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A B S T R A C T   

Executive Functions (EF) is an umbrella term for a set of mental processes geared towards goal-directed behavior 
supporting academic skills such as reading abilities. One of the brain’s functional networks implicated in EF is 
the Default Mode Network (DMN). The current study uses measures of inhibitory control, a main sub-function of 
EF, to create cognitive and neurobiological "inhibitory control profiles" and relate them to reading abilities in a 
large sample (N = 5055) of adolescents aged 9–10 from the Adolescent Brain Cognitive Development (ABCD) 
study. Using a Latent Profile Analysis (LPA) approach, data related to inhibitory control was divided into four 
inhibition classes. For each class, functional connectivity within the DMN was calculated from resting-state data, 
using a non-parametric algorithm for detecting group similarities. These inhibitory control profiles were then 
related to reading abilities. The four inhibitory control groups showed significantly different reading abilities, 
with neurobiologically different DMN segregation profiles for each class versus controls. The current study 
demonstrates that a community sample of children is not entirely homogeneous and is composed of different 
subgroups that can be differentiated both behaviorally/cognitively and neurobiologically, by focusing on 
inhibitory control and the DMN. Educational implications relating these results to reading abilities are noted.   

1. Introduction 

1.1. Cognitive development and inhibitory control across development 

Executive Functions (EF) comprise a set of mental processes geared 
toward goal-directed behavior and self-control, problem-solving, and 
planning (Diamond, 2013). EF includes three main sub-functions: 
working memory, shifting, and inhibition (Diamond, 2013), with re
ports of inhibition abilities as related to academic abilities such as 
reading (Blair and Razza, 2007; Borella et al., 2010; Doyle et al., 2018; 
Meixner et al., 2019), math (Clark et al., 2010; Cragg and Gilmore, 2014; 
Espy et al., 2004), and emotional regulation (Bartholomew et al., 2021). 
According to Diamond, inhibition is one of the central EF, as it is also 

divided into cognitive inhibition (the ability to filter out unnecessary 
stimuli to stay tuned on the task and focus attention) and behavioral 
inhibition (the ability to control emotions and impulsivity) (Diamond, 
2013; Fox et al., 2005). 

The age window of 9–10 years is an interesting one, both from the EF 
and academic abilities (i.e. the reading) developmental perspectives. At 
this developmental age window, children achieve similar levels of EF to 
adults in several EF, which can be clustered under response speed (speed 
of processing), set maintenance, and planning (Welsh et al., 1991). 
However, a fine-grained developmental study pointed at the develop
mental trajectory of subcomponents of EF within a slightly extended age 
window (3–12 years old children), showing how inhibitory control de
velops first, followed by selective attention, and then more complex EFs 
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(planning, fluency) develop into adolescence (Klenberg et al., 2001). As 
for reading achievement, according to Chall’s developmental model for 
milestones in reading development (Chall, 1983), by the age of 9 years, 
children are transitioning from “learning to read” to “reading to learn”. 
This phase requires automatic reading skills so attention and cognitive 
resources can be “released” for reading comprehension (see also 
(LaBerge and Samuels, 1974)). 

1.2. Inhibitory control and reading skills 

Notably, although inhibitory control is one of the first EF to develop, 
reading and comprehension rely heavily on this cognitive ability. It was 
suggested that inhibition is an important cognitive skill contributing to 
individual differences in cognitive, emotional, academic abilities and 
creativity (Harnishfeger and Bjorklund, 1994). Regarding academic 
outcomes, inhibition abilities play a role in several components underly 
reading; per the Simple View of the Reading model, language processing 
and word decoding development lead to reading comprehension (Gough 
and Tunmer, 1986). Inhibitory control was found to be related to 
different reading components (word decoding (Spencer and Cutting, 
2021; Taboada Barber et al., 2021); reading comprehension (Abo-elhija 
et al., 2022; Butterfuss and Kendeou, 2018; Conners, 2009; Haft et al., 
2019)), and although fluent reading is not officially part of the SVR 
model (Adlof et al., 2006; Kim, 2020), this foundational reading skill 
was also associated with inhibition (Johann et al., 2020). 

Due to its central role in EF and especially inhibition in academic 
outcomes (Harnishfeger and Bjorklund, 1994), the current study’s goal 
was to distinguish groups of children based on inhibitory control and 
their reading measures using computational tools (i.e. Latent Profile 
Analysis; LPA (Pastor et al., 2007; G. A. Williams and Kibowski, 2016; 
Wurpts and Geiser, 2014). 

1.3. The neurobiological profiles associated with inhibition skills 

The neuroimaging literature converges on several functional net
works associated with EF, e.g. the Frontoparietal (Dosenbach et al., 
2008; Ptak, 2012), Cingulo-opercular (Dosenbach et al., 2008; Neta 
et al., 2014), Dorsal Attention, Ventral attention (Vossel et al., 2014)) 
and Salience networks (Seeley et al., 2007). Several papers focusing on 
typically and atypically developing individuals (e.g., those with atten
tion deficit hyperactivity disorder or schizophrenia), suggest intrigu
ingly that the Default Mode Network (DMN), is implicated in EF as it 
may also be important for inhibitory function (Fryer et al., 2018; 
Hernández-Álvarez et al., 2020; Liddle et al., 2011). The DMN is mainly 
activated during rest in internally-directed cognitive processes such as 
feeling processing, future planning, and retrieving memories (Buckner, 
2012). The DMN is also involved in performing different experimental 
tasks, including social processing (e.g. such as emotional perception, 
empathy, theory of mind, and morality) (Li et al., 2014), language 
(Horowitz-Kraus et al., 2017), semantic processing (Binder et al., 2005; 
Lanzoni et al., 2020; Seghier and Price, 2012; Wirth et al., 2011) and 
other EF processes such as attention (Leech et al., 2011; Rohr et al., 
2018), planning (Spreng et al., 2010) and error monitoring (C. S. Li 
et al., 2007). A handful of papers have outlined an altered involvement 
of the DMN during rest in different clinical conditions such as Alz
heimer’s disease (Buckner, 2012), Schizophrenia (Doucet et al., 2020; 
Fan et al., 2018), mood and anxiety disorders (Doucet et al., 2020) and 
Attention Deficit Hyperactivity Disorder (ADHD) (Sidlauskaite et al., 
2016; Sripada et al., 2014b). Although there is a considerable amount of 
research on children with ADHD (Castellanos and Proal, 2012; Duffy 
et al., 2021; Harikumar et al., 2021; Koziol et al., 2013), fewer studies 
have focused on patterns of the DMN related to inhibitory control and 
academic abilities such as reading, in a community sample of children, 
which is the topic of the current study. 

Moreover, developmental changes in the functional connections 
within the DMN were reported in different stages along the life span. In 

adulthood (63–73 years) decreased intra-network connectivity within 
the DMN was observed as well as decreased segregation with additional 
EF networks associated with declined cognitive abilities (Ng et al., 
2016). This decreased intra-network FC with age was also related to the 
speed of processing and episodic memory (Staffaroni et al., 2018), also 
supported by others in younger adults (Esposito et al., 2018). 

Interestingly, prior studies have suggested that different parts of the 
DMN are potentially related unequally to a variety of developmental/ 
maturational changes (Fair et al., 2008; Fan et al., 2021; Supekar et al., 
2010), semantic processing differences (Seghier and Price, 2012), 
attention challenges (Fan et al., 2018; Rohr et al., 2018), cognitive 
disorders (Sripada et al., 2014b; Swanson et al., 2011) and the func
tionality of the motor system (Hanakawa et al., 2003; Malouin et al., 
2003; Margulies et al., 2009; Uddin et al., 2009; Zhang et al., 2014; 
Zhang and Li, 2012). In relation to the activation/FC patterns of the 
DMN, an overall increased deactivation of this network was found in 
children ages 5–18 years old, while listening to stories, with more 
extensive deactivation in older children, associated with better task 
comprehension scores (Horowitz-Kraus et al., 2017). More specifically 
and concerning the range of the current study’s population, relations 
between the level of DMN and attention network (dorsal attention 
network) and emotional and EF abilities in 9–10 years old children were 
found (Owens et al., 2020). 

An attempt to profile children based on their inhibition abilities has 
not been conducted before but has been conducted using EF profiles 
using LPA. Dajani et al. (2016) used LPA for creating "EF profiles" using 
different cognitive tests to evaluate sub-levels of EF, such as working 
memory, inhibitory control, and cognitive flexibility, as indicators 
(Dajani et al., 2016). Dajani and colleagues divided a mixed group of 
8–13-year-old children identified as typically developing children, 
children with ADHD, or with Autism Spectrum Disorder (ASD), into 
three sub-groups distinguished by their general EF levels (low, average, 
and high). The result included three EF profiles, while each profile 
included a mix of children from different sub-groups (Dajani et al., 
2016). In a follow-up study conducted by these researchers, no differ
ences in FC between these EF sub-groups were observed (Dajani et al., 
2019). The lack of findings in that study could be due to the use of 
parental reports only (BRIEF questionnaire) for creating the sub-profiles 
or the use of several EF components instead of one sub-component. This 
may cause more heterogeneous profiles and mask the common patterns. 
Additionally, the number of participants may not have been large 
enough (N = 129, three groups of n = 43) to identify common functional 
patterns related to general EF ability strength. 

Due to the involvement of inhibition in several emotional and 
cognitive deficits in childhood (Diamond, 2013; Fox et al., 2005), its 
central role in academic achievements (Blair and Razza, 2007; Borella 
et al., 2010; Clark et al., 2010; Doyle et al., 2018; Espy et al., 2004) and 
especially in reading (Doyle et al., 2018) and reading comprehension 
(Borella et al., 2010), it is essential to detect individual differences in 
inhibition abilities even among typically developing individuals. 

Hence, the goal of the current study is to determine the neurobio
logical correlates to different inhibitory control profiles in association 
with reading abilities by focusing on the DMN and using a non- 
parametric approach in a community sample of children ages 9–10 
years (from the Adolescent Brain Cognitive Development (ABCD) data
set). During this age range, proficient technical reading should be ach
ieved (Chall, 1983), and inhibition control is in its maturation period 
(Klenberg et al., 2001), so differences between profiles will not be 
attributed to psychiatric/developmental or neurological disorders. We 
hypothesized that different inhibition profiles would be revealed based 
on a variety of inhibition measures. We assumed divergent FC segre
gation patterns within the DMN would be found on each profile related 
to what was previously reported (Fair et al., 2008; Fan et al., 2021; Fan 
et al., 2018; Hanakawa et al., 2003; Rohr et al., 2018; Sripada et al., 
2014a; Swanson et al., 2011; Uddin et al., 2009; Zhang et al., 2014). We 
also hypothesized that profiles demonstrating lower inhibitory control 
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scores would also demonstrate lower reading abilities. 

2. Methods 

2.1. Participants 

5055 children at ages 9–10 years (Mean (in months) = 119.83, SD =
7.45; 2626 females) were selected from a cohort of 11,880 in the curated 
annual release 2.0.1 of The Adolescent Brain Cognitive Development 
(ABCD) study (https://abcdstudy.org/). The 11,880 participants 
recruited across 22 sites in the U.S (2018–2019) reflect the U.S popu
lation of boys and girls with diverse races and ethnicities, education, 
income levels, and living environments. Inclusion criteria for the ABCD 
study were 9–10 years old children that are fluent in English, approved 
for MRI scanning, without a major neurological disorder, were born 
after 28 weeks, without a history of brain injuries and a diagnosis of 
schizophrenia, moderate and above ASD, mental retardation or alcohol/ 
substance use disorder (Karcher et al., 2019). 

From the entire sample of 11,880 participants, the participants 
included in the current study met the following criteria: 1) at least 10 
min usable resting-state scan; 2) no clinical diagnosis; 3) the stop-signal 
task measures (Logan, 1994); 4) t-score for CBCL ADHD DSM5 Scale 
(Achenbach and Ruffle, 2000); and 5) the BIS-BAS questionnaire raw 
scores (Carver and White, 1994). The demographics and behavioral test 
statistics can be found in Tables 1 and 2, respectively. The project and 
hypothesis were not pre-registered. 

2.2. Behavioral data 

2.2.1. LPA Indicators 
Several tasks were used for profiling the participants in the current 

study: Stop Signal Task (SST) (Logan, 1994), DSM-5 ADHD from the 
Child Behavior Checklist (CBCL) (Achenbach, 2009), and BIS-BAS 
questionnaire (Carver and White, 1994). The Flanker test (Eriksen and 
Eriksen, 1974) was also initially selected but removed due to a lack of 
contribution to profiling separation with the LPA algorithm due to 

relative homogenous scores across participants. Each test was related to 
a different aspect of inhibitory control ability, as can be shown in 
Table 2. Several variables were derived from each test, resulting in total 
eight indicators for the LPA algorithm. 

2.2.1.1. Stop signal task. This task was held as part of fMRI task-based 
scans (Casey et al., 2018). In this task, the participants were required 
to press the right or the left button according to the arrow on the screen. 
If a "Stop" stimulus was presented, they needed to withhold their reac
tion and not press the button (Casey et al., 2018). They were instructed 
to react as quickly and accurately as possible. Incorrect go trial is defined 
as a late response, pressing an incorrect button (i.e., left instead of right), 
or no response. An incorrect stop trial is defined as responding to a stop 
trial by pressing the left or right button. 

The following task-generated variables were included in this 
research: the proportion of incorrect go trials, the proportion of incor
rect stop trials, and the mean response time for all incorrect "Stop" trials. 
The incorrect trial scores were selected so they would match in direc
tionality with the other measures in this study. 

2.2.1.2. Child’s ADHD symptom scale. The parents were asked to report 
the child’s behavior using the CBCL form (Achenbach, 2009). The 
DSM-5 ADHD t-scores were chosen from the CBCL, which are normal
ized to age and gender. 

2.2.1.3. Behavioral inhibition and behavioral activation. The children 
filled out the BIS-BAS questionnaire (Carver and White, 1994), and a 
total of 4 raw scores variables were derived from this questionnaire: 
three aspects of the BAS system (drive, fun-seeking, and reward 
responsiveness) and one for the BIS system. 

Additional information regarding these inhibition tasks is listed in 
Supplementary material 1. 

2.2.2. Reading analysis 
To determine differences in reading abilities between the sub- 

profiles, a single-word reading recognition measure, the Oral Reading 
Recognition Task (Gershon et al., 2013; Luciana et al., 2018), from the 
NIH toolbox (NIH Toolbox (healthmeasures.net)) was used. In this task, 
participants were required to recognize words or letters presented on the 
screen. Each response was scored as correct or incorrect by the 

Table 1 
Participant’s demographic summary.  

Variable Frequency Percentage 

Sex   
Female 2626 51.95% 
Grade, age in months (mean, SD)   
2nd grade (110.92, 2.57) 27 0.53% 
3rd grade (110.81, 3.58) 750 14.8% 
4th grade (116.75, 5.39) 2189 43.3% 
5th grade (126.11, 3.97) 1906 37.7% 
6th grade (129.56, 1.92) 182 3.6% 
7th grade (129.00, 0) 1 0.19% 
Handedness   
Right 4099 81.08% 
Mixed 603 11.92% 
Left 352 6.98% 
Ethnicity/Race   
White/Non-Hispanic 1972 58.79% 
Hispanic 915 18.10% 
Black 559 11.05% 
Asian 89 1.79% 
Other 513 10.14% 
Family Income (in US dollars)   
> = 100 K 2149 42.51% 
50k < 100 K 1413 27.95% 
< 50 K 1125 22.25% 
Didn’t know\refuse to answer 368 7.29% 
Parental Education   
Post graduate degree 1893 37.44% 
Bachelor’s degree 1406 27.81% 
Some college 1245 24.62% 
High school diploma or GED 360 7.12% 
Didn’t finish high school 148 2.92%  

Table 2 
Summary of behavioral tests.  

Behavior Test Measures Mean 
(SD) 

Range 

Inattention and 
Hyperactivity 

Child Behavior 
Checklist 

DSM-5 ADHD t- 
score 

52.64 
(5.09) 

50–80 

Cognitive 
Inhibition 

Stop Signal 
Task 

Incorrect go trials – 
a proportion 

0.079 
(0.073) 

0 – 0.90  

Stop Signal 
Task 

Incorrect stop trials 
– a proportion 

0.44 
(0.10) 

0.03 – 
0.98  

Stop Signal 
Task 

Incorrect stop trials 
- mean response 
time (ms) 

164.5 
(31.9) 

32 – 
285.7 

Behavioral 
Inhibition 

Behavioral 
Inhibition 
System 

Summary raw score 9.48 
(3.62) 

0–21 

Impulsivity Behavioral 
Activation 
System 

Drive raw score 3.92 
(2.96) 

0–12  

Behavioral 
Activation 
System 

Fun-seeking raw 
score 

5.60 
(2.57) 

0–12  

Behavioral 
Activation 
System 

Reward 
responsiveness raw 
score 

10.88 
(2.88) 

0–15 

Reading Oral Reading 
Recognition 
Task 

Total score, age- 
corrected 

103.99 
(18.78) 

68–206  
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examiner. A total score normalized by age (Casaletto et al., 2015) was 
derived from this test. 

2.3. Neuroimaging data 

Resting-state fMRI derivatives from the ABCD-BIDS dataset (https:// 
collection3165.readthedocs.io/en/stable/derivatives/) were used to 
determine the DMN in the current study. In the resting state task, the 
participants were required to relax and stare at a fixation cross for a total 
time of 20 min (in sets of 5 min each). Before scanning, they trained for 
motion compliance in a mock scanner. During the scan, a real-time 
motion correction for structural scanning was applied. During the 
resting-state scan, another real-time motion monitoring was applied, 
called FIRMM (fMRI Integrated Real-Time Motion Monitor (Dosenbach 
et al., 2017) allows a live adjustment of the scanning paradigm (Casey 
et al., 2018). 

2.4. Data acquisition and scan parameters 

The ABCD neuroimaging data were acquired from three types of 3 T 
scanners: Siemens Prisma, General Electric (GE) 750, and Philips 
(Achieva and Ingenia) with multiband echo-planar imaging (EPI) 

acquisitions and adult-size coils acquired in 22 sites across the U.S (for 
the sites see https://abcdstudy.org/contact/). The scanning parameters 
for the fMRI images and structural images are summarized in Table S1 in 
the Supplemental materials. Due to an error in processing Philips scans 
in ABCD 2.0.1 collection (ABCD, 2019), these scans were omitted from 
this study. 

2.5. Data analyses 

2.5.1. The latent profile analysis (LPA) 
The latent profile analysis (LPA) was run using the tidyLPA library in 

R version 4.0.2 software (Rosenberg et al., 2018) and rstatix library 
(Kassambara, 2020), using eight indicators representing inhibitory 
control in different aspects (Table 2). Different models with a different 
number of classes to identify the most suitable (1–6 latent classes) were 
tested. Each model was with equal variance and zero covariance. The 
model was selected based on the following criteria (Dajani et al., 2016; 
Nylund and Muthén, 2007; Tein et al., 2013): Bayesian Information 
Criterion (BIC), Akaike Information Criterion (AIC), sample-adjusted 
BIC (SABIC), Entropy and Likelihood Ratio Test (BLRT). In all the in
formation criteria (BIC, AIC, and SABIC), lower values indicate better 
model fit. In the Entropy index, higher values indicate better class 

Fig. 1. Creation of divisions. Fig. 1: In each version, the entire cohort was divided into two groups that matched the following variables: class distribution, age, sex, 
race/ethnicity, handedness, parental education, and family income. In each division, a common correlation matrix was created for each of the classes and all subjects 
in this division (n = 2527 or 2528). 
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separation. The BLRT, a parametric bootstrap method, provides a 
p-value that can be used to compare the increase in model fit between 
the k-1 and k-class model and the ratio from the sample in the smallest 
class. To help the model selection decision, a graph of the BIC, AIC, and 
SABIC values was added (see Fig. 3). The gradient in the graph repre
sented when the difference between the models was very small. After 
choosing the number of classes, the non-parametric Kruskal-Wallis test 
was run for each of the indicators to characterize the difference between 
the classes. 

2.5.2. Covariate analysis 
Socio-Economics Status (SES), and motion (average Framewise 

Displacement (FD)) variables were included in the LPA model and 
analyzed using the Mplus program version 8 (Muthén and Muthén, 
1998–, 2017). Differences in age and grade between the classes were 
tested with appropriate statistical analysis and, due to insignificant 
findings, were excluded from the covariate analysis. Table 3 represents 
the descriptive statistics of demographic variables, together with mo
tion, between the classes. 

Fig. 2. An example of the effect size calcula
tion. Fig. 2: (a) An example for effect size 
calculation for only one division. One effect size 
table was created with only positive correla
tions in both class1 and class2. ROI = Region Of 
Interest; Zxy = correlation value after fisher Z 
transformation between ROIx and ROIy. (b) An 
example of effect size calculation is the output 
for all divisions together. The effect size tables 
from (a) were calculated for each division and 
then merged. The output is a table of ten effect 
size values for each comparison. esx = effect 
size of x division.   
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2.5.3. Association of the different profiles with reading decoding scores 
After creating the profiles, the Kruskal-Wallis test was conducted to 

explore the reading decoding scores (Gershon et al., 2013; Luciana et al., 
2018) effect between the classes. The post-hoc Dunn test and a Bonfer
roni correction were conducted (p < 0.05/6 =p < 0.008). 

2.5.4. Neuroimaging data processing 
The derivative neuroimaging data went through preprocessing steps 

previously detailed in Hagler Jr et al. (2019). Average time courses of 
333 Regions of Interest (ROI) were created according to Gordon atlas 
(Gordon et al., 2016). Following the parcellation of the data, the current 
study employed the 333 cortical ROIs from Gordon’s atlas and then 
focused the analysis only on DMN per our study aims. To deal with 
excessive motion, Framewise Displacement (FD) was calculated (Power 
et al., 2014), then frames with FD of more than 0.2 were excluded. We 
used the Gordon atlas parcellation time series of the best 10 min scan 
frames, i.e. frames with the lower FD (see documentation: Collection 
3165 - ABCD-BIDS Community Collection (ABCC)). 

2.6. Accounting for subject-specific noise factors in functional 
connectivity analysis 

The current study used a non-parametric approach which has fewer 
prior assumptions about a given population compared to parametric 
methods (Corder and Foreman, 2009, p. 1–2). This non-parametric 
approach assumes no prior knowledge of the distribution of the data 
and can be used to determine common patterns in functional MRI data 
(Zhitnikov et al., 2018). Specifically, assuming that the covariance 
matrix of the j-the subject is given by 

Σxj = Σu +Σvj (1)  

where Σu is a component common to all subjects and Σvj is a subject- 
specific component, the method provides an estimate for Σu. 

Five correlation matrices were created for all 5055 subjects (one 
representing all subjects and one for each class derived from the LPA 
analysis, see Results), using the Zhitnikov et al. algorithm (Zhitnikov 
et al., 2018). Second, to reinforce reproducibility as recently encouraged 
(Botvinik-Nezer et al., 2020; Klapwijk et al., 2021; Marek et al., 2020), 
the full cohort was randomly divided into two groups. Then, the two 
groups were matched by the following descriptive criteria: class distri
bution (following the LPA analysis), age, gender, race, handedness, 
parent’s education, and household income)similar to the ABCD repro
ducible matched samples (ARMS) (Feczko et al., 2020)). This process 
was performed five times and at the end, ten divisions were created 
(Fig. 1). In each division, the Zhitnikov algorithm was run on the 
time-courses data. For each subject, a covariance matrix of the 333 ROIs 
was calculated using the Ledoit-Wolf estimator (Ledoit and Wolf, 1996). 

Fig. 3. Graph of the information criteria of the LPA model. Fig. 3: X-axis rep
resents the number of classes. Y-axis represents the score of the information 
criteria. The blue color stands for BIC = Bayesian Information Criterion. Orange 
color stands for AIC = Akaike Information Criterion. Grey color stands for 
SABIC = sample-adjusted BIC. 

Table 3 
Descriptive statistics of demographic and motion variables among classes.  

Variable Class1 – 
Behavioral 
Inhibition 
n = 1716 

Class2 – 
Controls 
n = 2661 

Class3 – 
Cognitive 
Inhibition 
n = 332 

Class4 – 
Inattention\ 
Hyperactivity 
n = 346 

Age 119.78 (7.46) 119.89 
(7.47) 

119.94 
(7.30) 

119.49 (7.42) 

Motion 
(average FD) 

0.159 (0.105) 0.148 
(0.093) 

0.171 
(0.099) 

0.161 (0.098) 

Sex     
Female 861 (50.17%) 1476 

(55.46%) 
127 
(38.25%) 

162 (46.82%) 

Grade, age in 
months 
(mean, SD)     

2nd grade 
(110.92, 
2.57) 

11 (0.64%) 11 
(0.41%) 

1 (0.3%) 4 (1.16%) 

3rd grade 
(110.81, 
3.58) 

262 (15.27%) 377 
(14.17%) 

60 (18.07%) 51 (14.74%) 

4th grade 
(116.75, 
5.39) 

735 (42.83%) 1164 
(43.74%) 

134 
(40.36%) 

156 (45.09%) 

5th grade 
(126.11, 
3.97) 

657 (38.29%) 1003 
(37.69%) 

124 
(37.35%) 

122 (35.26%) 

6th grade 
(129.56, 
1.92) 

51 (2.97%) 105 
(3.95%) 

13 (3.92%) 13 (3.76%) 

7th grade 
(129.00, 0) 

0 1 (0.04%) 0 0 

Handedness     
Right 1393 (81.18%) 2163 

(81.29%) 
270 
(81.33%) 

273 (78.90%) 

Mixed 215 (12.53%) 300 
(11.27%) 

44 (13.25%) 44 (12.72%) 

Left 108 (6.29%) 198 
(7.44%) 

18 (5.42%) 29 (8.38%) 

Ethnicity/Race     
White/Non- 

Hispanic 
905 (52.80%) 1687 

(63.44%) 
206 
(62.24%) 

174 (50.58%) 

Hispanic 371 (21.65%) 426 
(16.02%) 

24 (16.31%) 45 (18.60%) 

Black 241 (14.06%) 225 
(8.46%) 

36 (10.88%) 57 (16.57%) 

Asian 36 (2.10%) 48 
(1.81%) 

1 (0.3%) 4 (1.16%) 

Other 161 (9.39%) 273 
(10.27%) 

34 (10.27%) 45 (13.08%) 

Family Income 
(in U.S 
dollars)     

> = 100 K 618 (39.64%) 1298 
(51.88%) 

140 
(45.45%) 

93 (29.25%) 

50k < 100 K 489 (31.37%) 724 
(28.94%) 

100 
(32.47%) 

100 (31.45%) 

< 50 K 452 (28.99%) 480 
(19.18%) 

68 (22.08%) 125 (39.31%) 

Parental 
Education     

Post graduate 
degree 

570 (33.26%) 1112 
(41.80%) 

124 
(37.35%) 

87 (25.14%) 

Bachelor’s 
degree 

472 (27.54%) 753 
(28.31%) 

98 (29.52%) 83 (23.99%) 

Some college 470 (27.42%) 571 
(21.47%) 

77 (23.19%) 127 (36.71%) 

High school 
diploma or 
GED 

137 (7.99%) 160 
(6.02%) 

29 (8.73%) 34 (9.83%) 

Didn’t finish 
high school 

65 (3.79%) 64 
(2.41%) 

4 (1.20%) 15 (4.34%) 

Note. FD = Framewise Displacement. 
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2.6.1. Calculating the differences in DMN between classes 
A comparison between each class to the group characterized by the 

higher inhibition control abilities (class2) referred to as the "control" in 
the current study (e.g. class1-class2, class3-class2, class4-class2) was 
conducted in each division. The effect size was calculated, z1 – z2 
(Cohen, 1977), of the difference in each ROI (see example in Fig. 2a). 
This process was repeated for each division, with an overall of ten effect 
size values for each ROI in each comparison (e.g. class1-class2, 
class3-class2, class4-class2) (Fig. 2b). After conducting a significance 
test for comparing two correlation coefficients (Diedenhofen and Musch, 
2015; Lenhard and Lenhard, 2014), ROIs with effect sizes smaller than 
0.1 were marked as significant, which is ordinary for a large sample size 
(Khalilzadeh and Tasci, 2017; Marek et al., 2020). To give importance to 
replicable results, only results that repeated at least in 90% of the di
visions were chosen. Thresholds of 0.1, 0.2, and 0.3 were tested, but only 
with a threshold of 0.1, a variety of replicable results were demon
strated. Moreover, negative correlations were also included in the 
analysis, but the results were not replicable among the subdivisions; 
hence, only the positive correlations are presented in this study. In 
conclusion, ROIs with an effect size greater than 0.1 repeated at least in 
90% of the divisions were selected. 

3. Results 

3.1. Behavioral results 

3.1.1. Latent profile analysis results 
According to the BLRT significance parameter, all six models tested 

were significant (Table 4). The information criterion AIC/BIS/SABIC 
values decreased as the number of classes increased. The gradients from 
models 4–5 and from models 5–6, were the smallest (Fig. 3), and hence 
models 4 and 5 were marked as the best choices. The entropy values of 
models 4 and 5 were 0.815 and 0.840, respectively, indicating a better 
class separation for model 5. The sample ratio in the smallest class in 
models 4 and 5 were 0.0657 (332 subjects) and 0.0059 (29 subjects), 
respectively; hence model 4, four classes, was chosen. 

The first class (N = 1716, 33.95%) had overall higher scores in the 
BIS-BAS questions, which represents behavioral activation (or disinhi
bition) in response to rewards and behavioral inhibition in response to 
punishment (Carver and White, 1994). In general, this group is char
acterized by difficulties in behavioral inhibition and hence was cate
gorized as the Behavioral Inhibition class. The second class (N = 2661, 
52.64%) had lower scores in all measures (i.e. higher abilities in all 
measures tested) and hence was categorized as the Control class. The 
third class (N = 332, 6.57%) had high scores in the SST measures, rep
resenting poorer cognitive inhibitory control (Logan, 1994) and hence 
was categorized as the Cognitive Inhibition class. The fourth class 
(N = 346, 6.84%) had the highest scores in inattention and hyperac
tivity (measured using the CBCL ADHD scale) and relatively higher 
scores in the other measures (cognitive and behavioral inhibition) and 
hence was categorized as the Inattention\Hyperactivity class (ADHD 
patterns). The variables’ means for each class are listed in Table S2 in 
Supplement materials. The results from the Kruskal-Wallis, shown in 
Table S3 in Supplement materials, demonstrate that each variable 

significantly contributed to the class separation with a least moderate 
magnitude. See Fig. 4 for the class separation. 

3.1.2. Covariate analysis results 
Covariate analysis results are presented in Table 5 when each class is 

tested against class2 – controls. 
Based on this analysis, some covariates produced significant differ

ences across profiles, including household income and motion level. 
Results suggest statistically significant differences between class2 
(controls) and both class1 (behavioral inhibition) and class4 (cognitive 
inhibition) in household income Fig. 5 demonstrates the differences, in 
class2 more subjects have a household income in the upper level (>
100 K) than in class1 and class4. Moreover, more subjects in class1 and 
class4, had a household income at the lowest level (< 50 K annually). 
Motion, as measured using FD, also showed a statistically significant 
difference between class2 (controls) and all the other classes. 

3.1.3. Reading ability effect between the classes 
Statistically significant differences in reading scores between the 

four classes were found [F(3) = 55.719, η2 = 0.0105, p < 0.001]. The 
highest reading scores were found for the control group (class2), 
whereas the lowest scores were found for the inattentive/hyperactive 
group (class4). Post-hoc Dunn tests using a Bonferroni adjustment were 
conducted to compare all pairs of classes. The difference between the 
control class (class2) and the behavioral inhibition class (class1) was 
significant. The inattention\hyperactivity class (class4) was different 
from all other classes. Classes 1 and 3 and classes 2 and 3 did not show 
significant differences in their reading abilities. The means, standard 
scores (including age-normalized reading scores), and post-hoc test re
sults are described in Fig. 6 (For the full scores, see Table S4 and S5). 

3.2. Neuroimaging results 

3.2.1. Comparison of the DMN ROIs in each class vs controls 
To further investigate the characteristics that uniquely differentiate 

each class from the others, each class was compared to the control class, 
as described in the Methods section. Then, ROIs with effect size values 
that were greater than 0.1 and repeated in at least 90% of the divisions 
were selected. See Fig. 7 for the common correlation matrices composed 
of all Gordon networks and Fig. 8 for the DMN’s sub-matrices. In class1, 
which was associated with lower behavioral inhibition ability, greater 
FC was found between the anterior and the posterior parts of the brain in 
the left hemisphere (Fig. 9a, Table S6, and Table S7). In class3, which 
was associated with lower cognitive inhibition ability, lower FC was 
found in the anterior part of the brain in both the left and right hemi
spheres (Fig. 9b, Table S8, and Table S9). In class4, which was associated 
with lower attention, hyperactivity, and lower inhibition abilities 
(ADHD characteristics), greater FC was detected mostly with the pre
cuneus: left dorsal precuneus (parcel 94, Brodmann area 7), left ventral 
precuneus (parcel 1, Brodmann area 23, 31) and right ventral precuneus 
(parcel 162, Brodmann area 23,31) with other regions within the DMN: 
left mPFC, right Middle temporal gyrus, right Cingulate Gyrus and right 
Superior Frontal Gyrus (Fig. 9c, Table S10, and Table S11). Greater 
connectivity was also shown within the right hemisphere (Fig. 9c, 

Table 4 
Latent Profile Analysis results for models’ comparison.  

Classes AIC BIC SABIC Entropy n_min BLRT_val BLRT_p 

1 114788 114892 114841 1 1 NA NA 
2 111794 111957 111878 0.674 0.399 3011 0.0099 
3 109019 109241 109133 0.776 0.076 2728 0.0099 
4 106677 106958 106821 0.815 0.065 2429 0.0099 
5 105505 105845 105679 0.840 0.005 1773 0.0099 
6 105424 105822 105628 0.720 0.039 442 0.0099 

Note. AIC = Akaike Information Criterion; BIC = Bayesian Information Criterion; SABIC = sample-adjusted BIC; n_min = ratio from the sample in the smallest class; 
BLPT_val = value of the Bootstrap Likelihood Ratio Test; BLRT_P = significant of the Bootstrap Likelihood Ratio Test. 

V.K. Fekson et al.                                                                                                                                                                                                                               



Developmental Cognitive Neuroscience 60 (2023) 101198

8

Table S10, and Table S11). 

4. Discussion 

The goal of the current study was to demonstrate, in a community 
sample of children, the relationship between heterogeneity in inhibitory 
control, reading abilities, and connectivity features of a brain system 
linked to inhibition and executive function. We focused on behavioral 
measures associated with inhibition and the DMN, a functional network 
implicated in EF and inhibitory control (Fryer et al., 2018; Hernán
dez-Álvarez et al., 2020; Liddle et al., 2011) and linguistic/semantic 

processing (Binder et al., 2005; Lanzoni et al., 2020; Seghier and Price, 
2012; Wirth et al., 2011). The results supported our hypotheses showing 
different sub-profiles of inhibitory control and related neurobiological 
differences in DMN. More specifically, high FC between anterior and 
posterior DMN is related to the behavioral inhibition class, low FC 
within anterior DMN is related to the cognitive inhibition class, and 
higher FC of the precuneus together with high FC in the right hemi
sphere related to the inattention\hyperactivity class. As postulated, 
different reading abilities were also found for the four profiles: the 
control class showed the highest reading scores, whereas the inattenti
ve/hyperactive class showed the lowest scores. 

4.1. Neurobiological differences between cognitive profiles 

Our results demonstrate that neurobiological profiles can be identi
fied for groups that were created solely on behavioral measurements. 
These results, though encouraging, are different from previous findings 
(Dajani et al., 2019), although there are several main differences be
tween the studies. It may be that categorical differences between EF 
abilities ("Low", "Average", and "Above Average") reported in (Dajani 
et al., 2019) are based solely on parental reports (rather than on per
formance tasks). In the current study, in addition to a parental ques
tionnaire (CBCL ADHD DSM5), a child questionnaire (BIS-BAS 
questionnaire) and performance task (SST) were used as well, providing 
a multi-informant and multi-method assessment of inhibitory control. 

Fig. 4. LPA four classes separation. Fig. 4: (a) This graph represents model 4 class separation. The X-axis represents the measures. The Y-axis represents the mean of 
each measure, normalized. The red color stands for class1 (self-reported motivated inhibition), the green line stands for class2 (which we referred to as “controls”), 
the light blue stands for class3 (task-based cognitive inhibition), and the purple color stands for class4 (parent-rated problems with inattention\hyperactivity). 
BAS_DRIVE = BAS (behavioral activation system) score for Drive scale (pursing after the desired goal); BAS_FS = BAS (behavioral activation system) score for Fun- 
seeking scale (desire for new rewards and spontaneity; BAS_RR = BAS (behavioral activation system) score for Reward responsiveness (positive reactions to an event 
or expectation of reward); BIS_SUM = BIS (behavioral inhibition system) score; CBCL_ADHD = DSM-5 ADHD t-scores from the CBCL questionnaire; SST_INCRGO_RT 
= rate of GO trials that were answered incorrectly in the Stop Signal Task; SST_INCRS_MRT = incorrect STOP trials mean response time (in ms) in the Stop Signal 
Task; SST_INCRS_RT = rate of STOP trials that were answered incorrectly in the Stop Signal Task. (b) Classes distribution. X-axis represents the classes. Y-axis 
represents the number of subjects in each class. The red color stands for class1 (behavioral inhibition), the green line stands for class2 (controls), the light blue stands 
for class3 (cognitive inhibition), and the purple color stands for class4 (inattention\hyperactivity). 

Table 5 
Covariate analysis results.  

Variable Class1 – 
Behavioral 
Inhibition 

Class3 – 
Cognitive 
Inhibition 

Class4 – Inattention/ 
Hyperactivity 

Parent 
education 

-0.113 -0.076 -0.174 

Household 
income 

-0.345 * ** -0.103 -0.580 * ** 

Motion (FD) 1.143 * * 2.201 * ** 1.554 * * 

Note. Class 2 (Controls) served as a reference class. FD = Framewise Displace
ment. 
* **p < 0.001, * * p < 0.001, * p < 0.01 
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Also, while Dajani’s study used the BRIEF general EF questionnaire, here 
we used only the inhibition EF sub-component, which likely created 
more homogenous profiles. Lastly, the current study used a novel 
non-parametric analysis (Zhitnikov et al., 2018) aiming to reveal com
mon phenomena that are masked in traditional analyses such as ICA. 
The benefits of this analysis (Zhitnikov et al., 2018) need to be tested 
further on different datasets to strengthen this claim. 

4.2. Maturation of the DMN and inhibition profiles: early maturation is 
related to a greater behavioral inhibition in response to punishment and 
reward abilities 

Our results suggest that children with greater behavioral inhibition 
in response to punishment and a greater behavioral approach in reward 
than controls demonstrate higher FC between anterior and posterior 
DMN. Previous studies suggested those connections as a signature of 
brain maturation (Fair et al., 2008; F. Fan et al., 2021; Supekar et al., 
2010). Brain maturation can suggest a reduced brain plasticity, i.e. a 
lower ability to adjust to different environments (Kolb and Gibb, 2011), 
as brain plasticity is known to decline with age (Kolb and Gibb, 2011; Lu 
et al., 2004). 

Amongst the four groups, the group of children with lower cognitive 
inhibition ability demonstrated a lower FC in the anterior DMN 
compared to controls. In contrast to the group with lower behavioral 

inhibition abilities, it can reflect an immature brain development. 
Studies investigating the development of DMN found that overall DMN 
FC increases with age (Fair et al., 2008; F. Fan et al., 2021) and 
particularly in anterior regions (F. Fan et al., 2021). Cognitive inhibition 
ability improves with age (Harnishfeger, 1995) and its improvement is 
connected with frontal lobe development (Harnishfeger, 1995). Hence, 
one of the reasons for delayed brain maturation may derive from frontal 
lobe FC which may explain the low performance in this group. 

Other researchers found that lower FC in anterior DMN is associated 
with attention difficulties in different attention domains (executive 
attention and sustained attention) (J. Fan et al., 2018; Rohr et al., 2018). 
Attention and inhibitory control are related to each other, as to maintain 
attention and to direct attention to the relevant stimulus, the brain needs 
to inhibit attention towards unnecessary external distractors (Diamond, 
2013). Hence, we suggest that children in this class may also be cate
gorized with low attention abilities and a future study including atten
tion measures needs to be conducted in this class to strengthen the 
connection between inhibitory control and attention-related neurobio
logical profiles. 

4.3. Right lateralized functional connectivity of the DMN and attention 
challenges 

The group with increased inattention\hyperactivity demonstrated 

Fig. 5. Distribution of the household income variable among classes. Fig. 5: The X-axis represents each class. The Y-axis represents the percentage of each of the 
household income values. 

Fig. 6. Reading ability per class and differences between classes. Fig. 6: X-axis represents each class. Y-axis represents the mean number of correct words, normalized 
by age. The post-hoc Dunn tests significant results are demonstrated above the bars. * ** p < 0.0001, * * p < 0.001, * p < 0.01. 
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Fig. 7. Common correlation matrices for all brain networks (based on the Gordon Atlas). Fig. 7: (a) Correlation matrix of all 5055 subjects. (b) Separate correlation 
matrix for each class. 
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stronger FC in the right hemisphere compared to controls (hyper
connectivity of the DMN in ADHD was also recently found in (Duffy 
et al., 2021)). These results are in line with previous research claiming 
that the DMN is mostly left-lateralized (Agcaoglu et al., 2015; Nielsen 

et al., 2013), and connects lower attention abilities with right laterali
zation of the DMN (Sripada et al., 2014b). In general, the right side of the 
brain was previously found to be associated with attention and inhibi
tion (Aron, 2007; Aron et al., 2004; Corbetta et al., 2008; Corbetta and 

Fig. 8. Common correlation matrices of the default mode network. Fig. 8: (a) Correlation matrix of all 5055 subjects. (b) Separate correlation matrix for each class.  
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Shulman, 2002; Singh-Curry and Husain, 2009). The right Inferior Pa
rietal Lobule (IPL), which is part of the DMN, is associated with both 
maintaining attention and reorienting attention to new stimuli (Corbetta 
et al., 2008; Husain and Nachev, 2007; Singh-Curry and Husain, 2009). 
Another network that is related to reorienting attention is the right 
ventral Frontoparietal network (Corbetta and Shulman, 2002). The right 
Inferior Frontal Gyrus (IFG), on the other hand, was related to inhibition 
control (Aron, 2007; Aron et al., 2004). Hence, we suggest that higher 
FC in the right hemisphere is due to compensation with deficits in 
attention and inhibitory control, which characterized this class. A future 

study involving the DMN along with other brain regions related to 
attention and inhibition can be conducted to determine the connection 
in this class with attention and inhibition control symptoms. 

4.4. Higher involvement of the precuneus is related to the motor system, 
and its deactivation is related to visual attention abilities 

This inattention/hyperactivity class demonstrated a greater FC be
tween the left dorsal, left ventral, and right ventral Precuenues (parcel 
94, parcel 1, and parcel 162, respectively), and brain regions associated 

Fig. 9. DMN differences in each class with the control class. Fig. 9: Brain images representing the correlations in each class that differ from the controls class with an 
effect size greater than 0.1. These results were repeated in at least 90% of the divisions. The blue line represents a connection in which the correlation value in the 
controls class was higher than the value in class X (X = 1,3,4). The red line represents a connection in which the correlation value in class X (X = 1,3,4) was higher 
than the value in the control class. 
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with EF and language processing (e.g. left mPFC, right Middle Temporal 
Gyrus, right Cingulate Gyrus, and right Superior Frontal Gyrus). The 
ventral part of the precuneus was previously reported as negatively 
correlated with the motor network (Uddin et al., 2009; Zhang and Li, 
2012), in contrast to the dorsal precuneus, which was positively corre
lated with the motor system (Margulies et al., 2009; Zhang et al., 2014; 
Zhang and Li, 2012). In the context of this class, it may be that greater 
involvement of this part of the DMN may be related to an altered ability 
to control the motor network as part of the higher hyperactive symptoms 
characterizing this group. 

In addition to the FC pattern related to the motor system, the dorsal 
part of the precuneus was found to be triggered by motor-imaginary 
tasks (Hanakawa et al., 2003; Malouin et al., 2003). Lower perfor
mance in these tasks was found to be related to ADHD symptomatology 
(Williams et al., 2013). Hence, a greater involvement of the dorsal part 
of the precuneus may be used as a compensating mechanism for this 
lower performance mentioned above. This is in line with findings 
showing that greater deactivation of the posterior precuneus during a 
perceptual matching task compared to speech production is related to an 
engagement of visual attention (Seghier and Price, 2012). The authors 
also state that the relation between age (maturation) and the level of 
deactivation of this region is affected by the level of visual attention and 
perceptual processing demands of the task. This may be a possible 
explanation also for the lower reading ability observed in this group of 
children in the current study. 

4.5. What is the inhibitory profile of children characterized by ADHD 
patterns? 

Note that class4 is characterized by ADHD patterns (i.e., parent-rated 
problems with attention, hyperactivity, and lower inhibitory control 
abilities), but the children in this class were not recruited as a clinical 
sample with a diagnosis of ADHD. The t-scores of the CBCL ADHD DSM5 
in this class are varied, as 104 (30%) are in the normal range (64 and 
below), 131 (37%) are in the borderline clinical range (65 − 69), and 
111 (32%) are in the clinical range (70 and above) (Achenbach, 2009; 
Achenbach and Ruffle, 2000). In addition to the CBCL questionnaire, the 
parents also completed the Kiddie Schedule for Affective Disorders and 
Schizophrenia for DSM-5 (KSADS-5) diagnostic questionnaire (Kaufman 
et al., 2021), which includes a diagnostic criterion for ADHD. According 
to the results, 180 (52%) children in this group were diagnosed with 
ADHD. Interestingly, as a group, neurobiological patterns related to 
ADHD were demonstrated. 

Following the higher comorbidity of this class, other scales from the 
CBCL questionnaire were also tested (Table S12 and S13). The attention 
problems scale also showed high comorbidity: 112 (32.46%) are in the 
normal range, 128 (36.99%) are in the clinical borderline clinical range, 
and 106 (30.63%), as was expected. In all other scales, most of the class 
was in the normal range, but unexpectedly more subjects were in the 
clinical range compared to other classes. 

4.6. Do higher inhibition abilities characterize children with high socio- 
economic status? 

In the current study, we have created the four groups using the latent 
profile analysis, which was based on the inhibition behavioral tasks. The 
data demonstrate how a higher number of females also characterizes 
children in the “control” group (aka class2), a higher number of 
Caucasian individuals, higher income, higher parental education, and 
less motion inside the scanner compared to the other classes (see also 
Table 3). An interesting question can be raised regarding the overall 
profile of children with high inhibition abilities- are these the charac
teristics of children from a high socio-economic status, i.e. affluent 
population? On the one hand, this group’s high demographic profile 
may result in higher inhibition test scores (per(Moilanen et al., 2010)). 
On the other hand, even within the low SES group, children’s inhibition 

ability was found to vary depending on different parameters that may 
not be evaluated when traditionally examining SES (i.e. children from a 
low SES background with a single parent showed lower inhibition 
abilities than children from a comparable low SES background who have 
two parents(Sarsour et al., 2011)). In addition, variable inhibition 
abilities (and developmental trajectories in inhibition abilities) were 
found in children from a low socio-economic background(Pacheco et al., 
2018). It is, therefore, possible that the fact that the demographic 
background of class2 is high is incidental. Hence, to determine if high 
inhibition abilities and specific profiles of DMN are truly characterized 
by higher SES, a future study examining the differences in neurobio
logical signature for DMN in children matched for their inhibition pro
files from high vs low socio-economic status should be conducted. 

4.7. Reading abilities are related to patterns of inhibitory control 

Our results provide a strong link between inhibitory control and 
reading abilities in early adolescents. These findings, by themselves, are 
not surprising and echo previous literature demonstrating the link be
tween reading abilities (Allan et al., 2014) and reading comprehension 
and inhibitory control (Borella et al., 2010). The link to alterations of 
different parts of the DMN is also not surprising in light of the studies 
supporting its role in semantic processing (Binder et al., 2005; Lanzoni 
et al., 2020; Seghier and Price, 2012; Wirth et al., 2011). However, the 
results show different reading abilities across the sub-profiles found in 
the latent profile analyses. The control group showed the highest 
reading scores, and the inattentive/hyperactivity group showed the 
lowest. Also, significant differences were found between the controls 
and the behavioral inhibition group (class1). A possible explanation for 
these lower reading scores may derive from the neuroimaging data and 
are related to the FC changes found in left-hemispheric regions within 
the DMN in classes 1 and 4 compared to the control group. Previous 
studies did suggest a connection between the recruitment of regions 
within the DMN and reading comprehension (Buckner et al., 2008) and 
discourse (Aboud et al., 2016). It was also suggested that the deactiva
tion of sub-parts of the DMN is related to different cognitive/linguistic 
functions tightly linked to reading, such as visual attention (anterior 
PCC), speech production (posterior ventral Medial Prefrontal Cortex), 
perception and naming of objects (right inferior parietal cortex) (Seghier 
and Price, 2012). It may be that this over-recruitment of the left hemi
sphere, which is generally related to reading ability and changes in 
engagement of subregions within the DMN associated with semantic 
processing (Seghier and Price, 2012) in these groups, interferes with its 
role also in technical reading as was measured in the current study. 

4.8. Big data in neuroimaging studies 

One of the caveats in neuroimaging studies is the difficulty repro
ducing study procedures and results (Botvinik-Nezer et al., 2020; 
Klapwijk et al., 2021), especially for brain-wide association studies 
(Marek et al., 2022) as most studies are done using a limited number of 
participants (Klapwijk et al., 2021; Marek et al., 2022). Decreased re
sults variability can be achieved using a large sample size which di
minishes the variability with a sample size greater than 2000 
participants (Marek et al., 2020). In the current study, we used the data 
from the Adolescent Brain Cognitive Development (ABCD) 
(https://abcdstudy.org/) study, the largest children dataset aiming at 
collecting various measures and assessments (neurocognition tasks, 
neuroimaging scans, culture and environment questionnaires, physical 
and mental health, and biospecimens data) from pre-adolescents into 
adulthood. One of the advantages of using large datasets like the ABCD 
is the ability to detect associations with many developmental outcomes 
(Dick et al., 2020; Klapwijk et al., 2021), even if these large datasets are 
usually associated with small effect sizes (Dick et al., 2020). Additional 
studies using this or similar large datasets have the potential to fuel 
prediction models associated with emotional and cognitive outcomes for 
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children. 

5. Limitations 

The results of the current study should be taken into consideration 
with the following limitations: first, minor variations of tests related to 
inhibition were included in the analysis. Other tests that measure 
additional aspects of inhibitory control may reveal more fine-tuned 
classes, especially in class1 (which includes the behavioral inhibition 
children), which comprised a large portion of the sample. Second, the 
recently developed algorithm for revealing the common correlation 
matrix was validated and tested on a smaller sample (n = 458). It is 
unknown to what extent the execution of the algorithm on large sam
ples, as in our study, affects the results. Third, the interpretation of the 
results was based solely on the differences between the control group 
and the other groups generated from the analysis, and therefore, the 
actual values of the FC per group were not discussed. That is, there was 
no difference if the values in the two compared classes were high (e.g. 
close to 1) or low (close to zero). Lastly, to ensure that children in 2nd, 
6th and 7th grades (outliers) do not affect the cognitive profiles, these 
children were removed from the analysis, and the profiles were recre
ated. The cognitive profiles remained similar to the original analysis as 
well as the differences in reading measures between the groups. How
ever, when examining the FC differences within the DMN between the 
four classes, different results from the original analysis were found (see 
Supplemental material 1 in appendix B). One possibility for this differ
ence in DMN profiles is the multiple seeds ranging between lobes that 
are part of the DMN (41 ROIs), which probably also contribute to the 
multiple roles this network plays in numerous cognitive and emotional 
processes (Mak et al., 2017). As such, it may be that changes in the 
number of participants within each group increase the variability within 
the network and hence result in different profiles. Therefore, choosing a 
different network with a more restricted function (i.e. sensory network, 
the cingulo-opercular or fronto-parietal ones) might have resulted in 
more homogenous profiles even in the case of changing the number of 
participants. However, choosing these networks will disable the ability 
to discuss the results in both emotional and cognitive contexts, as can be 
done when examining the DMN. Last but not least, failing to respond 
correctly to the SST used in the current study is traditionally related to 
inhibition challenges (Verbruggen and Logan, 2008) but also to chal
lenges in attention and cognitive control (more broadly) (Matzke et al., 
2017). Therefore, the groups showing challenges in the SST may also 
share an overall challenge in attention and cognitive control. 

6. Conclusions 

This study demonstrated how in a community sample of children, 
different subgroups could be found with inhibitory control difficulties 
and how each of them had a different neurobiological signature within 
the DMN. These findings can contribute to the understanding of the 
children’s variety of difficulties, which are not necessarily diagnosed 
with a particular learning disability, and the development of more 
precise teaching methods. In addition, the findings can contribute to the 
understanding of the neural basis of inhibitory control and aim to assist 
in objective neuroimaging diagnosis in the future. As we examined only 
the DMN, additional studies are needed to examine the involvement of 
other networks in inhibition, in addition to studies involving other as
pects of inhibitory control. Finally, as the current study found different 
profiles for children with inhibition abilities linked to reading skills (for 
example, see (Fuchs et al., 2020; Horowitz-Kraus et al., 2015a, 2015b; 
Horowitz-Kraus and Holland, 2015; Peng and Goodrich, 2020), it will be 
interesting to examine whether reading interventions with embedded 
elements of EF, especially inhibitory control, are helpful for reading 
improvement in particular profiles. 
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