
indicates the target gene number of the corresponding TF. The size and color of the blue arrows are relative to the interaction score between the two TFs.
The color of the circle indicates the expression level of the corresponding TF. (F) Example network predicted for heart, visualized as in E). (G) Example
network predicted for liver, visualized as in E).

ANANSE accurately predicts key transcription factors for
trans-differentiation

Having established that ANANSE-inferred GRNs can en-
rich for biologically relevant regulatory interactions, we
aimed to use these GRNs to identify key TFs that regulate
cell fate determination. To this end, trans-differentiation is a
good model, as experimentally validated TFs have been de-
termined for various trans-differentiation strategies. Here,
we first inferred the GRNs for all cell types using our

ANANSE approach. The ANANSE-inferred GRN differ-
ence between a source and a target cell type, was calculated
to represent the differential GRN between two cell types,
which contains the GRN interactions that are specific for
or higher in the target cell type. Subsequently, using an ap-
proach inspired by Mogrify (25), we calculated the influence
score of TFs for these trans-differentiations by determining
the differential expression score of its targets weighted by
the regulatory distance (see Methods for details).
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Table 1. The summary of seven experimentally validated trans-
differentiations from fibroblast to target cell types. Experimentally vali-
dated TFs that were identified by ANANSE are highlighted in bold

Target cell type Experimentally validated TFs Reference

Astrocyte NFIA, NFIB, SOX9 (110)
Cardiomyocyte GATA4, MEF2C, TBX5 (111)

HAND2, NKX2-5, GATA4, MEF2C,
TBX5

(112)

Hepatocyte ATF5, PROX1, FOXA2, FOXA3,
HNF4A

(113)

FOXA1, FOXA3, HNF4A (114)
iPSC SOX2, POU5F1, KLF4, MYC (5)

POU5F1, SOX2, NANOG, LIN28 (116)
POU5F1, SOX2 (115)

Keratinocyte TP63, GRHL2, TFAP2A, MYC (117)
Macrophage CEBPA, CEBPB, SPI1 (119)

SPI1, CEBPA, CEBPB (118)
Osteocyte RUNX2 (120)

RUNX2, POU5F1, MYCL (121)

To evaluate the prediction by ANANSE, we used ex-
perimentally validated TFs for several trans-differentiation
strategies. For this, we collected TFs for seven trans-
differentiation strategies with fibroblasts as the source
cell type. The target cell types include astrocytes (110),
cardiomyocytes (111,112), hepatocytes (113,114), iPSCs
(5,115,116), keratinocytes (117), macrophages (118,119),
and osteocytes (120,121) (Table 1). We used ATAC-seq
and H3K27ac ChIP-seq data of these cell types to create
cell type-specific GRNs, and then calculated TF influence
scores and ranked the TFs in each cell type.

When we calculate TF influence scores from cell type-
specific GRNs, it is important to decide what size of GRN
should be chosen in terms of the top number of edges. We in-
ferred the key TFs for the seven trans-differentiations using
six different sizes of GRNs (10K, 50K, 100K, 200K, 500K
and 1M edges; Supplementary Figures S5 and S6, Supple-
mentary Table S5). These results show that the approach
is relatively invariant to the GRN size, with performance
starting to decrease at 1 million edges. Here, we chose a
GRN size of 100K interactions for all following analyses.

Using GRNs with 100K edges, we predicted the top 10
TFs for all seven trans-differentiations. In all cases, many
of the experimentally defined TFs are included in the top
10 factors predicted by ANANSE (Table 1). For exam-
ple, ANANSE predicts CEBPA, CEBPB and SPI1 for re-
programming fibroblasts to macrophages (118,119) and
HNF4A, FOXA1 and FOXA3 for reprogramming to hep-
atocytes, which are consistent with the experimental trans-
differentiation strategies (113,114).

To evaluate if the inclusion of enhancer information in
the GRN inference in ANANSE resulted in more accu-
rate predictions of TFs for trans-differentiation, we com-
pared the enhancer-based approach of ANANSE with a
promoter-based model, which does not take into account
promoter-distal regulatory elements, and with a model
based on only gene expression data (Figure 5A). We created
both expression and promoter based GRNs of the seven
source and target cell type combinations. For expression-
based GRNs, we used only the mean of the scaled TPM of
TFs and genes together as the interaction score of TFs and

genes. For the promoter-based GRNs, we selected the high-
est binding score of TFs within 2 kb of the TSS of the cor-
responding gene as the binding score of the TF–gene pair.
Subsequently, the mean of the scaled TPM of the TF and
the gene together with the binding score determines the in-
teraction score of the TF and gene (Figure 4B). We then
inferred the key TFs for the seven trans-differentiations us-
ing ANANSE and these two types of GRNs. The ANANSE
influence score based on the enhancer GRNs includes 57%
of the known TFs in the top four predictions (Figure 5A
and Supplementary Table S6). In contrast, using the influ-
ence score based on the promoter GRN or the expression
GRN, we could recover only 5% and 14% of the known TFs
in the top four predictions (Figure 5A, Supplementary Fig-
ures S7 and S8A and Supplementary Table S6). These re-
sults demonstrate that using enhancers in the construction
of GRNs significantly improves the prediction of relevant
TFs in cell fate determination.

Next, we further quantified the performance differ-
ence between ANANSE and previously reported methods,
namely Mogrify, LISA, BART, VIPER, CellNet and the
method of D’Alessio et al. (20,21,24,25,39,40) (Figure 5B
and Supplementary Figure S8B). For Mogrify, we down-
loaded both the prioritized list of TFs based on TF expres-
sion in source cell types and GRN overlap, as well as the
full unfiltered list of TFs. For VIPER, we predicted TFs
with the DoRothEA network, ‘VIPER (D)’, and with the
GRNs inferred by ANANSE, ‘VIPER (A)’. For these com-
parisons, we aimed to include all seven trans-differentiation
strategies. In some cases, as data for the exact cell type is
unavailable, similar cell or tissue types were used as surro-
gates. For example, the osteoblast-Sciencell was used to sub-
stitute for osteoblast. For CellNet, we used the previously
described results of three cell types: hepatocytes, iPSCs and
macrophages (25). For LISA, we used all differentially ex-
pressed genes from fibroblast to each target cell type as in-
put (39). For all methods, the resulting TFs were ranked ac-
cording to the relevant output score of the method. Using
the seven cell type conversions as a reference, ANANSE has
the highest recovery at all rank cutoffs up to 10 (Figure 5B,
Supplementary Figure S8B and Supplementary Figure S9).
ANANSE predicts a mean of 57% TFs using the top four
TFs ranked by influence score, while other methods predict
a maximum of 39% of TFs with this rank cutoff (Figure 5B,
Supplementary Figure S8B and Supplementary Figure S9).
When the number of predicted TFs was increased to ten,
ANANSE could increase its recovery rate to 61%, while the
maximum mean recovery of other methods is 47% (Figure
5B, Supplementary Figure S8B and Supplementary Figure
S9). In addition to the mean recovery rate, we also evaluated
the PR AUC (Figure 5C) and the mean rank of all known
trans-differentiation factors (Figure 5D). In these analyses,
ANANSE shows the highest median score (PR AUC or
mean rank). However, other methods perform nearly as well
in these benchmarks, such as Mogrify (both with PR AUC
and mean rank) and BART and LISA (mean rank).

In summary, these analyses show that including en-
hancers in the GRN construction significantly improves the
prediction of TFs in cell fate conversion and that ANANSE
outperforms other established methods, based on exper-
imentally validated trans-differentiation TFs. Our results
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Figure 5. Evaluation of the performance of ANANSE using experimentally validated trans-differentiation strategies. (A) The line plots show the compari-
son of the predicted top TFs for trans-differentiation from cell type-specific networks. Based on the difference between two networks, TFs were prioritized
using the influence score calculation implemented in ANANSE. Shown is the fraction of predicted TFs compared to all known TFs based on trans-
differentiation protocols described in the literature (y-axis) as a function of the top number of TFs selected (x-axis). The mean of recovery rate is the
average of all TF sets when the corresponding trans-differentiation has several different experimental validated TF sets. The shaded area represents the
minimum and maximum percentage of corresponding recovered TFs when using six out of seven trans-differentiations. Three different types of networks
were used: gene expression (dark blue), promoter-based TF binding in combination with expression (dark green), and enhancer-based TF binding in com-
bination with expression (blue). (B) The line plots show the comparison of the predicted top TFs for trans-differentiation based on different computational
methods. The y-axis indicates the percentage of experimentally validated cell TFs that are recovered as a function of the number of top predictions, similar
as in A). Six different methods are shown: ANANSE (blue), Mogrify (green), LISA (purple), BART (red) and VIPER with ANANSE networks (gray).
The shaded area represents the minimum and maximum percentage of corresponding recovered TFs when using six out of seven trans-differentiations.
Mogrify and CellNet only contain the top 8 predicted factors. For visualization purposes, only a subset of the evaluated methods is shown. The remaining
methods are shown in Supplementary Figure S8B. (C) The PR AUC of the same trans-differentiations as in A and B, shown as a boxplot. Individual
trans-differentiations are shown as dots. (D) The mean rank of the experimentally determined factors of the same trans-differentiations as in A and B,
shown as a boxplot. Individual trans-differentiations are shown as dots.

demonstrate that ANANSE can prioritize biologically rel-
evant TFs in cell fate determination.

ANANSE identified an atlas of key transcription factors in
normal human tissues

The gene expression programs that drive the cellular dif-
ferentiation programs of different tissues are largely con-
trolled by TFs. To find out which key TFs drive cell fate
determination in different tissues, we applied ANANSE to

a much wider range of human tissue data. We downloaded
H3K27ac ChIP-seq data of 18 human tissues from the EN-
CODE project (46) and the RNA-seq data of corresponding
tissues from the Human Protein Atlas project (44). Using
these enhancer and gene expression data, we constructed
tissue-specific GRNs using ANANSE, and then calculated
the TF influence scores for each of the tissues when tak-
ing the combination of all other tissues as the source tis-
sue (Supplementary Table S7). We clustered the 18 tissues
based on the correlation between TF influence scores us-
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ing hierarchical clustering, showing that the influence score
captures regulatory similarities and differences between tis-
sues (Figure 6A and Supplementary Figure S10). For ex-
ample, the esophagus and the skin cluster together, as these
tissues are composed mostly of stratified squamous epithe-
lial cells, and skeletal muscle and heart tissue are clustered
together as both tissues contain striated muscle tissues.

For all studied tissues, we have provided a rich resource
of key TFs of each tissue, with a list of top ten key TFs
(Figure 6B). Many TFs in this list are known to play im-
portant functions for specific tissues, e.g. ELF3 and KLF5
for stomach, colon, and small intestine (122,123); TFAP2A,
TFAP2C, TP63 and GRHL2 for the skin and esophagus
(15,124,125); SOX2, SOX8 and OLIG1/2 for brain (126–
128); and SPI1 for lung, spleen and bone marrow (129) (Fig-
ure 6A).

In summary, using ANANSE, we predicted key TFs for
18 human normal tissues. Many of these predicted TFs cor-
relate well with the known literature of these tissues. In ad-
dition, the predicted key TFs in each tissue also provide us
a rich resource to unveil TFs with novel functions in specific
tissues.

DISCUSSION

Lineage specification and cell fate determination are critical
processes during development. They are necessary to form
the diversity of cell types that are organized into organs and
tissues. TFs form a central component in the regulatory net-
works that control lineage choice and differentiation. In-
deed, cell fate can be switched in vitro through manipulation
of TF expression (5,110–121). However, the regulatory fac-
tors that determine cell identity remain unknown for many
cell types. To address this issue, we developed ANANSE,
a new computational method to predict the key TFs that
regulate cellular fate changes.

We establish TF binding networks for each cell type by
leveraging genome-wide, cell type-specific enhancer signals
from ATAC-seq, H3K27ac ChIP-seq and TF motif data.
ANANSE takes a two-step approach. First, TF binding is
imputed for all enhancers using a simple supervised logistic
classifier. In contrast to existing methods that aim to predict
binding by training TF-specific models (130–132), we also
used a more general model that can be applied to all TFs.
Logically, our simple model will not be as accurate as com-
plex models, trained for specific TFs. Indeed, the PR AUC
and ROC AUC of the ANANSE binding model are lower
for a factor such as CTCF than the current state-of-the-art
in supervised prediction, as illustrated by the comparison
with Virtual ChIP-seq (104). However, the advantage of our
model is that it can predict binding for every TF as long
as its motif is known. In addition, it can be used for fac-
tors for which there is no training data available, and it can
also be applied to non-model organisms that lack compre-
hensive ChIP-seq assays. Our benchmarks show that it per-
forms significantly better than using the motif score alone
or enhancer activity alone and that it outperformed a more
stringent average ChIP-seq baseline.

Second, we summarized the imputed TF signals per gene,
using a distance-weighted decay function (84), and com-
bined this measure with TF activity and TF and target

gene expression to infer cell type-specific GRNs. In gen-
eral, there is a lack of gold standards to evaluate cell
type-specific GRNs. We used multiple orthogonal types of
benchmarks: databases of known, experimentally identified
TF–gene interactions, gene expression after TF perturba-
tions, and functional enrichment using Gene Ontology an-
notation. The databases with known interactions that we
used contain only a fraction of true regulatory interactions,
and therefore this benchmark is affected by a large fraction
of false negatives. All our benchmark evaluations demon-
strate that ANANSE significantly enriches for true regula-
tory interactions. However, it also highlights that GRN in-
ference is far from a solved problem. The PR AUC values
are low, as is generally the case in eukaryotic GRN infer-
ence (133). Our comparison with several established gene
expression-based GRN approaches, such as PANDA (29),
GRNBoost2 (similar to GENIE3) (27,108) and ARACNE
(26) shows that these methods also result in low PR AUC
values. In addition to the improved performance, ANANSE
has another clear benefit. While most GRN inference meth-
ods need a large collection of samples, ANANSE uses only
two or three genome-wide measurements as input: gene ex-
pression and enhancer activity (H3K27ac ChIP-seq and/or
ATAC-seq).

In contrast to previous approaches, our method takes ad-
vantage of TF binding in enhancers, instead of only gene
expression differences or TF binding to proximal promot-
ers. This resulted in significantly improved performance,
as benchmarked for the GRN inference, as well as on
experimentally validated trans-differentiation protocols. It
has been previously shown that cell type-specific regula-
tion is much better captured by enhancers as compared to
promoter-proximal regulatory elements. For instance, TF
binding and chromatin accessibility in distal elements bet-
ter reflect the cell type identity of hematopoietic lineages
than in promoters (134,135). Many important transcrip-
tional regulators mainly bind at regulatory regions that are
not proximal to the promoter. Indeed, our analysis of the
genomic binding distribution of ∼300 human TFs showed
that cell type-specific TFs bind in enhancer regions more
often than TFs that are more widely expressed (Figure 1C).
Therefore, we reasoned that TF binding at enhancers would
be essential to model cell fate and lineage decisions. We
tested the application of the networks inferred by ANANSE
to human in vitro trans-differentiation approaches. Earlier
work showed that computational algorithms allow charac-
terization of cellular fate transitions and rational prioriti-
zation of TF candidates for trans-differentiation (21,23,25).
We implemented a network-based approach to prioritize
TFs that determine cell fate changes. Using a collection of
known, experimentally validated trans-differentiation pro-
tocols, we demonstrated that ANANSE consistently out-
performs other published approaches. This means that cel-
lular trajectories can be characterized using ANANSE to
identify the TFs that are involved in cell fate changes. In
comparison with a promoter-based approach, we show that
using enhancer-based regulatory information contributes
significantly to this increased performance (Figure 5A).
One noticeable example is the trans-differentiation from fi-
broblasts or mesenchymal cells to keratinocytes. In current
experimentally validated trans-differentiation methods, the
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Figure 6. Applying ANANSE to expression data of human tissues to identify key transcription factors. (A) Heatmap of the predicted influence scores of
all TFs using ANANSE on data from 18 human tissues. The color in the heatmap indicates the relative influence score, from low to high. The four small
heatmaps highlighted below show important TFs in related tissues. (B) The top 10 key TFs of 18 tissues inferred by ANANSE. The color of the tissue is
consistent with the tissue name in the box. The order of TF of each tissue is based on the influence score of the TF ranked from high to low.

epithelial master regulator TP63 is essential for establish-
ing the keratinocyte cell fate (117,136). However, TP63 was
not predicted in most of the previously published compu-
tational methods (21,23,25). One plausible explanation is
that TP63 is a TF for specific epithelial cells and tissues
and it binds predominantly (87%) to enhancers (15,31–33),
whereas previous computational tools do not take enhancer
properties into consideration.

We used ANANSE to identify tissue-specific TFs for dif-
ferent human tissues. We predicted the top 10 key TFs
for all studied tissues. Many TFs in this list are known
for important functions in these specific tissues. For exam-
ple, some NK homeodomain, GATA, and T-box TFs are
found in normal cardiac development, which have impor-

tant functions during heart specification, patterning, and
differentiation (137–139). Many TFS of the SOX family
are known to be critical for neural system development
in brain tissue (126,127). The gastrointestinal tract tissues
share a number of high influence score TFs such as ELF3,
KLF5 and HNF4A, which play roles in stomach, colon,
and small intestine development, and are consistent with
the current research on gastrointestinal tract tissues (Fig-
ure 6A) (57,140,141). ELF3 is important in intestinal mor-
phogenesis, homeostasis, and disease (57). The Klf5 dele-
tion in mouse leads to intestine epithelial damage and a re-
duction of colon proliferative crypt cells (141). Our analy-
sis showed that TP63, TFAP2A, TFAP2C and GRHL1 are
common important TFs in the skin and esophagus (Fig-
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ure 6B). The function of these TFs has been well studied
in the skin. TP63 is one of the TFs that is important in
both skin and esophagus development (15,117,142). TP63
and TFAP2A have been used in in vivo reprogramming of
wound-resident cells to generate skin epithelial tissue (117).
Both TFAP2A and TFAP2C are required for proper early
morphogenesis and development as well as terminal differ-
entiation of the skin epidermis (143–145). GRHL1 is impor-
tant for the functioning of the epidermis. Grhl1 knockout
mice exhibit palmoplantar keratoderma, impaired hair an-
choring, and desmosomal abnormalities (125). It would be
interesting to investigate what roles they play in esophagus.
PAX9 regulates squamous cell differentiation and carcino-
genesis in the oro-oesophageal epithelium (146). Although
not all predicted TFs are known to have an important role
in specific tissues, further research is warranted. The TFs in
the TF atlas predicted by ANANSE may also be good can-
didates for studying tissue development and engineering in
regenerative medicine.

Another large benefit of the model that we implemented
in ANANSE is the wide applicability. The source code
of ANANSE is publicly available under a liberal license.
ANANSE does not depend on large collections of refer-
ence data and it is straightforward to run on new data, such
as different cell types or even species. The types of data re-
quired for this analysis are the following: gene expression
data (RNA-seq) and genome-wide assays of enhancer activ-
ity. The enhancer data can be ATAC-seq, H3K27ac ChIP-
seq or a combination of them, which is relatively easily ob-
tained, not only in human cell types or in common model
species, but also often in non-model species (147). The pre-
dictions of ANANSE, represented by TF binding, gene reg-
ulatory networks and TFs ranked by their influence score,
are useful to study gene regulatory principles in a wide va-
riety of contexts. While we used trans-differentiation exper-
iments to benchmark the TF influence score, the utility of
ANANSE is not limited to these types of experiments. It
can also be used to study differentiation, cell type-specific
gene regulation and developmental processes.

We also acknowledge limitations in our approach. In
ANANSE, we link enhancer regions to genes on the ba-
sis of distance. For each TF and gene interaction pair,
ANANSE only considers TF binding information located
at most 100 kb up and downstream of the corresponding
gene. Although data from a recent CRISPR enhancer inter-
ference screen showed that genomic distance is largely infor-
mative in predicting enhancer-target interactions (148), this
approach may be limited when applying to genes regulated
through ultra-long range regulation or through less abun-
dant inter-chromosomal contacts (149). This limitation of
our method can potentially be addressed using chromo-
some conformation capture techniques (3C) (150) or other
adaptations as circular 3C (4C) (151,152), chromosome
conformation capture carbon copy (5C) (153), chromatin
immunoprecipitation using PET (ChIA-PET) (154) and Hi-
C (155). However, these types of data are currently only
available for a limited number of cell types, therefore incor-
poration of topology data would limit the broad utility and
application of our approach. Another limitation is that the
current implementation of ANANSE focuses on activating
transcription factors. During cell differentiation and repro-

gramming, other factors such as transcriptional repressors
and chromatin modifying enzymes also play an important
role. These are currently not considered in ANANSE. Fi-
nally, similar to other genome-wide gene regulatory net-
work inference methods, the performance of ANANSE is
not yet optimal. While our benchmarks (Figure 4 A and
B, Supplementary Figure S2) indicate that ANANSE im-
proves upon other methods, it is clear that there is still much
progress to be made in genome-wide GRN inference.

CONCLUSION

Here, we presented ANANSE, a computational tool for (i)
transcription factor binding prediction, (ii) gene regulatory
network inference and (iii) efficient prediction of TFs in cell
fate determination. It outperforms other published meth-
ods in GRN inference and in predicting TFs that can induce
trans-differentiation. In addition, it is open source, freely
available and can be easily applied to other cell types and in
any species. In summary, ANANSE exploits the powerful
impact enhancers have on gene regulatory networks, and it
provides insights into TF mediated regulatory mechanisms
underlying cell fate determination and development.
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