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Gamma-glutamylcysteine ethyl ester (GCEE) is a precursor of glutathione (GSH) with promising hepatoprotective effects. This
investigation aimed to evaluate the hepatoprotective effects of GCEE against cyclophosphamide- (CP-) induced toxicity, pointing
to the possible role of peroxisome proliferator activated receptor gamma (PPAR𝛾). Wistar rats were given GCEE two weeks prior to
CP. Five days after CP administration, animals were sacrificed and samples were collected. Pretreatment with GCEE significantly
alleviated CP-induced liver injury by reducing serum aminotransferases, increasing albumin, and preventing histopathological
and hematological alterations. GCEE suppressed lipid peroxidation and nitric oxide production and restored GSH and enzymatic
antioxidants in the liver, which were associated with downregulation of COX-2, iNOS, and NF-𝜅B. In addition, CP administration
significantly increased serum proinflammatory cytokines and the expression of liver caspase-3 and BAX, an effect that was reversed
by GCEE. CP-induced rats showed significant downregulation of PPAR𝛾 which was markedly upregulated by GCEE treatment.
These data demonstrated that pretreatment with GCEE protected against CP-induced hepatotoxicity, possibly by activating PPAR𝛾,
preventing GSH depletion, and attenuating oxidative stress, inflammation, and apoptosis. Our findings point to the role of PPAR𝛾
and suggest that GCEE might be a promising agent for the prevention of CP-induced liver injury.

1. Introduction

Drug-induced liver injury (DILI) refers to abnormalities
in liver function tests related to the intake of medicinal
compounds [1]. DILI has been the single most frequent
reason for drug withdrawal from the market [2, 3]. The
potential of a drug to cause hepatotoxicity is often realized
after release onto themarket [2] and it has been estimated that
more than a thousand drugs have been associated with liver
injury and hepatotoxicity [4, 5]. Cyclophosphamide (CP) is
an alkylating agent commonly used in the treatment of differ-
ent cancers [6]. The therapeutic applications of CP have
been associated with different side effects and organ toxicity

[7, 8]. CP cytotoxicity has been attributed to the toxic meta-
bolites, acrolein, and phosphoramide produced during its
metabolism [9]. Acrolein can bind to reduced glutathione
(GSH) leading to increased production of reactive oxygen
species (ROS) and subsequently oxidative stress and lipid
peroxidation [10, 11]. Therefore, agents with free radical
scavenging and antioxidant properties can offer protection
against CP-induced oxidative stress and hepatotoxicity.

Peroxisome proliferator activated receptor gamma
(PPAR𝛾) is a ligand-inducible transcription factor known
to have roles in normal cell function [12]. When activated,
PPAR𝛾 heterodimerizes with retinoid X receptor (RXR),
binds to specific response elements (PPREs), and promotes
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the expression of target genes [13]. PPAR𝛾 is induced during
preadipocytes differentiation and plays a central role in lipid
metabolism, glucose homeostasis, inflammation, and cell
proliferation [14]. In the liver, disruption of PPARs has been
associated with different disorders [15]. On the other hand,
activation of PPAR𝛾 inhibited the fibrogenic response to liver
injury [16] and protected against drug-induced hepatotoxi-
city as we recently reported [3, 17, 18].

Attenuation of oxidative stress through restoring GSH
levels is a well-known strategy to combat drug-induced
toxicity. For example, administration of N-acetylcysteine
(NAC), a precursor ofGSH, protected the liver against carbon
tetrachloride [19] and methotrexate-induced toxicity [20].
Gamma-glutamylcysteine ethyl ester (GCEE), a synthetic
GSH precursor, has been demonstrated to boost endogenous
GSH levels and block oxidative stress in neurons [21, 22]
as well as cerebral endothelial cells [23]. We believe that
nothing has yet been reported on the possible protective
effects of GCEE against CP-induced hepatotoxicity. In the
present study, we asked whether GCEE can attenuate CP-
induced oxidative stress, apoptosis, and inflammation in the
liver of rats, pointing to the role of PPAR𝛾.

2. Materials and Methods

2.1. Chemicals. Gamma-glutamyl cysteine ethyl ester
(GCEE) and cyclophosphamide (CP; Endoxan) were pur-
chased fromBachem (Torrance, CA,USA) andBaxterOncol-
ogy (Dusseldorf, Germany), respectively. Alanine amin-
otransferase (ALT), aspartate aminotransferase (AST),
alkaline phosphatase (ALP), and albumin assay kits were
supplied by Spinreact (Spain). PPAR𝛾, nuclear factor-𝜅B
(NF-𝜅B), and Bcl-2-associated X protein (BAX) antibodies
were obtained from Santa Cruz Biotechnology (USA).
Cytokines assay kits were purchased from R&D Systems
(USA). All other chemicals were obtained from Sigma (USA)
and other standard commercial supplies.

2.2. Experimental Animals and Treatments. Male albinoWis-
tar rats (10 weeks old) from the Institute of Ophthalmology
(Giza, Egypt) were included in the present study. They were
maintained on a 12 h dark/light cycle at 22 ± 2∘C with ad
libitum access to standard laboratory diet and water. All
animal procedures related to care, treatments, and sampling
were in accordance with the guidelines of the Institutional
Animal Ethics Committee of Beni-Suef University (Egypt).

Twenty-four rats were divided randomly into three
groups of 8 rats each and allowed to adapt for 1 week prior
to the experiment. Group I (Control) received normal saline
solution for 16 days, Group II (CP) received saline for 15 days
and 150mg/kg b.wt. CPonday 16 [18], andGroup III (GCEE+
CP) received 100mg/kg b.wt. GCEE for 15 days and 150mg/kg
b.wt. CP on day 16.

The dose, route, and day of CP administration were
selected based on our previous studies [18, 24]. Since GCEE
has been proven to be effective in vivo at doses of 10mg/kg
[25] and 150mg/kg b.wt. [21], we selected a dose of 100mg/kg
to be tested in our study. All experimental solutions were
administered intraperitoneally.

At day 21, the animals were sacrificed by cervical dis-
location and various samples were collected. Blood samples
were either collected on heparinized tubes for hematologi-
cal analysis or left to coagulate for serum separation. Livers
were immediately excised, washed in cold phosphate buf-
fered saline (PBS), and weighed. Samples from the liver
were fixed in 10% neutral buffered formalin for histological
and immunohistochemical processing. Other samples were
homogenized (10%w/v) in cold PBS for biochemical assays or
kept frozen at−80∘C for gene and protein expression analysis.

2.3. Biochemical Assays

2.3.1. Determination of Liver FunctionMarkers. Serum amin-
otransferases were assayed using Spinreact (Spain) reagent
kits according to the method of Schumann and Klauke
[26]. Serum ALP activity and albumin concentration were
measured using Spinreact (Spain) reagent kit according to the
methods of Wenger et al. [27] andWebster [28], respectively.

2.3.2. Determination of Oxidative Stress and Antioxidant
Defenses. Liver malondialdehyde (MDA) and GSH levels
were determined according to the methods of Preuss et al.
[29] and Beutler et al. [30], respectively. Liver nitric oxide
(NO) was determined as nitrite using Griess reagent. Super-
oxide dismutase (SOD), glutathione peroxidase (GPx), and
catalase (CAT) were determined according to the methods of
S. Marklund and G. Marklund [31], Matkovics et al. [32], and
Cohen et al. [33], respectively.

2.3.3. Determination of Proinflammatory Cytokines. Tumor
necrosis factor alpha (TNF-𝛼) and interleukin-1beta (IL-1𝛽)
were determined in serum samples using specific rats ELISA
kits (R&D Systems, USA) according to the manufacturer’s
instructions.

2.3.4. Determination of Caspase-3 Activity. Liver caspase-
3 activity was measured using the CaspACE assay system
(Promega, Madison, WI, USA) following the manufacturer’s
instructions. The assay is based on the action of caspase-
3 on the substrate Ac-DEVD-pNA releasing yellow chro-
mophore p-nitroaniline.The activity of caspase-3 activity was
presented as percentage of corresponding control.

2.4. Determination of Hematological Parameters. Samples of
blood from all animals were collected into heparinized tubes
and red blood corpuscles (RBCs), total white blood cells
(WBCs), platelet count, and hemoglobin (Hb) content were
determined using an automated hematoanalyzer.

2.5. Histopathology and Immunohistochemistry. Samples
from the liver were immediately washed in cold PBS and
fixed for histological processing and hematoxylin and eosin
(H&E) staining.

Liver sections were immunohistochemically stained with
anti-BAX antibody. Briefly, the slides were deparaffinized,
rehydrated, and incubated in 3% hydrogen peroxide (H

2
O
2
)

for 5min.The slides were washed in Tris-buffered saline (pH
7.6), blocked with protein block (Novocastra), and incubated
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Table 1: Primers used for qRT-PCR.

Gene GenBank accession number Sequence (5-3)

Pparg NM 001145367 F: GGACGCTGAAGAAGAGACCTG
R: CCGGGTCCTGTCTGAGTATG

Casp3 NM 012922 F: GGAGCTTGGAACGCGAAGAA
R: ACACAAGCCCATTTCAGGGT

BAX NM 017059 F: AGGACGCATCCACCAAGAAG
R: CAGTTGAAGTTGCCGTCTGC

NF-𝜅B AF079314 F: TCTCAGCTGCGACCCCG
R: TGGGCTGCTCAATGATCTCC

COX2 NM 017232 F: TGATCTACCCTCCCCACGTC
R: ACACACTCTGTTGTGCTCCC

iNOS U03699 F: ATTCCCAGCCCAACAACACA
R: GCAGCTTGTCCAGGGATTCT

𝛽-Actin NM 031144 F: AGGAGTACGATGAGTCCGGC
R: CGCAGCTCAGTAACAGTCCG

with rabbit polyclonal anti-BAX.The sections were incubated
with the secondary antibody and then horseradish peroxidase
conjugated with streptavidin. Sections were then washed,
counterstained with hematoxylin, mounted in DPX, and
examined by light microscopy.

2.6. Gene Expression Study. To study the effect of GCEE on
the mRNA expression levels of caspase-3, BAX, inducible
nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2),
NF-𝜅B, and PPAR𝛾 in the liver of CP-induced rats, quan-
titative RT-PCR was used as we previously reported [3].
In brief, total RNA was isolated from liver tissue samples
using Invitrogen (USA) TrIzol reagent. RNA was treated
with RNase-free DNase, purified using RNeasy purification
kit (Qiagen, Germany), and quantified at 260 nm. RNA
integrity was further confirmed using formaldehyde-agarose
gel electrophoresis. 2 𝜇g RNA was reverse transcribed into
first strand cDNA using AMV reverse transcriptase. DNA
was amplified using SYBRGreenmaster mix purchased from
Fermentas. The primers used to specifically amplify caspase-
3, BAX, COX-2, iNOS, NF-𝜅B, PPAR𝛾, and 𝛽-actin are listed
in Table 1. The 2−ΔΔCt method [34] was used to analyze the
obtained amplification data and the results were normalized
to 𝛽-actin.

2.7. Western Blot. Total liver tissue protein was extracted
using RIPA buffer supplemented with proteinase inhibitors
and Bradford reagent was used to determine protein con-
centration. Aliquots of the lysate containing 50 𝜇g proteins
were separated on SDS-PAGE, electrotransferred onto PVDF
membranes followed by blocking. The membranes were
probed with PPAR𝛾, NF-𝜅B p65, and 𝛽-actin primary anti-
bodies, washed, and then incubated with the proper sec-
ondary antibodies. The blots were developed by enhanced
chemiluminescence kit (BIO-RAD, USA). The intensity of
obtained bands was quantified using ImageJ, normalized to
𝛽-actin, and presented as percent of control.

2.8. Statistical Analysis. Results were analyzed using Graph-
Pad Prism 5 (La Jolla, CA, USA) and were expressed as
means ± standard error of the mean (SEM). The statistical
comparisons were made using one-way analysis of variance
(ANOVA) followed by Tukey’s test post hoc analysis to judge
the difference between various groups. A 𝑃 value < 0.05 was
considered to be statistically significant.

3. Results

3.1. GCEE Protects against CP-Induced Liver Injury. To test
the protective effect of GCEE on CP-induced hepatocellular
injury, we assayed serum markers of liver function and
performed histological examination.

Administration of CP induced hepatotoxicity evidenced
by the significantly (𝑃 < 0.001) increased serum ALT (Fig-
ure 1(a)), AST (Figure 1(b)), and ALP (Figure 1(c)) activities
when compared with the control group. Pretreatment of the
CP-induced rats withGCEEproduced significant (𝑃 < 0.001)
reduction in serum aminotransferases andALP activities. On
the other hand, CP-administered rats showed a significant
(𝑃 < 0.01) decline in serum albumin levels when compared
with the corresponding control rats as depicted in Figure 1(d).
Supplementation of GCEE prior to CP produced a significant
(𝑃 < 0.01) amelioration of serum albumin levels in CP-
intoxicated rats.

Microscopic examination of the liver sections stained
with H&E revealed normal hepatic strands, hepatocytes, and
sinusoids in control rats (Figure 2(a)). CP administration
to rats produced several histological alterations in the liver
sections such as activated Kupffer cells and hepatic vac-
uolation of fat type as most of vacuoles were with clear
lumen and round borders, indicating hepatic steatosis (Fig-
ure 2(b)). In addition, CP induced periportal hepatic necrosis
with mononuclear inflammatory cells infiltration, mainly
macrophages and histiocytes (Figure 2(c)). Liver sections
fromGCEEpretreated rats showednoticeable amelioration of
the liver histological architecture as depicted in Figure 2(d).
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Figure 1: Effect of GCEE on serum (a) ALT, (b) AST, (c) ALP, and (d) albumin in CP-induced rats. Data are expressed as mean ± SEM
(𝑁 = 6). ∗∗𝑃 < 0.01 and ∗∗∗𝑃 < 0.001. CP, cyclophosphamide; GCEE, gamma-glutamylcysteine ethyl ester; ALT, alanine aminotransferase;
AST, aspartate aminotransferase; ALP, alkaline phosphatase.

3.2. GCEE Mitigates CP-Induced Hematological Alterations in
Rats. CP-induced rats showed significant (𝑃 < 0.01) de-
crease in RBCs number when compared with the control rats
as represented in Figure 3(a).This effectwas significantly (𝑃 <
0.05) reversed in CP-induced rats pretreated with GCEE. HB
content as well was significantly (𝑃 < 0.05) declined in
the blood of CP-induced rats (Figure 3(b)). Pretreatment of
the rats with GCEE significantly (𝑃 < 0.05) prevented CP-
induced Hb decline.

Concerning WBCs count, CP-induced rats showed sig-
nificant (𝑃 < 0.01) leukopenia when compared with the con-
trol rats. Platelets exhibited nearly similar pattern where their
number was significantly (𝑃 < 0.001) declined in the blood
of CP-induced rats. Pretreatment of the CP-induced rats with
GCEE significantly prevented leukopenia (𝑃 < 0.05) and
thrombocytopenia (𝑃 < 0.05) as depicted in Figures 3(c) and
3(d), respectively.

3.3. GCEE Attenuates CP-Induced Oxidative Stress in the
Liver of Rats. The protective effect of GCEE against CP-
induced oxidative stress was determined through assessment
of lipid peroxidation and NO as well as antioxidant defenses.
Intraperitoneal administration of CP produced a significant
(𝑃 < 0.001) increase in lipid peroxidation (Figure 4(a)) and

NO (Figure 4(b)) in the liver of rats when compared with
the control group. Pretreatment of the CP-induced rats with
GCEE significantly (𝑃 < 0.001) decreased lipid peroxidation
levels in the liver of rats. Similarly, GCEE pretreatment
produced a significant (𝑃 < 0.01) decline in liver NO levels.

On the other hand, CP-induced rats showed a significant
(𝑃 < 0.05) decline in liver GSH content when compared with
the corresponding control rats (Figure 4(c)). GCEE admin-
istration prior to CP produced a significant (𝑃 < 0.05) im-
provement in liver GSH content. The enzymatic antioxidants
exhibited a similar pattern where CP-induced rats exhibited
significant decrease in the activity of liver SOD (𝑃 < 0.01;
Figure 4(d)), GPx (𝑃 < 0.05 Figure 4(e)), and CAT (𝑃 <
0.01 Figure 4(f)) when compared with the control rats.
GCEE administration produced significant amelioration in
the activity of SOD (𝑃 < 0.05), GPx (𝑃 < 0.01), and CAT
(𝑃 < 0.05) in the liver of CP-induced rats.

3.4. GCEE Reduces CP-Induced Inflammation in the Liver
of Rats. Circulating levels of the proinflammatory cytokine
TNF-𝛼 showed significant (𝑃 < 0.001) increase in CP-
induced rats when compared with control rats (Figure 5(a)).
Pretreatment of the CP-induced rats with GCEE for 15
days produced significant (𝑃 < 0.001) decrease in serum
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Figure 2: Photomicrographs of H&E-stained liver sections of (a) control rats, (b, c) CP-induced rats revealing activated Kupffer cells (red
arrow), hepatic vacuolation of fat type (black arrow), and periportal hepatic necrosis associated with mononuclear inflammatory cells
infiltration, mainly macrophages and histiocytes (blue arrow), and (d) CP-administered rats pretreated with GCEE showing noticeable
amelioration of the liver histological architecture. CV, central vein; GCEE, gamma-glutamylcysteine ethyl ester.

TNF-𝛼 levels. IL-1𝛽 levels were significantly (𝑃 < 0.001)
increased in serum of CP-induced rats when compared with
the control group, an effect that was reversed by GCEE treat-
ment (Figure 5(b)).

To further confirm the anti-inflammatory effect of GCEE,
the expression of COX-2, iNOS, and NF-𝜅B was assayed
in the liver of CP-induced rats. COX-2 mRNA expression
showed a significant (𝑃 < 0.01) upregulation in the liver of
CP-induced rats when compared with the control rats (Fig-
ure 5(c)). Pretreatment of the CP-induced rats with GCEE
significantly (𝑃 < 0.01) downregulated liver COX-2 mRNA
expression.

iNOS mRNA expression revealed significant (𝑃 < 0.01)
upregulation in the liver of CP-induced rats when compared
with the control group as represented in Figure 5(d). GCEE
produced a significant (𝑃 < 0.01) downregulation of iNOS
mRNA expression in the liver of CP-induced rats.

Liver NF-𝜅B expression showed a significant upregula-
tion in CP-induced rats at both gene (𝑃 < 0.01; Figure 5(e))
and protein levels (𝑃 < 0.001; Figure 5(f)) when compared
with the control rats. GCEE administered prior to CP signi-
ficantly decreased NF-𝜅B bothmRNA (𝑃 < 0.05) and protein
(𝑃 < 0.01) expression.

3.5. GCEE Prevents CP-Induced Apoptosis in the Liver of Rats.
To study the effect of GCEE on CP-induced apoptosis, we
determined both gene and protein expression levels of the

proapoptotic factors caspase-3 and BAX. As represented in
Figure 6(a), the liver of CP-induced rats showed a significant
(𝑃 < 0.01) increase in mRNA abundance of caspase-3 when
compared with the control rats. Caspase-3 protein levels
showed a similar significant (𝑃 < 0.01) increase in liver of
CP-induced rats. Pretreatment of the CP-induced rats with
GCEE significantly decreased both caspase-3 mRNA expres-
sion (𝑃 < 0.01) and protein levels (𝑃 < 0.05).

Similarly, BAX mRNA expression levels showed signifi-
cant (𝑃 < 0.001) increase in the liver of CP-induced rats when
compared with the control group (Figure 6(c)). Pretreat-
ment with GCEE produced a marked (𝑃 < 0.01) decrease
in BAX mRNA expression levels in liver of the CP-induced
rats. BAX protein expression levels, determined by immuno-
histochemistry, showed a significant (𝑃 < 0.001) increase in
the liver of CP-induced rats when compared with the control
rats (Figure 6(d)). GCEE administered prior to CP produced
marked (𝑃 < 0.001) decrease in the expression of BAX pro-
tein in the liver of rats.

3.6. GCEEUpregulates PPAR𝛾 in the Liver of CP-Induced Rats.
PPAR𝛾mRNA abundance, determined by qRT-PCR, showed
a significant (𝑃 < 0.001) decrease in the liver of CP-induced
rats, as depicted in Figure 7(a). Conversely, GCEE sup-
plementation produced a significant (𝑃 < 0.01) upregulation
of PPAR𝛾 mRNA expression in the liver of CP-induced rats.
PPAR𝛾 protein expression followed a similar pattern where
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Figure 3: Effect of GCEE on hematopoietic parameters in CP-induced rats. Data are expressed as mean ± SEM (𝑁 = 6). ∗𝑃 < 0.05, ∗∗𝑃 <
0.01, and ∗∗∗𝑃 < 0.001. CP, cyclophosphamide; GCEE, gamma-glutamylcysteine ethyl ester; RBCs, erythrocytes; Hb, hemoglobin; WBCs,
leukocytes.

it was significantly (𝑃 < 0.001) downregulated in the liver
of CP-induced rats when compared with the control group
(Figure 7(b)). CP-induced rats pretreated with GCEE exhib-
ited marked (𝑃 < 0.01) upregulation of liver PPAR𝛾 pro-
tein expression.

4. Discussion

Gamma-glutamylcysteine is the limiting substrate in GSH
synthesis and thus encourages product formation when
present. In the present study, we showed for the first time
that the GSHmimetic GCEE can protect against CP-induced
hepatotoxicity. We assumed that this hepatoprotective activ-
ity of GCEE is mediated, at least in part, through its ability to
upregulate PPAR𝛾 expression.

CP is an alkylating agent used for treatment of several
types of cancer [6, 35]; however, its use has been limited
due to severe toxicity [7, 8]. Our studies have demonstrated
that hepatotoxicity is one of the major side effects of CP
[3, 18, 24, 36]. Here, CP administration induced liver injury
confirmed by increased circulating levels of liver function
marker enzymes, declined serum albumin levels, andmarked
histopathological changes of liver structures. Accordingly, we
have previously demonstrated increased serum ALT, AST,

and ALP in CP-intoxicated rats [3, 18, 24, 36].These enzymes
are used as reliable markers for the assessment of liver func-
tion [37]. Elevated circulating levels of these enzymes indicate
hepatocellular damage induced by CP as previously reported
[3, 18, 38]. In addition, CP-induced rats showed leukopenia,
anemia, and thrombocytopenia, indicating hematopoietic
dysfunction due to CP-induced bone marrow toxicity [39,
40]. Similar findings have been reported in mice received CP
at doses of 125mg/kg [41].

Interestingly, GCEE supplementation significantly alle-
viated circulating levels of hepatic enzymes suggesting its
membrane stabilizing potential. The hepatoprotective effect
of GCEE against CP was further confirmed by the improved
histological structures of the liver and increased serum levels
of albumin. Rats treated with CP developed liver dam-
age characterized histologically by activated Kupffer cells,
hepatic vacuolation of fat type, periportal hepatic necrosis,
and mononuclear cells infiltration, mainly macrophages and
histiocytes. These findings were consistent with our previous
study [18]. The decreased serum albumin in drug-induced
hepatotoxicity could be attributed to the provoked inflamma-
tion and oxidative stress [42]. During inflammation, declined
production of albumin has been linked to its function as a
negative acute phase protein [43]. GCEEmarkedly prevented
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Figure 4: Effect of GCEE on (a) lipid peroxidation, (b) nitric oxide, (c) GSH, (d) SOD, (e) GPx, and (f) CAT in liver of CP-induced rats. Data
are expressed as mean ± SEM (𝑁 = 6). ∗𝑃 < 0.05, ∗∗𝑃 < 0.01, and ∗∗∗𝑃 < 0.001. CP, cyclophosphamide; GCEE, gamma-glutamylcysteine
ethyl ester;MDA,malondialdehyde; NO, nitric oxide; GSH, reduced glutathione; SOD, superoxide dismutase; CAT, catalase; GPx, glutathione
peroxidase.

histological alterations and increased serum albumin levels,
confirming its hepatoprotective activity. In addition, GCEE
ameliorates the hematopoietic parameters and hence protects
the bone marrow against CP-induced suppression.

Oxidative stress has been implicated in the hepatotoxic
effect of CP [18, 24].Therefore, finding a strategy to attenuate
oxidative stress might grasp a key to alleviate the CP-
induced hepatotoxicity. The present study showed increased

levels of lipid peroxidation in the liver of CP-intoxicated
rats. Excessive ROS production induced by CP can attack
membrane lipids leading to lipid peroxidation [3, 7, 18, 24].
In addition, liver NOwas significantly increased as a result of
CP administration. NO has been reported to be involved in
CP-induced hepatotoxicity [44]. It can combine with super-
oxide anions producing the versatile oxidant peroxynitrite
(ONOO−) [45]. ONOO− activates NF-𝜅B in Kupffer cells and
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Figure 5: Effect of GCEE on serumTNF-𝛼 (a) and IL-1𝛽 (b),mRNAexpression levels of liver COX-2 (c), iNOS (d), andNF-𝜅B (e), and protein
expression of liver NF-𝜅B-p65 (f) in CP-induced rats. Data are expressed as mean ± SEM (𝑁 = 6). ∗𝑃 < 0.05, ∗∗𝑃 < 0.01, and ∗∗∗𝑃 < 0.001.
CP, cyclophosphamide; GCEE, gamma-glutamylcysteine ethyl ester; TNF𝛼, tumor necrosis factor alpha; IL-1𝛽, interleukin-1beta; NF-𝜅B,
nuclear factor-kappaB; iNOS, inducible nitric oxide synthase; COX-2, cyclooxygenase-2.

subsequently increased production of the proinflammatory
cytokines [46]. The increased production of liver NO is
a direct result of upregulated expression of iNOS as we
previously reported in CP-induced rats [18]. Moreover, CP-
induced rats exhibited declined liver GSH as well as activities
of the antioxidant enzymes. GSH depletion is a result of

its direct conjugation with CP metabolites [47], leading to
declined cellular defenses and necrotic cell death [48].

GCEE prevented the CP-induced lipid peroxidation, NO
production, depletion of GSH, and suppression of SOD,
CAT, and GPx activities in the liver of rats. These findings
indicate clearly that GCEE protected against CP-induced
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Figure 6: Effect of GCEE on (a) caspase-3 mRNA expression, (b) caspase-3 activity, (c) BAX mRNA expression, and (d) BAX
immunohistochemical staining in liver of CP-induced rats. Data are expressed as mean ± SEM (𝑁 = 6). ∗𝑃 < 0.05, ∗∗𝑃 < 0.01, and
∗∗∗
𝑃 < 0.001. CP, cyclophosphamide; GCEE, gamma-glutamylcysteine ethyl ester; BAX, BCL2-associated X protein.

oxidative stress through preventing GSH depletion and
enhancing the enzymatic antioxidants. In the same context,
Kobayashi et al. [49] reported that GCEE protects against
ischemia/reperfusion-induced liver injury through prevent-
ing GSH depletion. More recently, the study of Salama et

al. [50] showed similar findings in iron-overload rat model
supplemented with glutamyl cysteine dipeptide.

In conjunction with oxidative stress, increased produc-
tion of inflammatory cytokines has been reported in CP-
administered rats. Previous studies from our laboratory
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Figure 7: Effect of GCEE on PPAR𝛾 (a) mRNA and (b) protein expression in liver of CP-induced rats. Data are expressed as mean ± SEM
(𝑁 = 6). ∗∗𝑃 < 0.01 and ∗∗∗𝑃 < 0.001. CP, cyclophosphamide; GCEE, gamma-glutamylcysteine ethyl ester; PPAR𝛾, peroxisome proliferator
activated receptor gamma.

showed increased production and/or expression of inflam-
matory cytokines following CP administration [3, 18, 24,
36]. Akcay et al. [51] revealed that DILI is associated with
increased production of inflammatory mediators produced
by injured or immune cells-induced infiltration of leukocytes
into the site of injury. In addition, studies have demonstrated
that ROS augment gene expression of inflammatory media-
tors and NF-𝜅B [52, 53] and increase production of TNF-𝛼
from Kupffer cells [54]. Here, CP-induced rats showed sig-
nificant increase in serum TNF-𝛼 and IL-1𝛽 and liver COX-
2 and iNOS. This inflammatory response could be directly
connected to the CP-induced upregulation of NF-𝜅B expres-
sion. Similar findings were showed in our previous studies
[3, 18, 24, 36]. Oral administration of GCEE potentially
decreased serum proinflammatory cytokines and COX-2 and
iNOS mRNA expression in the liver of CP-induced rats. This
anti-inflammatory effect is a direct result of downregulated
NF-𝜅B expression and attenuated ROS production.

Oxidative stress together with inflammation induces
apoptotic cell death in the liver [53]. Under cell stress con-
ditions, hepatocytes become more susceptible to the lethal
effects of TNF𝛼 and Fas ligand (FasL) which bind to intra-
cellular death receptors and subsequently activate caspase-
8 [55]. Within the mitochondria, drugs or their metabolites
can cause ATP depletion, excessive ROS production, DNA
damage, and increase permeability of the mitochondrial
membrane. The resultant mitochondrial membrane perme-
abilization leads to the release of cytochromeC and activation
of procaspase-9. These events activate executioner caspase-3
resulting in apoptotic cell death [56, 57]. Here, CP-induced
rats showed significant increase in expression of the apoptotic
markers caspase-3 and BAX. A recent study by Germoush
[58] showed significant increase in liver BAX mRNA and

protein expression in CP-induced rats. These findings might
be explained in terms of the CP-induced inflammation and
oxidative stress in the liver of rats. GCEE supplementation
markedly prevented CP-induced apoptosis which is a direct
result of its ability to attenuate inflammation and oxidative
stress. In agreement with our findings, Salama et al. [50]
reported decreased caspase-3 activity in liver of iron-overload
rat model following treatment with glutamyl cysteine.

To further explore how GCEE prevented CP-induced
oxidative stress, inflammation, and apoptosis, expression lev-
els of PPAR𝛾 were determined. PPAR𝛾 is a nuclear receptor
we hypothesized to have a role in mediating the protective
effect of GCEE against CP-induced hepatotoxicity. Previous
work from our laboratory showed declined PPAR𝛾 expres-
sion in the liver of CP-induced rats [3, 18]. Interestingly, we
have found a marked upregulation of liver PPAR𝛾 expression
in GCEE-treated rats.

PPAR𝛾 is emerging as an important regulator of the
response to oxidative stress and inflammation. This notion
has been supported by the findings of several studies using
the PPAR𝛾-specific agonists thiazolidinediones (TZDs).
Together with other agonists, TZDs showed beneficial ther-
apeutic effects in oxidative stress-related diseases [59, 60].
As an example, rosiglitazone induces the antioxidant enzyme
heme oxygenase 1 (HO-1) in hepatocytes [61] and pioglita-
zone protects against CP-induced oxidative stress in rats [60].
In response to oxidative stress, activation of PPAR𝛾 has been
reported to directly modulate the expression of several anti-
oxidant genes. Human, mouse and rat CAT is transcrip-
tionally regulated by PPAR𝛾 through PPREs containing the
canonical direct repeat 1 [62] located 12kb far from the
transcription initiation site [63]. Furthermore, PPAR𝛾 activa-
tion promotes the expression of GPx3 [64], manganese SOD
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[65], the mitochondrial uncoupling protein 2 (UCP2) [66],
and HO-1 [61].

PPAR𝛾 has also been shown to induce anti-inflammatory
responses through inhibiting the activation of NF-𝜅B result-
ing in attenuation of proinflammatory cytokines production
[67]. PPAR𝛾 can transrepress NF-𝜅B activation via direct
binding or formation of a repressor complex in the promoter
of its target genes [68, 69]. Studies have also showed that
PPAR𝛾 downregulates COX-2 and iNOS [70].

Furthermore, new experimental evidences suggested the
possible interaction and/or coactivation of PPAR𝛾 and
nuclear factor (erythroid-derived 2)-like 2 (Nrf2) can protect
against CP-induced hepatotoxicity [18]. Upon activation,
Nrf2 translocates into the nucleus and promotes expression
of antioxidant and cytoprotective proteins [71]. In addition,
Nrf2 pathway has been regarded to have a central role in the
control of inflammation [72] and studies have shown several
anti-inflammatory agents which upregulate Nrf2 pathway
and suppress NF-𝜅B [18, 73]. Recently, we have reported
that simultaneous activation of PPAR𝛾 and Nrf2 in CP-
induced rats significantly enhanced antioxidant defenses,

downregulated NF-𝜅B and iNOS, and prevented the produc-
tion of proinflammatory cytokines [18]. Through preventing
oxidative stress and inflammation, PPAR𝛾 is therefore able to
protect against apoptosis. Our findings were supported by the
studies of Fuenzalida et al. [74] andRen et al. [75]who showed
that PPAR𝛾 has a prosurvival action and protects glial cells
and cardiomyocytes from oxidative stress-induced apoptosis.
These antiapoptotic effects were mediated by induction of
B-cell lymphoma 2 (Bcl-2) independently of the protein
kinase B and mitogen-activated protein kinase pathways [74,
75].

In conclusion, our study shows, for the first time that
GCEE, a GSH precursor, confers protection against CP-
induced hepatotoxicity in rats. The hepatoprotective mech-
anisms of GCEE are associated with activation of PPAR𝛾
resulting in enhancement of antioxidant defenses, prevention
of GSH depletion, and attenuation of excessive inflammatory
response and apoptosis (summarized mechanistic pathways
are represented in Figure 8). Therefore, GCEE has the poten-
tial to provide cellular protection against CP-induced hepa-
totoxicity.
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