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Alcohol-associated liver disease (ALD) is a common chronic liver disease with increasing incidence
worldwide. Alcoholic liver steatosis/steatohepatitis can progress to liver fibrosis/cirrhosis, which can
cause predisposition to hepatocellular carcinoma. ALD diagnosis and management are confounded by
several challenges. Iron loading is a feature of ALD which can exacerbate alcohol-induced liver injury
and promote ALD pathologic progression. Knowledge of the mechanisms that mediate liver iron
loading can help identify cellular/molecular targets and thereby aid in designing adjunct diagnostic,
prognostic, and therapeutic approaches for ALD. Herein, the cellular mechanisms underlying alcohol-
induced liver iron loading are reviewed and how excess iron in patients with ALD can promote liver
fibrosis and aggravate disease pathology is discussed. Alcohol-induced increase in hepatic transferrin
receptor-1 expression and up-regulation of high iron protein in Kupffer cells (proposed) facilitate iron
deposition and retention in the liver. Iron is loaded in both parenchymal and nonparenchymal liver
cells. Iron-loaded liver can promote ferroptosis and thereby contribute to ALD pathology. Iron and
alcohol can independently elevate oxidative stress. Therefore, a combination of excess iron and
alcohol amplifies oxidative stress and accelerates liver injury. Excess ironestimulated hepatocytes
directly or indirectly (through Kupffer cell activation) activate the hepatic stellate cells via secretion
of proinflammatory and profibrotic factors. Persistently activated hepatic stellate cells promote liver
fibrosis, and thereby facilitate ALD progression. (Am J Pathol 2023, 193: 1427e1439; https://
doi.org/10.1016/j.ajpath.2022.08.010)
This article is made open access with the financial support of King’s
College London.
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This article is part of a review series focused on the role of cellular stress

in driving molecular crosstalk between hepatic cells that may contribute to
the development, progression, or pathogenesis of liver diseases.
Alcohol consumption is increasing worldwide, and so is the
incidence of alcohol-associated liver disease (ALD).1 With
no standard laboratory diagnostic test to confirm ALD eti-
ology, asymptomatic early stages, and high costs of disease
management, ALD continues to pose challenges on all
fronts. Abstinence is the only curative option.2

Iron loading is one of the characteristic features of ALD.
Even mild to moderate alcohol consumption increases liver
iron content.3 This can aggravate alcohol-induced liver injury
via various mechanisms and promote the pathologic pro-
gression of the disease. Knowledge of these mechanisms that
mediate liver iron increment in ALD and its consequences at
cellular level may help identify cellular/molecular targets and
thereby aid in designing better diagnostic, prognostic, and
stigative Pathology. Published by Elsevier Inc

Y license (http://creativecommons.org/licenses
therapeutic approaches for ALD. Such investigations have
proved useful in the past. For example, a study showed that
liver iron content exhibited a negative correlation with the
survival of patients with ALD, and was thus predictive of
mortality in patients with alcoholic cirrhosis.4

Herein, the cellular mechanisms underlying alcohol-
induced liver iron loading are reviewed and how excess
.
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iron in patients with ALD can promote liver fibrosis and
aggravate disease pathology is discussed.

High Liver Iron Content in ALD

Patients with ALD/chronic alcohol consumers often
show high hepatic iron levels.5e9 About 50% of patients
with ALD tend to show liver iron excess.10 A study
showed that the mean liver iron content (measured as
mg/100 mg dry weight) in alcoholics was 156.4 � 7.8,
which was significantly higher than that in controls
(53 � 7).9 Alcoholic cirrhotic patients frequently show
high liver iron content, which is associated with
increased mortality.4 Increment in liver iron occurs not
only because of alcohol consumption but also because of
additional factors and mechanisms involving the second
hit, such as a high-fat diet in combination with alcohol
consumption. Regardless, high liver iron content can
contribute to permanent liver injury and hepatocellular
carcinoma.11 Indeed, with increased serum iron in
alcohol consumers, there could also be iron deposition in
extrahepatic organs, such as the pancreas and heart, as
seen in other iron-loaded conditions.12 For example, an
autopsy of a 54-yeareold woman with ALD showed iron
overload in the liver as well as the pancreas, heart, and
stomach.5

Pattern of Iron Deposition in Hepatic Cells in ALD

There are two different proposals with regard to iron
deposition in the different cell types of the liver. According
to one proposal, in mild ALD, iron is preferably deposited
in the hepatocytes (parenchymal cells of the liver). As the
condition progresses to severe ALD, iron loading is
observed more in the Kupffer cells (nonparenchymal cells
in liver) compared to hepatocytes.6 Pietrangelo13 supports
the idea of nonparenchymal iron loading in the advanced
stages of alcoholic liver fibrogenesis. In contrast, the sec-
ond proposal suggests that in secondary iron overload
syndromes, such as ALD, iron accumulates in the reticu-
loendothelial system, which includes the Kupffer cells of
the liver, and accumulates in the hepatocytes after the
reticuloendothelial cells are saturated with iron.14

Regardless, in ALD, iron deposition is observed in both
hepatocytes and Kupffer cells (ie, in parenchymal and
nonparenchymal cells of the liver).

Cellular Mechanisms that Increase Liver Iron in
ALD

Hepcidin, the liver-secreted iron hormone, is the regulator of
systemic iron homeostasis.15 Alcohol-induced suppression
of hepcidin expression is the main cause of systemic iron
loading in alcohol consumers. Serum iron loading is further
1428
increased by alcohol-induced elevations in the expressions
of iron transporters such as duodenal divalent metal-ion
transporter 1 (DMT1) and ferroportin in the duodenum.
These events enhance intestinal iron absorption (ie, increase
iron entry into the circulation),16e19 which forms the basis
for liver iron loading in alcohol consumers.
The multiple mechanisms/cellular events that facilitate

liver iron loading in ALD are depicted in Figure 1.

Increased Hepatic TfR1

Increment in hepatic transferrin receptor-1 (TfR1) is one
such mechanism that facilitates liver iron loading in
ALD. Cellular TfR1 is the receptor for circulating iron-
bound transferrin. It facilitates the entry of transferrin-
bound iron (TBI) into various cells. Most habitual
alcohol consumers/patients with ALD show increased
expression of hepatic TfR1 (in hepatocytes), unlike
healthy liver tissues.20 An increase in the activity of iron
regulatory proteins (IRPs) due to alcohol-induced
oxidative stress is partly responsible for this increase in
TfR1 expression.6,21 Kupffer cells of alcohol-fed rodents
have sixfold and ninefold increases in TfR1 gene and
protein expressions, respectively.22 This collectively in-
dicates that alcohol-induced elevation in TfR1 expression
promotes iron uptake in both parenchymal and non-
parenchymal cells of the liver (Figure 1). Thus, TfR1 up-
regulation may partly explain the liver iron loading in
patients with ALD.20e22 Interestingly, treatment of VL-
17A cells with alcohol neither alter the expressions of
TfR1 and IRP2 nor alter IRP1 RNA binding activity.23

However, a combination of alcohol and iron treatment
to rat primary hepatocytes increase the expression of
TfR1 (compared with iron alone treatment) partly
through the increased activity of IRPs.23,24 On the basis
of this, it can be extrapolated that the increased TfR1
expression observed in alcohol consumers is a result of
combined effect of alcohol and iron.
Normally, the intracellularly operating IRPeiron

response element (IRE) system regulates cellular iron
levels by acting on the transcripts for various iron-related
genes, including TfR1. Under cellular iron excess, the IRP-
IRE system functions to reduce cellular TfR1 to reduce TBI
entry into the cells.25 Alcohol-induced increment in hepatic
TfR1 expression in the presence of hepatic iron loading
suggests that alcohol can disturb the aforementioned TfR1-
regulatory mechanism and cause or contribute to increased
hepatocellular iron uptake.6,21

Macrophages also show iron loading. These cells pre-
dominantly acquire iron through phagocytosis of senescent
red blood cells. However, these cells express DMT1, TfR1,
hemoglobin scavenger receptor (CD163), and natural
resistance-associated macrophage protein 1. These proteins
are involved in iron uptake and transport,19 and may
contribute to the increment in liver iron levels.
ajp.amjpathol.org - The American Journal of Pathology
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Figure 1 Cellular events underlying alcohol-induced iron loading in different cell types. Alcohol consumption decreases hepcidin levels in the circulation.
In turn, this increases intestinal absorption of iron. Elevated serum iron levels cause iron deposition in various cell types, including the hepatocytes and
Kupffer cells in the liver, via elevation in transferrin receptor-1 (TfR1) and high iron protein (HFE; proposed). Also, alcohol-induced elevations of
nonetransferrin-bound iron (NTBI) transporters zinc-regulated, iron-regulated transporter-like protein (ZIP) and divalent metal-ion transporter 1 (DMT1) on
hepatocytes, as observed in some studies, aid in hepatocyte iron loading. Green arrows with yellow stars indicate variability in results with regard to alcohol-
induced elevation of these NTBI transporters.

Liver Iron in Alcoholics
Putative Role of HFE Protein

The high iron (HFE) protein may contribute to liver iron
accumulation. HFE is a cell surface protein that exhibits
multiple functions. First, the HFE can bind to TfR2 to form an
iron-sensing complex on the cell membrane. This complex
regulates/induces hepcidin expression.26 Here, HFE functions
as a regulator of hepcidin transcription. Second, HFE can
affect the binding of iron-bound transferrin to TfR1. Binding
of HFE to TfR1 reduces the affinity of TfR1 to bind to iron-
bound transferrin,27 thereby reducing cellular iron uptake.
Here, HFE functions as a regulator of cellular iron uptake.
Third, HFE inhibits cellular iron efflux. Stable transfection-
expression of HFE in human colonic carcinoma cell line in-
creases cellular ferritin expression, indicating intracellular iron
accumulation/elevation. However, this is independent of
transferrin-dependent iron uptake. This suggests that the HFE
expression prevents cellular iron efflux and facilitates intra-
cellular iron retention, which results in the aforementioned
intracellular ferritin elevation.28 Ferroportin is the sole known
iron transporter (exporter) on the surfaces of various cell types,
including the hepatocytes and Kupffer cells. HFE can interact
with ferroportin and inhibit cellular iron release from macro-
phages (Figure 1).29

Alcohol activates HFE gene transcription in the Kupffer
cells.22 Alcohol-exposed rat Kupffer cells show increased
Hfe mRNA levels.19 On the basis of the postulated function
of HFE, this may reduce/inhibit cellular iron export and
facilitate iron retention within the Kupffer cells. This may be
an additional mechanism causing liver iron loading under
The American Journal of Pathology - ajp.amjpathol.org
the influence of alcohol (Figure 1). Interestingly, duodenal
HFE mRNA expression in patients with ALD with iron
overload (defined as increased ferritin or transferrin satura-
tion) is significantly higher than in controls, unlike the
expression levels in patients with ALD without iron over-
load and patients with ALD with anemia, in whom levels
are similar to controls.18 This suggests that the increase in
duodenal HFE expression is linked with systemic iron
loading, which can subsequently lead to iron deposition in
the liver and other organs. On the basis of these data, it
appears that HFE function may be cell specific: mediating
intracellular iron retention in one cell type, as postulated in
case of Kupffer cells, while allowing systemic iron loading
through duodenal cells. This hypothesis of the cell-specific
nature of HFE needs to be confirmed.
Enigma Around Ethanol-Induced NTBI Uptake

Depending on the form of iron [TBI or nonetransferrin-
bound iron (NTBI)], cellular iron uptake can occur via two
main mechanisms: TBI uptake and NTBI uptake. NTBI
uptake occurs independent of TfR1 and contributes to cell
toxicity when in excess. It involves NTBI transporters such
as DMT1, zinc-regulated, iron-regulated transporter-
like protein 14 (ZIP14) (on hepatocytes), ZIP8, and L-type
calcium channels in the cardiomyocytes that are believed to
be involved in NTBI uptake.30 TBI uptake is regulated by
the IRP-IRE system25 and functions by down-regulating
TfR1 expression under excess iron conditions. In contrast,
1429
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NTBI uptake occurs despite iron loading. Hepatocytes and
parenchymal cells of other tissues, like pancreas and heart,
are prone to NTBI uptake. This explains iron loading in the
liver and other organs.30

ZIP14 and DMT1 can mediate NTBI uptake in hepatocytes
(Figure 1). In the context of the effect of alcohol on these NTBI
transporters andNTBI uptake, there have been some apparently
differing observations. For example, in mice, chronic alcohol
and/or iron feeding (15 weeks) caused significantly elevated
levels of NTBI in serum and increased the expressions of he-
patic DMT1 and ZIP14 at both mRNA and protein levels. This
explained the observed increment in their liver iron content31

and indicated alcohol-induced elevation in NTBI and in
NTBI uptake. In human HepaRG cells (hepatic cell line),
ethanol increased total iron content, which appeared to be
mediated via elevations in the gene expression of DMT1 and
TfR1,32 indicating the utility of both NTBI and TBI uptake in
the presence of alcohol.

However, in other studies, ethanol exposure dramatically
reduced hepatic ZIP14 protein levels in mice,33 and there was
no major change in hepatic DMT1 in mice after 12 weeks of
alcohol feeding.11 Because these data are variable, it would
be interesting to further investigate and clarify the signifi-
cance and role of NTBI uptake under the influence of
alcohol.

Alcohol and Liver Ferritin: Some Contradictions

Ferritin (the iron storage protein present intracellularly and
in the circulation) is elevated in response to elevation in iron
and/or inflammation. It is composed of two types of chains:
heavy (H) and light (L). Rats fed with alcohol for 7 weeks
showed significantly increased levels of H-ferritin expres-
sion in the liver.34 Similarly, HepG2 cells treated with
alcohol had increased expressions of both H and L ferritin
and alcohol increased L-ferritin synthesis in rat hepato-
cytes.35 Alcohol exposure to human hepatoma HepaRG cell
line also increased the expression of L-ferritin.36 Such an
alcohol-induced increase in liver ferritin could be either a
rescue mechanism to combat the alcohol-induced elevation
in iron levels and store excess iron, or it could be a response
to alcohol-induced inflammation or both.

However, a study in mice fed with alcohol for 12 weeks
showed decreased hepatic L-ferritin expression, and there
were no significant effects at the earlier time points.11

Similarly, in VL-17A cells, alcohol did not alter the
expression of H-ferritin.23 These differential ferritin re-
sponses to alcohol require further investigation.

Combination of Excess Iron and Alcohol
Enhances Oxidative Stress and Aggravates ALD
Pathology

Under physiological conditions, normal levels of reactive
oxygen species (ROS) produced by cellular mechanisms are
1430
utilized for cellular purposes, and excess ROS are scavenged/
tackled by the endogenous antioxidant mechanisms to pre-
vent ROS-mediated injury. However, excess free iron can
accelerate the Fenton reaction, leading to the production of
large amounts of ROS that saturate the endogenous antioxi-
dant mechanisms. These free radicals increase oxidative
stress and can cause immense cellular and tissue damage37 by
acting on cellular organelles, DNA, proteins, and lipids.
Both iron overload and alcohol can independently cause

oxidative stress and lipid peroxidation. Thus, excess free
iron and alcohol act in a synergistic manner to cause liver
damage, and the combined effect exacerbates liver injury.19

The fibrogenic potential of iron is enhanced when it acts
with other hepatotoxins, such as alcohol. The catalytic free
iron can directly add to the hepatoxicity of alcohol and/or
amplify the generation of cytokines and fibrogenic media-
tors from the nearby Kupffer cells. Therefore, a slight in-
crease in tissue iron levels in the presence of alcohol (and
other metabolites) can accelerate fibrogenesis and advance
the liver disease. In the early stages of liver disease, iron-
loaded hepatocytes release profibrogenic cytokines and
sustain fibrogenesis, whereas at the advanced stages, fibro-
genesis is primarily governed by iron-induced hepatocellu-
lar necrosis.13 Thus, in ALD, excess iron can enhance liver
injury by acting as a cofactor for liver fibrogenesis. Also, the
combined oxidative stress caused by alcohol and excess iron
may cause DNA damage and mutations, resulting in
increased predisposition to liver cancer.

Ferroptosis in Context

Ferroptosis: An Iron-Dependent Cell Death

Ferroptosis is iron-dependent regulated cell death and is
characterized by excessive iron accumulation and lipid
peroxidation.38 During ferroptosis, glutathione peroxidase is
unable to efficiently execute its antioxidant action and repair
lipid peroxidation due to the excess of oxidation-reduc-
tioneactive iron, resulting in unrestricted lipid peroxidation
and iron-dependent accumulation of high levels of lipid
hydroperoxides.39,40

Ferroptosis is morphologically and biochemically distinct
from other cell death patterns such as apoptosis, autophagy,
and pyroptosis. Its normal physiological function has not
been established yet, but it has a role in pathology. Distinct
from its role in hepatocellular carcinoma, where it increases
sensitivity to sorafenib (used for liver cancer treatment), in
chronic liver diseases, including ALD, ferroptosis aggra-
vates hepatic damage. Generally, it has been implicated in
the pathology of liver diseases via several signaling
pathways.38,39

Role of Ferroptosis in ALD Pathology

Alcohol metabolism generates a large amount of acetalde-
hyde, reduces the levels of the antioxidant glutathione in the
ajp.amjpathol.org - The American Journal of Pathology
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mitochondria, and increases ROS production, followed by
elevated lipid peroxidation in liver cells. Studies confirm
that alcohol treatment induces excessive accumulation of
iron in the liver, and increases ROS accompanied by lipid
peroxidation, thereby initiating ferroptosis.41,42 The key
features of ferroptosis are iron and lipid peroxidation. Both
liver iron loading and lipid disorder are features of ALD,38

which generates a strong reason for ferroptosis initiation in
the livers of patients with ALD.

As previously discussed, excess iron generates free radi-
cals and enhances oxidative stress/injury. The liver is prone
to oxidative injury in general. Thus, ferroptosis has a
pathogenic role in excess ironeinduced hepatic damage and
fibrosis, and excess iron is a risk factor for liver fibrosis and
cirrhosis.43 This explains the role of iron overload in
inducing ferroptosis and thereby contributing to ALD
pathology.

Effect of Ferroptosis on Hepatocytes

Long-term alcohol consumption can cause liver iron loading
and subsequently promote ferroptosis in the hepatocytes.
Hepatocytes have myriads of functions, including regulation
of systemic levels of iron, glucose, and lipoproteins.
Therefore, regardless of the form of cell death (ferroptosis or
otherwise), hepatocyte death or dysfunction is a critical
factor for liver injury and failure. Hepatocytes that undergo
ferroptosis burst and release damage-associated molecular
patterns. These are proinflammatory in nature and activate
NOD-like receptor family pyrin domain-containing 3
(NLRP3) inflammasomes in the Kupffer cells, leading to the
release of a large volume of proinflammatory cytokines44

that aggravate disease pathology.
Thus, excess iron, as found in ALD livers, can induce

oxidative stress, cause iron-dependent cell death ferroptosis,
promote inflammation, and thereby contribute to liver
injury. Unsurprisingly, iron as an initiator of ferroptosis is
linked with mortality related to ALD.41 Ferroptosis in-
hibitors, like ferrostatin-1, can rescue the alcohol-induced
hepatocyte death and limit alcohol-induced liver injury.45

Therefore, ferroptosis appears to be a promising target for
ameliorating ALD pathology.

Cell-Specific Effect of Ferroptosis

Unlike the aforementioned situation, where ferroptosis in
hepatocytes exerts a pathologic effect and inhibition of
ferroptosis in the hepatocytes is therapeutic, ferroptosis in
hepatic stellate cells (HSCs) shows a completely opposite
effect. Several studies in animal models have shown that
ferroptosis in activated HSCs can reduce liver fibrosis and
exert a curative effect. Also, blocking ferroptosis in the
HSCs can promote liver fibrosis. Thus, the effect of fer-
roptosis appears to be cell-type specific. This presents
challenges at the therapeutic front because selectively
targeting ferroptosis in HSCs can be difficult.46 To enable
The American Journal of Pathology - ajp.amjpathol.org
this, specialized systems that exclusively target the HSCs
are required.

Links between Alcohol, Autophagy,
Ferritinophagy, and Ferroptosis

Autophagy: A Cell Survival Mechanism that Can also
Promote Cell Death

Autophagy is a conserved catabolic cellular process trig-
gered following an insult or stress. It degrades damaged
organelles and extra/unnecessary proteins, aiming to main-
tain a balance between protein degradation, synthesis, and
recycling of cellular components. It involves the formation
of vesicles called autophagosomes, which deliver the cyto-
solic cargo to lysosomes for degradation, and recycling it
back to the cytosol. Dysregulation of autophagy has been
implicated in metabolic and neurodegenerative diseases,
inflammation, aging, and cancer. In the liver, autophagy
maintains the cellular functionality of hepatocytes.47,48

Autophagy Degrades Ferritin

Autophagy degrades ferritin, the iron-storage protein. This
is called ferritinophagy. Ferritin degradation inside the
autolysosomes leads to the release of iron from ferritin. This
released free iron is likely to be transported back to cytosol,
leading to increment in ROS and oxidative stress, which can
trigger ferroptosis. Thus, ferritinophagy can play a role in
triggering ferroptosis (Figure 2),49e53 and ferritin negatively
regulates ferroptosis.54 In HepG2 cells, autophagy inhibition
increased ferritin heavy chain production.55 In theory, this
could aid in scavenging/accommodating free iron within
ferritin, leading to reduction in oxidative stress and, thereby,
reduction in ferroptosis. Collectively, data suggest that fer-
ritinophagy can promote ALD pathology, in part via fer-
roptosis, because ferroptosis aggravates liver pathology
(Figure 2).

Autophagy Shows Divergent Relation with ALD: Further
Clarity Needed

There are differing data on the effect of alcohol on auto-
phagy. Studies indicate that alcohol exposure can increase
autophagosome formation and trigger autophagy. This is a
protective mechanism that selectively removes damaged
mitochondria and hepatic lipids. However, alcohol can also
impair lysosome function or lysosomal biogenesis, leading
to deficient autophagy in the hepatocytes, and contribute to
ALD pathology (Figure 2).56 These apparently contrasting
effects could be due to differential effects of acute and
chronic alcohol on autophagy, due to differential effects of
alcohol itself on autophagy, or the role of autophagy in both
cell survival and cell death; the latter depending on cell type
and context.57 The reason(s) for these differential effects
need to be identified.
1431
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There are conflicting inferences involving autophagy,
ferroptosis, and ALD pathology (Figure 2). Inhibition of
autophagy in alcohol-fed mice increases hepatoxicity, stea-
tosis, oxidative stress, and hepatocyte apoptosis, and acti-
vation of autophagy blunts the alcohol-induced steatosis.56

This indicates a protective role of autophagy under alco-
holic conditions. However, experiments in HepG2 cells
show that inhibition/impairment of autophagy activates the
p62-Keap1-Nrf2 pathway. This is protective against
alcohol-induced ferroptosis,55 and thereby should reduce/
decelerate ALD pathology. Unlike the previous case, this
presents autophagy impairment as having a protective role
under alcoholic conditions (Figure 2).

These conflicting relationships, which infer that auto-
phagy can trigger ferroptosis but also decrease ALD pa-
thology, and impaired autophagy can reduce ferroptosis but
also accelerate ALD pathology, require further clarification.

Intercellular Events Underlying Iron-
Aggravated Liver Fibrosis in ALD

Iron loading is one of the independent risk factors for
fibrosis in ALD.58 Thus, it is important to review the
intercellular events involved in the iron-facilitated progres-
sion to liver fibrosis.

Figure 3 summarizes the intercellular interactions, and the
ways in which iron loading can exacerbate liver injury in
ALD and promote liver fibrosis. Table 159e75 presents an
1432
overview of the effect of iron overload on some of the core
cell types in the liver. Each cell type of the hepatic lobule is
actively involved in the fibrogenic process. The main cell
types involved in this process are the hepatocytes, Kupffer
cells, and HSCs, whereas the liver endothelial cells
(Table 1). Fat-storing cells (described in the subsequent
section) also play a role.
Interaction between Hepatic Stellate Cells,
Hepatocytes, and Kupffer Cells

The HSCs play a crucial role in liver fibrogenesis. Activa-
tion of HSCs is a normal phenomenon that mediates wound
repair. Following repair, HSCs either revert to their quies-
cent state or undergo apoptosis. However, persistent liver
insults keep the HSCs continuously activated. These HSCs
secrete excessive amounts of profibrogenic factors and
extracellular matrix that collectively induce a pathologic
state and form the basis of liver fibrosis. When liver iron
exceeds 60 mmol/g, the HSCs get activated. Iron-induced
promotion of fibrogenic mechanisms has been shown in
murine HSCs, and the contribution of excess iron in
enhancing liver fibrosis is well established.59,68,76

Iron-loaded hepatocytes release profibrogenic factors and
can directly activate the HSCs (Figure 3). In addition, these
hepatocytes can release profibrotic/proinflammatory factors
and stimulate the Kupffer cells.77 Alcohol increases the
translocation of lipopolysaccharide from the intestine to the
ajp.amjpathol.org - The American Journal of Pathology
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Figure 3 Intercellular events depicting the role of iron in enhancing alcohol-induced liver fibrosis. Alcohol can cause iron loading in the hepatocytes and
Kupffer cells. Oxidative injury to hepatocytes due to excess iron and alcohol can lead to hepatocyte death. Kupffer cells phagocytose dead/damaged he-
patocytes and get activated. Activated Kupffer cells release profibrotic cytokines and activate the hepatic stellate cells (HSCs). In addition, profibrotic/in-
flammatory cytokines released from injured hepatocytes together with reactive oxygen species (ROS) and acetaldehyde produced from alcohol metabolism in
the hepatocytes activate the HSCs. Following activation, HSCs secrete profibrotic factors and excessive extracellular matrix that collectively form the basis for
liver fibrosis. Adipocytes also play a role in promoting alcohol-induced liver fibrosis, and together with excess iron, the pathology may be aggravated. b-FGF,
b-fibroblast growth factor; IFN-g, interferon-g; MCP-1, monocyte chemoattractant protein-1; PDGF, platelet-derived growth factor; a-SMA, a-smooth muscle
actin; TGF, transforming growth factor; TNF-a, tumor necrosis factor-a.

Liver Iron in Alcoholics
liver, which additionally stimulates the Kupffer cells. Once
activated, the Kupffer cells release proinflammatory and
profibrotic factors, such as tumor necrosis factor (TNF)-a,
IL-1, IL-6, IL-8, IL-10, interferon-g, transforming growth
factor-b1, platelet-derived growth factor, b-fibroblast
growth factor, monocyte chemoattractant protein-1, and
ROS. These cytokines, in turn, activate the HSCs
(Figure 3).77e80 Injured hepatocytes can activate the HSCs
directly, or indirectly by stimulating the Kupffer cells to
secrete profibrotic factors which, in turn, activate HSCs.
Regardless, on activation, HSCs differentiate into myofi-
broblasts and synthesize and release excessive amounts of
extracellular matrix composed of elastin, collagen, and other
matrix proteins, thereby exhibiting liver fibrosis
(Figure 3).59,77

Activation of NF-kB correlates with liver inflammation
and fibrosis in ALD.81 Alcohol-induced accumulation of
iron in Kupffer cells can activate NF-kB and worsen
experimental ALD/alcoholic steatohepatitis.22,65,82 Alco-
holics show increased levels of lipopolysaccharide in the
circulation. Iron and lipopolysaccharide are believed to
activate NF-kB in the Kupffer cells and induce the synthesis
of proinflammatory cytokines, like TNF-a.19 TNF-a plays
an important role in liver injury. Normally, hepatocytes are
not negatively affected by TNF-a. However, alcohol sen-
sitizes the hepatocytes to injury by TNF-a and causes he-
patocyte cell death via apoptosis.80,83 These dead cells are
engulfed by the Kupffer cells (Figure 3). In animal models,
The American Journal of Pathology - ajp.amjpathol.org
Kupffer cell depletion or inactivation dampens alcohol-
induced effects, such as inflammation, fatty liver, and ne-
crosis. Thus, Kupffer cells play an important role in the
pathologic progression of ALD.19

The Role of Adipocytes

In addition to Kupffer cells and HSCs, surrounding cells
such as the adipocytes from adipose tissue, are involved in
ALD pathogenesis. Independent of the effect of alcohol,
lipid peroxidation by-products released from iron-
overloaded hepatocytes are able to stimulate collagen gene
transcription in the neighboring fat-storing cells directly or
via activation of Kupffer cells.84 This may further aggravate
ALD pathogenesis in cases with iron overload. Notably,
excess ironegenerated ROS and lipid peroxidation by-
products can activate both Kupffer cells and HSCs
(Figure 3).13

Alcohol induces inflammation in the adipose tissue.
Alcohol-induced lipolysis in the adipocytes (which pro-
motes hepatic steatosis) together with inflammatory re-
sponses in the macrophages release increased levels of free
fatty acids, adipokines (such as leptin), and cytokines (such
as TNF-a and IL-6) into the portal circulation.85,86 These
adipokines, like leptin, have proinflammatory effects on the
liver. Leptin (along with other endocrine factors) activates
the HSCs and Kupffer cells (that produce increased TNF-a),
and thereby promotes hepatic inflammation and fibrosis
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Table 1 Overview of the Most Prominent Effects of Iron Overload on the Core Liver Cells and the Associated Underlying Mechanisms

Liver cell type and its generic function Prominent effects of iron overload
Underlying cellular mechanisms in context
of iron loading

Hepatocytes (hepatic parenchymal cells,
make majority of liver parenchyma and
exhibit various functions, including
sensing iron in the circulation and
secreting the iron-regulating hormone
hepcidin)15

Increased oxidative stress, resulting in
damage to cellular organelles, lipids,
proteins, and DNA44,59

Excess ironeinduced elevation in ROS
production is via the Fenton
reaction44,59

Cell death Excess ROS causes lipid peroxidation,
which contributes to different types of
cell deaths, including ferroptosis.59e61

Increased synthesis and secretion of
hepcidin15

Hepcidin is induced via the BMP-SMAD
pathway.15 (Notably in ALD, hepcidin
synthesis and secretion is reduced due to
alcohol-induced inhibition of the BMP-
SMAD pathway,62 attenuation of JAK/
STAT signaling,16 and oxidative
stress.19,44)

Kupffer cells (hepatic nonparenchymal
cells, clear microorganisms, dead cells,
debris, and circulating endotoxin)63

Increased production of inflammatory
cytokines64

Iron loading can activate NF-kB,44,65 which
can stimulate the production of
proinflammatory cytokines, like TNF-a
and IL-6.66

Enhanced inflammatory response to
LPS22,67

Disruption of mitochondrial homeostasis
and increased generation of
mitochondrial superoxide partly promote
inflammatory response to LPS.67

HSCs (hepatic nonparenchymal cells,
generally quiescent, mediate wound
healing following an injury)

Persistent cell activation and proliferation,
leading to promotion of fibrosis59

Stimulation of the expressions of type I
collagen and a-SMA (makers of fibrosis),
increased production of TGF-b1, and
activation of TGF-b pathway.68,69

Extracellular ferritin stimulates
inflammatory pathway in HSCs70

Activated HSCs exhibit a receptor for H-
ferritin. Binding of ferritin (H-ferritin)
activates NF-kB through PI3 kinase,
PKCz, MEK1/2, MAPK, and IKKa/b.
Thereby, extracellular ferritin acts as a
proinflammatory mediator.70

LSECs (hepatic nonparenchymal cells, form
a fenestrated endothelium that allows
movement of selective molecules, and
play a role in clearance of
macromolecules from blood,63

differentiated LSECs maintain HSC
quiescence and help prevent fibrosis71)

Induce hepcidin production in the
hepatocytes72

LSECs can sense iron and produce BMPs in
response. BMPs 2 and 6 can induce
hepcidin synthesis in hepatocytes via
BMP-SMAD pathway.15,72 (Note that in
ALD, hepcidin synthesis and secretion is
reduced due to the previously explained
reasons.)

Following chronic liver injury (including
persistent iron overload), LSECs can
dedifferentiate and activate the HSCs,
which leads to increased production of
extracellular matrix, LSECs lose their
fenestrations (defenestration) and
function63,71,73

The effect of iron on LSEC defenestration is
not direct. Iron-stimulated hepatocytes
secrete nerve growth factor. This acts on
nerve growth factor receptor on LSECs
and triggers defenestration (in part).73

Also, excess ironeinduced mitochondrial
oxidative damage activates transcription
factor Nrf2 in LSECs.74 Continuous
activation of Nrf2 inhibits autophagy.71

Normally, autophagy helps maintain LSEC
phenotype (ie, fenestrae by controlling
nitric oxide bioavailability).75 Thus, iron
overload can cause LSEC defenestration
over time.71

ALD, alcohol-associated liver disease; BMP, bone morphogenetic protein; HSC, hepatic stellate cell; IKK, inhibitory kappa B kinase; JAK/STAT, Janus kinase/
signal transducer and activator of transcription; LPS, lipopolysaccharide; LSEC, liver sinusoidal endothelial cell; MAPK, mitogen-activated protein kinase; MEK,
mitogen activated protein kinase extracellular signal-regulated kinase; Nrf2, nuclear factor erythroid 2-related factor 2; PI3, phosphatidylinositol 3-kinase;
PKC, protein kinase C; ROS, reactive oxygen species; a-SMA, a-smooth muscle actin; TGF, transforming growth factor; TNF-a, tumor necrosis factor-a.

Ali et al

1434 ajp.amjpathol.org - The American Journal of Pathology

http://ajp.amjpathol.org


Liver Iron in Alcoholics
(Figure 3). High levels of TNF-a can damage the liver he-
patocytes, as discussed previously.86 Also, leptin and acet-
aldehyde together can enhance the production of IL-6 in the
HSCs (Figure 3).87 Leptin levels correlate with liver disease
severity in patients with alcoholic cirrhosis.85 In addition,
iron loading in the adipocytes reduces the production of the
anti-inflammatory adipokine adiponectin. This can further
promote inflammation and contribute to liver injury.88

Although the aforementioned cellular interactions show-
case an iron perspective, ALD pathology is additionally
driven by both adaptive and innate immune systems and
involves the recruitment of various immune cells that
generate a proinflammatory environment in the liver.89 As
such, the liver has abundant lymphocytes scattered through
its parenchyma, and it is also rich in cells of the innate
immune system, such as the natural killer cells.63 Iron plays
a role in liver pathology via the immune cells. For example,
iron deficiency dampened concanavalin Aeinduced intra-
hepatic inflammation in mice. It also reduced intrahepatic
lymphocyte infiltration.90
Low Liver Iron Content: A Phenomenon to Be
Investigated

In a study by Varghese et al,11 mice models showed gradual
elevation of serum iron levels during 12 weeks of alcohol
feeding. Elevations in duodenal ferroportin (gradually
increased at 8 weeks and further at 12 weeks) and duodenal
DMT1 (significantly increased at 8 weeks but decreased to
control levels at 12 weeks) supported this increment in
serum iron. In contrast to these elevations, hepatic and
serum hepcidin expression gradually decreased during the
12 weeks of alcohol exposure.11 This alcohol-induced
decrement in hepcidin is an expected response and is also
seen in patients with ALD.16e19 Herein, the lack of hepcidin
up-regulation despite elevation in serum iron levels re-
iterates the insensitivity of hepcidin to increasing systemic
iron levels in the presence of alcohol.

Unlike the frequently observed hepatic iron elevation in
alcoholics, hepatic iron levels in mice models decrease after
12 weeks of alcohol feeding.11 The pattern of liver iron
decrement matches fully with the patterns of decrements of
hepatic TfR1 and hepatic ferritin expressions through the 12
weeks of alcohol exposure. This decrease in liver iron
content is an unexpected response because several studies in
humans have shown increased liver iron content in alcohol
consumers/patients with ALD.5e7

Varghese et al11 attributed the decrement in hepcidin
expression partly to decreased hepatic iron levels. The au-
thors proposed that this could be due to alcohol-induced
hepatomegaly and alcoholic steatosis and/or mobilization
of iron to other tissues. The idea of mobilization of iron
from liver to other tissues was supported by their observa-
tion that hepatic ferroportin expression showed a tendency
to increase after 4 and 12 weeks of alcohol exposure, which
The American Journal of Pathology - ajp.amjpathol.org
would facilitate cellular iron egress.11 The reason for
decrement in liver iron content needs to be fully understood,
particularly because it involves the function of ferroportin,
the sole known unidirectional cellular iron transporter.

Liver Iron Loading in ALD: Diagnostic,
Prognostic, and Therapeutic Perspectives

Liver Iron and ALD Diagnosis and Prognosis

Currently, there is no single diagnostic test to confirm
ALD.91 One of the challenges for diagnosis is that the
symptoms of ALD are not obvious in the early stages.
Suspected cases are often tackled based on patient-derived
information about their alcohol intake (patient history)
supported by laboratory tests. Crabb et al92 have reviewed
this topic in detail. Liver iron loading by itself cannot be
used for the diagnosis of ALD or any chronic liver disease
because there are several other liver conditions, such as
hemochromatosis and nonalcoholic fatty liver disease, that
show high liver iron content.59 An old study indicated that
liver iron in ALD has a prognostic value. It showed that
patients with alcoholic cirrhosis with detectable liver iron
had a lower survival rate than those without.4 However,
other studies suggest that hepatic iron overload is a poor
prognostic factor in ALD.93

Liver Iron and ALD Therapeutics: Alcohol Abstinence

Although there are US Food and Drug
Administrationeapproved therapies for alcohol use dis-
orders that help reduce cravings for alcohol,92,94 there is
no US Food and Drug Administrationeapproved drug to
treat ALD.95 Alcohol abstinence is the only curative
option, and liver transplantation is the definitive treat-
ment for liver diseases (including ALD) in the end
stage.

Cessation of alcohol has shown to reduce liver iron de-
posits. For example, patients with ALD who abstained for
>3 months had reduced liver iron content compared with
patients with ALD with active alcoholism (average intake of
164.4 g/day).96 Also, drinking lesser amount of alcohol has
shown to cause lesser liver iron deposition. For example, in
a study, mean liver iron concentrations were significantly
higher in alcoholic patients (who drank >80 g/day for �3
years before and inclusive of the study period) compared
with controls who did not drink excessive amounts of
alcohol (ie, did not drink >20 g/day).9

Liver Iron and ALD Therapeutics: Discussing
Phlebotomy

Hemochromatosis is an iron-overload disease in which pa-
tients show high systemic and liver iron loading, in addition
to iron deposition in other organs.30 For patients with he-
mochromatosis who show high iron loading, life-long
1435
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periodic phlebotomy is the standard of care, which reduces
the level of iron, thereby limiting excess ironeinduced
organ damage. In a patient with ferroprotein disease (he-
reditary iron loading disorder), long-term phlebotomy
decreased hepatic iron accumulation.97

This questions whether phlebotomy could be used for
patients with ALD who show liver iron overload. First, just
like in case of hemochromatosis, where not all patients
demonstrate enough iron overload to cause organ dam-
age,30,98 not all patients with ALD show liver iron
loading.10,11,99 Some patients with ALD may be anemic.100

Second, in patients with ALD who show liver iron loading,
the levels hardly ever surpass two to three times the upper
limit of the norm.101 Third, phlebotomy has several limita-
tions, one of which is the possibility of developing ane-
mia.99 Therefore, although phlebotomy is a suitable option
for iron-overloaded patients with hemochromatosis, it is not
a suitable therapeutic option for patients with ALD.
Liver Iron and ALD Therapeutics: Iron Chelation

In general, apart from phlebotomy, another therapeutic
approach for reducing liver iron content is iron chelation by
using chelators like deferoxamine, deferiprone, and
deferasirox.102e104 Deferiprone decreases hepatocyte iron
overload in chronically ethanol-fed rats.105 A novel iron
chelator, M30, reduces alcohol-indued injury in rat hepa-
tocytes and attenuates ethanol-induced apoptosis, oxidative
stress, and secretion of inflammatory cytokines.106 Thus,
these chelators are potential therapeutics for ALD cases that
show liver iron overload.

Naturally occurring compounds (namely, flavonoids) are
also potential therapeutic agents. These impair ALD path-
ologic progression by maintaining iron balance. For
example, quercetin, which exhibits iron-chelating and anti-
oxidant properties, dampens alcohol-induced liver damage
in mice.44 Such natural compounds can be tested in alcohol-
treated animal models and subsequently relevant clinical
trials can be established.
Liver Iron and ALD Therapeutics: Synthetic Hepcidin

Hepcidin deficiency is the main cause of iron loading in
patients with ALD.16,23 Therefore, hepcidin treatment is a
promising therapeutic approach. Natural hepcidin is
expensive and has undesirable pharmacologic properties,
such as having a short half-life. In contrast, minihepcidins
are synthetic in nature. These mimic the action of hepcidin
and are pharmacologically more favorable.99 I.P. injections
of minihepcidin in mice models of hemochromatosis show
significant reductions in liver iron loading.107 Similar
studies in alcohol-fed animal models can be used to
extrapolate whether this approach would be successful in
reducing liver iron loading in patients with ALD.
1436
Liver Iron and ALD Therapeutics: Targeting Ferroptosis

Interestingly, not the liver iron loading itself, but ferroptosis,
the iron-dependent process that contributes to liver damage
in ALD, has been targeted for therapy. Ferroptosis inhibitors
and repressors have shown protective effects against
alcohol-induced liver damage. For example, the ferroptosis
inhibitor ferrostatin-1 reduced lipid peroxidation and
alcohol-induced liver injury in vivo.41 Another ferroptosis
inhibitor, dimethyl fumarate, significantly improved
alcohol-induced liver injury in ethanol-fed mice.108 Also,
deficiency of intestinal sirtuin 1 (SIRT1) in mice has shown
protection from alcohol-induced hepatic injury via mitiga-
tion of ferroptosis.42

Frataxin is a mitochondrial protein that predominantly
participates in iron homeostasis and oxidative stress. A
study showed that alcohol reduced the expression of fra-
taxin, and the deficiency of frataxin increased sensitivity to
alcohol-induced ferroptosis (Figure 2). Restoration of fra-
taxin reversed this effect.109 Thus, frataxin can be an addi-
tional therapeutic target to tackle ALD.
Summary

Increased serum iron due to chronic alcohol consumption
increases iron uptake in the hepatocytes and Kupffer cells,
facilitating both parenchymal and nonparenchymal iron
loading in the liver, and in parenchymal cells of other or-
gans. Hepatic iron deposition is mediated via up-regulation
of TfR1 and HFE (proposed). Both iron and alcohol can
independently induce oxidative stress, so the combined ef-
fect accelerates hepatic injury. Excess ironestimulated he-
patocytes and Kupffer cells secrete inflammatory and
profibrogenic factors that activate the hepatic stellate cells.
Chronic activation of hepatic stellate cells mediates the
development of liver fibrosis. Iron loading promotes ALD
progression via induction of oxidative stress and the acti-
vation of HSCs and Kupffer cells. Other cells, such as the
liver sinusoidal endothelial cells, the liver immune cells
(from both adaptive and innate immune systems), and the
adipocytes, also contribute to the iron-mediated liver injury
in ALD.
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