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Cyanobacteria can function as solar-driven biofactories thanks to their ability to perform
photosynthesis and the ease with which they are genetically modified. In this review, we
discuss transcriptional parts and promoters available for engineering cyanobacteria. First,
we go through special cyanobacterial characteristics that may impact engineering, includ-
ing the unusual cyanobacterial RNA polymerase, sigma factors and promoter types, mRNA
stability, circadian rhythm, and gene dosage effects. Then, we continue with discussing
component characteristics that are desirable for synthetic biology approaches, including
decoupling, modularity, and orthogonality. We then summarize and discuss the latest pro-
moters for use in cyanobacteria regarding characteristics such as regulation, strength, and
dynamic range and suggest potential uses. Finally, we provide an outlook and suggest
future developments that would advance the field and accelerate the use of cyanobacteria
for renewable biotechnology.
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Cyanobacteria are interesting chassis for renewable, solar-powered
production of fuels and high-value products, primarily due to
their photosynthetic capabilities and the relative ease of geneti-
cally transforming and engineering them (Heidorn et al., 2011;
Wang et al., 2012; Berla et al., 2013). Their ability to fix carbon is
useful not only because of their capacity to produce carbon-based
fuels (Angermayr et al., 2009) but also as it could be used to cap-
ture CO2 released from fossil fuels, which is with all certainty a
major cause of global warming (IPCC, 2013). Further, their com-
plex metabolism could be harnessed to generate natural products
(Kehr et al., 2011) or engineered to produce high-value bioactive
products (Lassen et al., 2014).

The emerging field of synthetic biology offers tools and
methodology to enable and accelerate the development of
cyanobacteria as biotechnological host chassis. However, to do
this, well-characterized biological parts such as promoters (herein
defined as an entire transcriptional regulatory region with a tran-
scriptional start site), terminators, translational elements, and cod-
ing sequences must be made available for cyanobacteria (Heidorn
et al., 2011; Wang et al., 2012; Berla et al., 2013). Transcriptional
components like promoters, transcription factors (TFs), and RNA
polymerases (RNAPs) are of particular importance as they govern
the first control point in gene expression. Further, to maximize
their usefulness in synthetic biology applications, these compo-
nents should retain proper functioning in cyanobacteria and fulfill
certain requirements. Therefore, in addition to discussing the latest
promoters and other transcriptional parts, this review also covers
special considerations unique to cyanobacteria and general part
requirements. In addition, several factors other than transcription
are also important for the regulation of gene expression e.g. the
initiation of translation and the engineering thereof (Salis et al.,
2009), the regulation of translation initiation by small regulatory

RNAs (sRNAs) (Desnoyers et al., 2013; Lalaouna et al., 2013) or
by riboswitches (Nakahira et al., 2013; Berens and Suess, 2014),
and the modulation of translation and protein production effi-
ciency through codon bias (Quax et al., 2013). This text focuses on
factors affecting the production or decay of mRNA; nonetheless,
factors that affect translation in cyanobacteria are of great impor-
tance and hence merit their own review. For additional aspects of
cyanobacterial synthetic biology and other biological components,
the reader is referred to previously published reviews (Heidorn
et al., 2011; Wang et al., 2012; Berla et al., 2013) and a recent paper
presenting a modular vector system for engineering cyanobacteria
(Taton et al., 2014).

SPECIAL CHARACTERISTICS THAT MAY AFFECT
TRANSCRIPTIONAL ENGINEERING IN CYANOBACTERIA
DIFFERENCES IN RNA POLYMERASES
The bacterial RNAP consists of an apoenzyme made up of five
subunits, ββ′α2ω. When it binds a sigma factor and forms the
complete holoenzyme, ββ′α2ωσ, it gains the ability to bind a
promoter specifically and initiate transcription (Saecker et al.,
2011). Cyanobacterial RNAP consists of the same subunits as the
generic, enterobacterial RNAP, except that the β′ subunit is split
into two parts: the γ and the β′ subunits. The cyanobacterial γ

subunit corresponds to the N-terminal part of the enterobacter-
ial β′ subunit, whereas the cyanobacterial β′ subunit corresponds
to the C-terminal part of the enterobacterial β′ (Schneider and
Haselkorn, 1988; Xie et al., 1989). It is unknown what the effect
of the split β′ is, if any, but differences in how Escherichia coli
(E. coli) and Calothrix sp. PCC 7601 RNAP transcribe the Plac
and the PlacUV5 promoters in vitro have been observed (Schyns
et al., 1998), and the β′ split or an insertion in the cyanobac-
terial β′ subunit were suggested causes. Later, it was suggested
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that the insertion is a jaw-like DNA-binding domain that inter-
acts with the promoter (Imashimizu et al., 2003). Further, a recent
study examined the differences in Mn2+ tolerance between E. coli
and cyanobacterial RNAP. While Mn2+ is toxic for most bacteria
as it can replace the RNAP active-site Mg2+ ion, cyanobacteria
need Mn2+ at higher intracellular concentrations for maintain-
ing the photosystems. By comparing the activities of E. coli and
Synechococcus elongatus sp. PCC 7942 (Synechococcus 7942) RNAP
systems in vitro, it was concluded that the cyanobacterial RNAP
transcribes its DNA slower but with higher fidelity (Imashimizu
et al., 2011). The same study also suggested that the β′ insertion
of cyanobacterial RNAP could be responsible for the slower but
more precise transcriptional elongation. Finally, a recent study
investigated the function of the omega subunit in cyanobacteria.
It was found to be non-essential in Synechocystis sp. PCC 6803
(Synechocystis 6803), as is generally the case in bacteria. Nonethe-
less, its absence negatively affected the association of RNAP to
the primary sigma factor, leading to the downregulation of highly
expressed genes (Gunnelius et al., 2014).

SIGMA FACTORS AND PROMOTER TYPES
Sigma switching is an adaptive mechanism that allows bacteria to
adapt to new environmental conditions or different types of stress,
as different sigma factors have different promoter preferences.
Most alternative σ-factors belong to the σ70-family, of which σ70

itself is the primary sigma factor. However, there are examples of
σ-factors belonging to the σ54-family, which generally require ATP-
driven activators to unwind the promoter DNA (Seshasayee et al.,
2011). Cyanobacteria only have sigma factors belonging to the σ70-
family (Khudyakov and Golden, 2001; Fujisawa et al., 2010) but
those on the other hand can be divided into three groups. Group
1 consists of the primary sigma factor SigA, which corresponds
to σ70 in E. coli, and handles transcription under normal growth
conditions. Group 2 consists of non-essential sigma factors that
provide a mechanism for environmental adaptation (Imamura
and Asayama, 2009). For instance, the SigB factor is expressed in
Synechocystis 6803 after heat shock or salt stress to transcribe a
set of initial stress genes, in connection with the downregulation
of SigA expression (Tuominen et al., 2003). Group 3 sigma factors
are involved in specific stress-survival regulons such as sporulation
(Imamura and Asayama, 2009).

Cyanobacterial promoters can be divided in three different
types that differ in the DNA-sequence elements that they con-
tain. Type I promoters are typical σ70-promoters with the tran-
scriptional start site (TSS) at +1 (by definition), a −10 element
(consensus sequence 5′-TATAAT-3′), and a−35 element (consen-
sus sequence 5′-TTGACA-3′). Under normal growth conditions,
type I promoters are chiefly transcribed by SigA, although group
2 sigma factors may also recognize type I promoters. Type II pro-
moters are usually connected to stress or adaptation responses and
thus are normally transcribed by group 2 sigma factors, although
depending on the specific promoter they may also be recognized
by SigA. Type II promoters have a −10 element but typically lack
the −35 element, instead, these promoters rely on the binding
of upstream transcriptional activators (Imamura and Asayama,
2009). As an example, the type II glnB P2 promoter in Synechocys-
tis 6803 has an upstream motif for NtcA binding and subsequent

upregulation of transcription during nitrogen deprivation. It is
mainly recognized by the group 2 sigma factor SigC (Imamura
et al., 2006). Type III promoters do not have regular−10 and−35
elements and are probably mostly involved in stringent responses
involving type III sigma factors, but may, depending on the pro-
moter, be recognized by any of the sigma factor groups (Imamura
and Asayama, 2009). For engineering purposes, it makes sense to
choose promoter types depending on under what growth condi-
tions expression is desired. Finally, overexpression of sigma factors
is a strategy to affect transcription globally, for example, to activate
certain stress responses. This was recently done in Synechocys-
tis 6803, where SigB overexpression was observed to enhance
temperature and butanol tolerance (Kaczmarzyk et al., 2014).

STABILITY AND DEGRADATION OF mRNA
Cellular activities are constantly regulated through the matura-
tion or degradation of mRNAs and regulatory RNAs by a number
of different ribonucleases (RNases), leading to average mRNA
half-lives around a few minutes in most prokaryotes (Evguenieva-
Hackenberg and Klug, 2011). These RNases differ in their target
specificities and have different roles in the turnover of mRNA.
Endoribonucleases typically initiate degradation, which is com-
pleted by the action of exoribonucleases. Generally, bare mRNAs
not occupied by ribosomes, mRNAs with accessible 5′monophos-
phate ends, or with AU-rich sequences are targets of initial
endonucleolytic attacks (Deutscher, 2006). In E. coli, the essential
single-strand endonuclease RNase E is thought to initiate most
attacks on mRNA, mainly as a part of an RNA degradation com-
plex known as the degradosome. In addition to RNase E, the E. coli
degradosome consists of polynucleotide phosphorylase (PNPase),
the RNA helicase RhlB (for unwinding secondary structures), and
the glycolytic enzyme enolase (Mackie, 2013). In bacteria, 3′-end
polyadenylated RNAs are targeted for degradation, which in E.
coli is carried out by the 3′ to 5′ exonucleases PNPase, RNase R,
or RNase II. PNPase, however, has a dual role in that it can also
synthesize heteromeric but adenine-rich poly(A) tails. Normally
though, RNA polyadenylation is handled by poly(A)-polymerase
(PAP), which produces homomeric poly(A) tails (Slomovic and
Schuster, 2011). Further, it has been observed that sRNAs, nor-
mally complexed with the RNA chaperone Hfq in E. coli, can
regulate the stability of mRNAs. sRNA-mediated mRNA degrada-
tion can occur passively, when pairing of sRNA-Hfq to the mRNAs
5′ untranslated region (5′-UTR) blocks translation and leaves the
mRNA vulnerable to RNase attacks. Active degradation takes place
when a sRNA-Hfq-RNase E complex binds an mRNA, or when the
sRNA-Hfq complex binds an mRNA and thereby creates a target
site for the double-stranded endonuclease RNase III, which causes
cleavage of both the mRNA and the sRNA (Saramago et al., 2014).

Cyanobacteria possess an RNase E with the conserved N-
terminal endoribonucleolytic domain intact and a C-terminal
domain that is highly divergent from that of the E. coli enzyme.
Further, it was shown that the catalytic N-terminal domain of the
Synechocystis 6803 RNase E functions in the same way as its E.
coli counterpart, and that it even cleaves E. coli RNase E target
RNAs in the same position as the E. coli enzyme. However, the
C-terminal half of the Synechocystis 6803 RNase E cannot func-
tion as a scaffold for assembling the E. coli degradosome complex
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(Kaberdin et al., 1998). Indeed, cyanobacterial RNase E does not
form an E. coli-like degradosome complex. Instead, it was recently
found that the Anabaena (Nostoc) sp. PCC 7120 (Anabaena 7120)
and the Synechocystis 6803 RNase E enzymes form a complex
with PNPase through a nonapeptide located at the C-terminus
of RNase E. Alignments of the RNase E genes from 60 different
cyanobacterial strains revealed that this nonapeptide subregion is
highly conserved, implying that this RNase E-PNPase complex is
a general feature of cyanobacteria (Zhang et al., 2014). Further,
the authors suggested that the cyanobacterial RNase E-PNPase
complex indicates close functional integration of RNA cleavage,
polyadenylation and phosphorolysis, and that it may be an efficient
RNA decay machine.

High-throughput sequencing-based studies have found mas-
sive transcription of different types of non-coding RNAs (ncR-
NAs) in cyanobacteria (Mitschke et al., 2011a,b; Xu et al., 2014),
which suggests that ncRNAs are important for the regulation of
cyanobacterial gene expression. Further, there are several examples
of the modulation of mRNA stability by interactions with ncRNAs
in cyanobacteria. For instance, long anti-sense RNAs (asRNAs) of
3.5 and 7 kb were found to block Prochlorococcus sp. RNase E from
cleaving mRNA in vitro as it formed a protective asRNA-mRNA
duplex (Stazic et al.,2011). In addition,a Synechocystis 6803 asRNA
binding to the 5′-UTR of the psbA2 transcript was found to block
RNase E-mediated mRNA degradation in vitro by masking an
AU-rich box and the ribosome binding site (RBS). Also, the tran-
scription of the psbA2 asRNA was correlated with the expression
of the psbA2 mRNA, both being upregulated by light (Sakurai
et al., 2012). Interestingly, the psbA2 5′-UTR’s AU-box and RBS
were previously identified to be targets of dark-induced RNase E-
mediated mRNA degradation (Horie et al., 2007). This illustrates
how the interplay between RNases and regulatory RNAs functions
as an important regulation mechanism of gene expression on sev-
eral different levels. It is not yet clear what role, if any, the cyanobac-
terial Hfq plays in asRNA or sRNA-mediated regulation of mRNA
stability or gene expression. Cyanobacterial Hfq differs from the
E. coli Hfq in its RNA binding sites and it cannot mediate sRNA-
dependent regulation in E. coli (Boggild et al., 2009). However,
Anabaena 7120 Hfq has been implicated in the regulation of the nir
operon (Puerta-Fernandez and Vioque, 2011), and Synechocystis
6803 Hfq was recently found to form a complex with type IV pili on
the cytoplasmic membrane (Schuergers et al., 2014). The authors
of the latter study speculated that cyanobacterial Hfq may be
involved in membrane-associated post-transcriptional regulation.
Clearly, more research is required to shed light on the role of Hfq
in cyanobacteria. Finally, we conclude that the stability of mRNAs
is an important factor to consider for transcriptional engineering,
and may even be used as a design parameter. For instance, different
elements affecting mRNA stability could be excluded or deliber-
ately included to increase or decrease the amount of mRNA for dif-
ferent genes, even if they are transcribed from the same promoter.

CIRCADIAN RHYTHM EFFECTS ON GENE EXPRESSION
The circadian rhythm provides a means for cells to co-ordinate
metabolic activities with the dark and light cycles of night and day,
and therefore, it is of special importance for photosynthetic organ-
isms. It is a global actor on gene expression that is driven by its
core oscillator, which consists of the three proteins KaiA, KaiB, and

KaiC that drive a KaiC phosphorylation cycle (Ishiura et al., 1998;
Johnson et al., 2008). It has been found that about half, or 30–64%,
of all genes are rhythmically expressed in Synechococcus 7942, and
DNA topology has been suggested to be one of the regulation
mechanisms (Dong et al., 2010). A recent study, also in the circa-
dian rhythm model organism Synechococcus 7942, identified the
response regulator RpaA as the master regulator through which
the core oscillator exerts its influence on global gene expression
patterns and cell division (Markson et al., 2013). It was found that
RpaA binds and regulates genes involved in a large range of activ-
ities, including its own gene rpaA and the kaiBC clock genes, TFs,
σ-factors, the DNA-binding nucleoid protein HU, regulators of
cell division, and genes involved in the general metabolism. These
wide-ranging effects make circadian rhythm an important and
potentially useful factor to take into consideration for cyanobac-
terial biotechnology. However, it was recently observed that gene
expression patterns in Synechocystis 6803 that varies temporally
with light/dark cycles may not be connected to a circadian rhythm,
as the periodical expression behavior stopped under constant dark
or light conditions (Beck et al., 2014). On the other hand, it is a
possibility that the prolonged growth of this strain under contin-
uous light conditions has affected its circadian rhythm. Finally,
for engineering purposes, there may be advantages in connecting
the expression of certain genes of interest to the circadian rhythm.
Expression only during the day could be advantageous for enzymes
requiring an electron flow from the photosystems, or only during
the night for oxygen-sensitive enzymes.

GENE DOSAGE AND CYANOBACTERIAL GENOME COPY NUMBERS
Gene dosage is a design criterion that merits consideration for any
transcriptional system. The number of promoters per cell is not
only important from a strength of expression perspective, where a
higher gene dosage usually leads to higher expression levels (Lutz
and Bujard, 1997), but also important for regulation. For example,
the cellular concentration of repressors may be sufficient to repress
a promoter under low copy number, but may be insufficient and
cause a higher basal promoter activity level when the target pro-
moter exists in too many copies. The location of the expression
construct is a factor that is connected to the copy number, as the
copy numbers of plasmids and genomes between different strains
normally differ. Cyanobacterial strains have multiple genome copy
numbers, as exemplified by Synechocystis 6803, that was found to
have a chromosome copy number of 12 (Labarre et al., 1989) or
even up to between 40 and 200, depending on the growth phase,
as newer data suggest (Griese et al., 2011). Hence, genetic circuits
inserted into the genomes of different cyanobacterial strains might
behave differently solely because of gene dosage-related effects.
Another less obvious factor is that the gene copy number of a
gene inserted into the bacterial chromosome will depend on the
distance to the origin of replication. The closer it is to the origin,
the higher the gene copy number will be because of more fre-
quent replication, and vice versa, the closer it is to the replicative
terminus, the lower the copy number will be (Klumpp et al., 2009).

DESIRED PROPERTIES OF TRANSCRIPTIONAL PARTS
DECOUPLING AND MODULARITY
An ideal promoter would drive the same level of transcription
independently of the biological components it expresses, making
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FIGURE 1 | Basic expression constructs differing in the promoters.
(A) Example of a promoter with multiple TSS, producing multiple different
mRNAs, and which contributes excess sequence to the 5′-UTRs.
(B) Example of a well-defined standardized promoter that ends with its TSS
and hence does not contribute excess sequence to the 5′-UTR. TSS:
transcriptional start site; UTR: untranslated region; RBS: ribosome binding
site; goi: gene of interest; Term: transcriptional terminator.

rational design of new genetic circuits possible based on its
previous characterization. Unfortunately, from a biological engi-
neer’s perspective, promoters are not always truly modular or well
defined. Often, there are multiple transcriptional start sites, pro-
ducing mRNAs with different 5′ ends, or the promoter sequence
continues downstream of the TSS, contributing excess sequence
to the 5′-UTR (Figure 1A). This leads to unpredictable effects on
mRNA stability, as the mRNA sequence itself will affect its sta-
bility through differential association with RNases (see Stability
and Degradation of mRNA). Further, the 5′-UTR is important for
ribosome binding and initiation of translation, and interactions
between the part of the promoter sequence that is included in the
5′-UTR and the RBS, or the first part of the coding sequence, could
lead to the formation of ribosome-blocking secondary structures
(De Smit andVanduin, 1990). Indeed, a recent combinatorial study
where many different promoters and 5′-UTRs were combined with
two different fluorescent protein reporters found that the largest
part of the variation in translation efficiency could be explained
by the choice of promoter, and that mRNA abundance was mostly
explained by the 5′-UTR sequence (Mutalik et al., 2013b). This,
of course, is a problem for the reliable reuse of characterized pro-
moters in metabolic engineering; the mRNA levels of an expressed
gene will depend on the combination of a gene’s specific 5′-UTR,
which may depend on both the promoter and the RBS, and the
coding DNA sequence itself.

To solve these problems, standardized promoters that always
end with their TSS have been suggested (Figure 1B). Going further,
the same study also developed a bi-cistronic system for translation

that prevents 5′-UTR secondary structures from blocking transla-
tion of the gene of interest, which works also for different coding
sequences (Mutalik et al., 2013a). Other ways of solving the prob-
lem of cross-talk between promoters and 5′-UTRs includes adding
self-cleaving ribozymes to the RBS, which will truncate the mRNA
and remove any contribution to the 5′-UTR from the promoter
(Lou et al., 2012). These two solutions can be viewed as func-
tional insulation or decoupling, two engineering concepts vital
to the success of rational design of genetic circuits. Alternatively,
to circumvent cross-talk problems in rational design for metabolic
engineering, it would be possible to use combinatorial gene expres-
sion optimization approaches (Du et al., 2012; Kim et al., 2013).
However, these methods often require high-throughput screen-
ing of circuit functionality in the final production host, which is
challenging for most cyanobacterial strains due to special growth
requirements and longer generation times as compared with com-
mon biotechnological chassis such as E. coli or yeast. Nonetheless,
smaller combinatorial optimization strategies are feasible and may
even be preferable, for instance when well-characterized, function-
ally insulated parts are lacking. This was recently illustrated when
2,3-butanediol production was optimized in Synechococcus 7942
by varying 5′-UTRs (Oliver et al., 2014). Finally, it is important to
note that decoupling and modularity are important concepts also
for other transcriptional components than promoters. In general,
it is not desirable that expressed TFs or RNAPs bind or non-
specifically transcribe promoters outside the engineered circuit.
One way to remove or minimize such unintended cross-talk is the
use of orthogonal parts.

NATIVE AND ORTHOGONAL PARTS
Natural biological systems and their components are generally
not decoupled, but have evolved to perform their function inside
the cellular environment, in the myriad of interactions that occur
with other biomolecules and on different levels of regulation
(Young and Alper, 2010). Because of this, the implementation
of natural biological systems is often difficult to understand and
consequently difficult to use or engineer. Unknown interactions
or cross-talk between natural components and other parts of the
cell may cause a system to fail or perform less than optimally
(Cardinale and Arkin, 2012). To reduce the risk for interactions
with native transcriptional systems, orthogonal components or
whole systems could be introduced. Orthogonal parts can be
defined as components that are functionally decoupled from other
parts and/or systems, enabling them to operate without unin-
tended cross-talk. As an example, a recently developed group of T7
RNAPs is orthogonal to the host’s own transcriptional machinery,
since they do not recognize the host’s promoters, and vice versa,
since the host’s RNAP does not recognize the T7 promoters. Fur-
ther, each T7 RNAP was engineered to recognize and transcribe
a specific T7 promoter sequence, while displaying only limited
cross-talk with other, non-cognate, T7 promoters (Temme et al.,
2012). Therefore, these engineered T7 RNAPs are not only orthog-
onal to the host’s own transcriptional system but are also highly
orthogonal to each other. Orthogonal transcriptional parts could
be mined from strains of bacteria that are sufficiently diver-
gent from the new host to minimize the risk of cross-talk, or
from other domains of life. Ultimately, synthetic transcriptional
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components could be designed de novo to be both well defined and
functionally decoupled, thereby displaying a maximum degree of
orthogonality.

PROMOTERS USED FOR REGULATED OR CONSTITUTIVE
GENE EXPRESSION
Regulated promoters, especially repressed promoters that can be
induced to higher activities when desired, are valuable tools as
they can be used both for basic research and for the development
of metabolically engineered strains. Further, it is also possible
that repressed promoters could increase the genetic stability of
engineered cyanobacterial strains (Jones, 2014). Interestingly, in
support of this notion, an E. coli study found that the genetic sta-
bility of genetic circuits decreased exponentially with increased
expression levels (Sleight et al., 2010).

In many cases, promoters that are used for constitutive expres-
sion are not truly constitutive in the sense that their activity is not
always constant. This could include, for example, native promot-
ers that appear constitutive under certain growth conditions, or
orthogonal promoters that are constitutive due to the absence of
their specific regulators. Further, regulated or constitutive promot-
ers endowed with core promoter elements close to the conserved
σ70 consensus sequences can be expected to be broad-host-range,
as they are expected to be similar in other bacteria (Wösten, 1998).
In this section, we discuss selected promoters of interest for tran-
scriptional engineering in cyanobacteria, and present summaries
of relevant characteristics in Table 1. Finally, for the later discus-
sion of regulated promoters, we here define two different ratios
of use when analyzing promoter performance. First, we define the
repression ratio as the activity of the promoter in the absence of
its repressor divided by its repressed activity. Second, we define
the induction ratio as the activity of the promoter when induced
or activated divided by its repressed or non-activated activity. We
make this distinction as all repressors are not inducible but still
potentially useful in, for example, genetic inverters (NOT gates)
or toggle switches (Gardner et al., 2000).

Recently, Pcpc560, a “super-strong” transcriptional regulatory
region consisting of the 560 bp upstream of the start codon of
the c-phycocyanin beta subunit gene cpcB in Synechocystis 6803
[also previously used due to its high level of expression (Xu et al.,
2011)], was characterized (Zhou et al., 2014). Pcpc560 contains
two predicted promoters and was found to be dependent on an
upstream sequence containing 14 predicted transcription factor
binding sites (TFBS) for its high activity. Further, it was used to
express two heterologous genes to up to 15% of the total solu-
ble protein content. However, it is not clear to what extent the
transcriptional activity of the promoter, as compared with the
translational efficiency of the native 5′-UTR of cpcB, contributes
to the high expression levels. Also, it would be interesting to inves-
tigate whether the strong enhancement of gene expression from
the promoter fragment containing the predicted 14 TFBS is iso-
lated to transcriptional efficiency. Pcpc560 may prove very useful,
both for the design of new,“super-strong” cyanobacterial promot-
ers, and for direct applications, as the lack of strong expression
has previously been identified as a bottleneck in cyanobacterial
biotechnology (Angermayr and Hellingwerf, 2013; Formighieri
and Melis, 2014).

Different versions of the strong promoters Ptrc or Ptac, syn-
thetic chimeras of the E. coli trp and lacZYA operon promoters
that differ in the core spacer length (Brosius et al., 1985), have fre-
quently been used for constitutive cyanobacterial expression (in
the absence of the lac repressor, see e.g., Huang et al., 2010; Anger-
mayr et al., 2014; Formighieri and Melis, 2014) or LacI-regulated
expression. These promoters have the advantage of being orthogo-
nal to cyanobacteria, both in the promoter sequence and regarding
the LacI TF. While Ptrc works well as a broad-host-range promoter
(Huang et al., 2010), since the core promoter is close to a consensus
σ70/SigA promoter, repression of Ptrc by LacI differs a lot among
different studies and strains of cyanobacteria. Generally, different
variants of Ptrc have worked better for LacI-regulated expression
in Synechococcus 7942 (Geerts et al., 1995; Niederholtmeyer et al.,
2010), while LacI repression of Ptrc has been found to be very
leaky or non-existent in Synechocystis 6803 (Huang et al., 2010;
Guerrero et al., 2012). Other LacI-regulated promoters have been
found to be more well functioning in Synechocystis 6803, such
as PA1lacO-1 with an IPTG-induction ratio of eight (Guerrero
et al., 2012). Ptrc2O-2 was well repressed with a repression ratio
of 408 but could, on the other hand, not be induced (Camsund
et al., 2014). Solutions to repression or induction issues in LacI-
regulated promoters could be found in promoter engineering to
improve repression (Camsund et al., 2014) or by using different
mutants or versions of LacI (Markiewicz et al., 1994; Satya Lak-
shmi and Rao, 2009; Gatti-Lafranconi et al., 2013) to improve
either repression or induction.

Several wide dynamic-range TetR-regulated promoters for use
in Synechocystis 6803 were recently designed, exemplified by L03
with a 290-fold induction ratio under red light (Huang and Lind-
blad, 2013). This was done by systematically varying a few base-
pairs in the PLtetO-1 (Lutz and Bujard, 1997) derived BBa_R0040
promoter (The iGEM Registry of Standard Biological Parts, http:
//parts.igem.org/) that was previously shown to be very weak in
Synechocystis 6803 (Huang et al., 2010). This orthogonal transcrip-
tional system could also be expected to be broad-host-range, as the
core promoter of L03 is close to a consensus σ70/SigA promoter.
The inducer anhydrotetracycline is light sensitive, which could
be seen as limiting the system. On the other hand, this enables
selective expression during the night or in darkness, rendering the
system light regulated.

Metal-ion inducible promoters are a type of well-regulated
native promoters. These have evolved to maintain the cellular
homeostasis of important metal co-factors that become toxic at
higher concentrations. For an exhaustive review of metal-ion
inducible promoters, we refer the reader to Berla et al. (2013),
while here we mention one wide-dynamic-range example. PnrsB,
the promoter of the nrsBACD operon, is involved in maintaining
Ni2+ homeostasis in Synechocystis 6803 through the NrsRS two-
component system (Lopez-Maury et al., 2002). It was induced
about 350-fold when comparing gene expression from cultures
grown in medium without supplemented metals to cultures
supplemented with 15 µM Ni2+ (Peca et al., 2007).

As promising as the abovementioned regulated promoters may
seem, in many cases, the use of small molecule or metal inducers
in large-scale cyanobacterial biotechnology can be problematic.
The use of heavy metals can be both detrimental to culture growth
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Table 1 | Selected promoters used for regulated and constitutive cyanobacterial expression.

Promoter Origin TF Characteristics and references

Pcpc560 Synechocystis 6803 14 TFBS predicted “Super strong”; heterologous production up to 15% of total soluble proteins (Zhou

et al., 2014).

Ptrc Synthetic chimera of

E. coli Ptrp and

PlacZYA

LacI Originally by Brosius et al. (1985). Used in Synechococcus 7942 with an induction ratio

of 36 (Geerts et al., 1995), or in Synechocystis 6803 with an induction ratio of 1.6.

Broad-host-range constitutive in the absence of LacI (Huang et al., 2010).

Ptrc2O-2 Version of Ptrc with

dual lac operators

LacI Strong, tightly repressible but not inducible system (repression ratio of 408) (Camsund

et al., 2014).

PA1lacO-1 Derived from PA1 of

phage T7

LacI Originally by Lutz and Bujard (1997). Induction ratio of eight in Synechocystis 6803

(Guerrero et al., 2012).

L03 Modified from phage

λ PL-derived PLtetO-1

TetR Induction ratio of 290 under red light conditions in Synechocystis 6803 (Huang and

Lindblad, 2013).

PnrsB Synechocystis 6803 NrsRS Induction ratio of about 350 using 15 µM Ni2+ in Synechocystis 6803 (Peca et al., 2007).

PpsbA2 Synechocystis 6803 Unknown Clearly activated after shift from low to high light (10–500 µmol photons m−2 s−1) in

Synechocystis 6803 (Lindberg et al., 2010).

PcpcG2 Synechocystis 6803 CcaSR Clearly activated by green light when Synechocystis 6803 cultures are grown in red

light (Abe et al., 2014).

PpsbA Amaranthus hybridus – Used for constitutive expression in Synechococcus 7002 (Jacobsen and Frigaard, 2014).

Broad-host-range close to consensus σ70 promoter.

Plastocyanin

promoter

Spirulina platensis

strain C1

– Used for constitutive expression in Synechococcus 7942 (Jeamton et al., 2011).

Broad-host-range close to consensus σ70 promoter.

J23 library Synthetic – A synthetic library of minimal and constitutive σ70 promoters, exemplified by

BBa_J23101 (iGEM Registry). Spans a wide range of expression levels in Synechocystis

6803 (Camsund et al., 2014). Broad-host-range close to consensus σ70 promoters.

TF, transcription factor; TFBS, transcription factor binding sites.

and an environmental hazard. Further, the addition of small mol-
ecule inducers in large scale can be expensive, present practical
problems of mixing or leakage into surrounding water bodies.
In cases when regulation of gene expression is still necessary,
but small molecule inducers must be avoided, quorum sensing
(Li and Satish, 2012), circadian rhythm (see section above), or
light-regulated gene expression (Camsund et al., 2011) might be
preferable. Unfortunately, efforts at introducing orthogonal quo-
rum sensing-based regulation in cyanobacteria have not yet been
successful (Guerrero et al., 2012). Light-regulated gene expres-
sion has already been used to some extent through, e.g., the high
light inducible psbA2 promoter in Synechocystis 6803 (Lindberg
et al., 2010). In another more recent Synechocystis 6803 study,
the CcaSR green-light sensitive two-component system that reg-
ulates the cpcG2 promoter was used to optimize a light-sensitive
expression induction system (Abe et al., 2014).

Finally, constitutive promoters may be used as an alternative
when regulated promoters are not necessary, or used in expres-
sion libraries to fine-tune metabolic circuits. A strong promoter
from the plant Amaranthus hybridus chloroplast, PpsbA, has been
used for constitutive expression in Synechococcus PCC 7002 (Syne-
chococcus 7002) and a range of different bacteria, thanks to its

similarity to the σ70 consensus promoter sequence (Jacobsen and
Frigaard, 2014). Another plant promoter used for constitutive
expression in cyanobacteria is the phycocyanin promoter (PC
promoter) from Spirulina platensis strain C1 that is a close to
consensus σ70 promoter. The PC promoter was found to drive
transcription in both E. coli and Synechococcus 7942 and is likely
to be broad-host-range (Jeamton et al., 2011). Finally, the Bio-
Brick J23 promoter library offers a range of synthetic, minimal,
and hence orthogonal, constitutive promoters that may be used
for fine-tuning expression levels. It can be exemplified by the
BBa_J23101 promoter (iGEM Registry) that has been suggested as
an expression standard for bacteria (Kelly et al., 2009). In a recent
study, several members from the J23 library previously character-
ized in E. coli (iGEM Registry) were selected for characterization
in Synechocystis 6803, where they were found to span a wide range
of expression levels (Camsund et al., 2014). Further, as they are
σ70 promoters, they can be expected to function in a wide range
of cyanobacteria.

OUTLOOK AND SUGGESTIONS FOR FUTURE DEVELOPMENT
There is clearly a need for more robust and well-regulated orthog-
onal promoters to help accelerate cyanobacterial biotechnology.
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The availability of more orthogonal promoters and TFs will
decrease the dependence on strain-specific promoters and enable
the sharing of parts, which is of great importance as many dif-
ferent cyanobacterial strains are commonly used, and because
different strains grow in different environments. As done recently
for E. coli (Stanton et al., 2014), exogenous repressors could
be mined from large sequence databases, codon optimized for
several common strains of cyanobacteria and synthesized, and
used to regulate novel synthetic promoters engineered from near-
consensus σ70 promoters to ensure activity in most cyanobacteria.
Examples of potentially useful repressors could be the yeast acti-
vator Gal4, which has been shown to function as a repressor
in bacteria (Paulmier et al., 1987), or the LuxR quorum sens-
ing activator, which was used as an acyl-homoserine lactone-
activated repressor in bacteria (Egland and Greenberg, 2000).
Further, the development of more sophisticated genetic circuits
for fine-tuned metabolic engineering will require regulated pro-
moters that can respond to internal metabolites. This can be
exemplified by the dynamic sensor-regulator system (DSRS) devel-
oped recently for production of fatty acid-based products in
E. coli (Zhang et al., 2012). The DSRS made use of a TF that
sensed the levels of a key intermediate molecule and regulated
other pathway promoters accordingly to minimize the accumu-
lation of potentially toxic enzymes or intermediates. This not
only increased the yield of the final product but also resulted
in increased genetic stability of the constructs. For cyanobac-
teria, whose metabolisms are highly dependent on light as an
energy source, photons could be seen as an internal metabo-
lite and orthogonal light-regulated TFs (Camsund et al., 2011)
could be used as sensors for cyanobacterial DSRS. Furthermore,
partially or fully synthetic TFs can now be engineered to bind
different synthetic operators, exemplified by engineered zinc-
finger DNA-binding proteins (Dhanasekaran et al., 2006) or the
recently implemented CRISPR-Cas9 system for CRISPR interfer-
ence (CRISPRi) (Qi et al., 2013). These customizable TFs could
greatly expand the potential toolbox of transcriptional parts for
engineering cyanobacteria.

Finally, the most orthogonal gene expression system is one
that does not rely on the host’s own RNAP at all or otherwise
minimally. By using an orthogonal RNAP that does not recog-
nize the host’s own promoters, and for which the host’s RNAP
does not recognize the orthogonal promoters, the risk for cross-
talk is strongly reduced, and combined with likewise orthogonal
TFs, the system is almost completely decoupled from the host’s
own transcriptional systems. One such orthogonal RNAP is the
phage T7 RNAP and its promoters. T7 RNAP does not recog-
nize the host’s promoters, and vice versa, the host’s RNAP does
not recognize the T7 promoters (Temme et al., 2012). Further,
it is conceivable that marine cyanophages like Syn5 (Zhu et al.,
2013), which differ from T7 RNAP in among other things a
greater salt tolerance, could fill the same role as an orthogo-
nal RNAP. To conclude, it is our expectation that the devel-
opment of a broad range of widely applicable cyanobacterial
genetic parts will help to enable the use of cyanobacteria as
large-scale green producers of the renewable products of the
future.

ACKNOWLEDGMENTS
We would like to acknowledge financial support from the Swedish
Energy Agency; the Knut and Alice Wallenberg Foundation
(project MoSE); and the European Union Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agreement number 308518
(CyanoFactory).

REFERENCES
Abe, K., Miyake, K., Nakamura, M., Kojima, K., Ferri, S., Ikebukuro, K., et al. (2014).

Engineering of a green-light inducible gene expression system in Synechocystis
sp. PCC6803. Microb. Biotechnol. 7, 177–183. doi:10.1111/1751-7915.12098

Angermayr, S. A., and Hellingwerf, K. J. (2013). On the use of metabolic control
analysis in the optimization of cyanobacterial biosolar cell factories. J. Phys.
Chem. B 117, 11169–11175. doi:10.1021/jp4013152

Angermayr, S. A., Hellingwerf, K. J., Lindblad, P., and De Mattos, M. J. T. (2009).
Energy biotechnology with cyanobacteria. Curr. Opin. Biotechnol. 20, 257–263.
doi:10.1016/j.copbio.2009.05.011

Angermayr, S. A., Van Der Woude, A. D., Correddu, D., Vreugdenhil, A., Verrone, V.,
and Hellingwerf, K. J. (2014). Exploring metabolic engineering design principles
for the photosynthetic production of lactic acid by Synechocystis sp. PCC6803.
Biotechnol. Biofuels 7, 99. doi:10.1186/1754-6834-7-99

Beck, C., Hertel, S., Rediger, A., Lehmann, R., Wiegard, A., Kolsch, A., et al. (2014).
A daily expression pattern of protein-coding genes and small non-coding
RNAs in Synechocystis sp. PCC 6803. Appl. Environ. Microbiol. 80, 5195–5206.
doi:10.1128/AEM.01086-14

Berens, C., and Suess, B. (2014). Riboswitch engineering making the all-important
second and third steps. Curr. Opin. Biotechnol. 31, 10–15. doi:10.1016/j.copbio.
2014.07.014

Berla, B. M., Saha, R., Immethun, C. M., Maranas, C. D., Moon, T. S., and Pakrasi,
H. B. (2013). Synthetic biology of cyanobacteria: unique challenges and oppor-
tunities. Front. Microbiol. 4:246. doi:10.3389/fmicb.2013.00246

Boggild, A., Overgaard, M., Valentin-Hansen, P., and Brodersen, D. E. (2009).
Cyanobacteria contain a structural homologue of the Hfq protein with altered
RNA-binding properties. FEBS J. 276,3904–3915. doi:10.1111/j.1742-4658.2009.
07104.x

Brosius, J., Erfle, M., and Storella, J. (1985). Spacing of the -10 and -35 regions in
the tac promoter - effect on its in vivo activity. J. Biol. Chem. 260, 3539–3541.

Camsund, D., Heidorn, T., and Lindblad, P. (2014). Design and analysis of LacI-
repressed promoters and DNA-looping in a cyanobacterium. J. Biol. Eng. 8, 4.
doi:10.1186/1754-1611-8-4

Camsund, D., Lindblad, P., and Jaramillo, A. (2011). Genetically engineered light
sensors for control of bacterial gene expression. Biotechnol. J. 6, 826–836.
doi:10.1002/biot.201100091

Cardinale, S., and Arkin, A. P. (2012). Contextualizing context for synthetic biology
- identifying causes of failure of synthetic biological systems. Biotechnol. J. 7,
856–866. doi:10.1002/biot.201200085

De Smit, M. H., and Vanduin, J. (1990). Secondary structure of the ribosome
binding-site determines translational efficiency - a quantitative-analysis. Proc.
Natl. Acad. Sci. U. S. A. 87, 7668–7672. doi:10.1073/pnas.87.19.7668

Desnoyers, G., Bouchard, M. P., and Masse, E. (2013). New insights into small
RNA-dependent translational regulation in prokaryotes. Trends Genet. 29, 92–98.
doi:10.1016/j.tig.2012.10.004

Deutscher, M. P. (2006). Degradation of RNA in bacteria: comparison of mRNA
and stable RNA. Nucleic Acids Res. 34, 659–666. doi:10.1093/nar/gkj472

Dhanasekaran, M., Negi, S., and Sugiura, Y. (2006). Designer zinc finger proteins:
tools for creating artificial DNA-binding functional proteins. Acc. Chem. Res. 39,
45–52. doi:10.1021/ar050158u

Dong, G. G., Kim, Y. I., and Golden, S. S. (2010). Simplicity and complexity in the
cyanobacterial circadian clock mechanism. Curr. Opin. Genet. Dev. 20, 619–625.
doi:10.1016/j.gde.2010.09.002

Du, J., Yuan, Y. B., Si, T., Lian, J. Z., and Zhao, H. M. (2012). Customized opti-
mization of metabolic pathways by combinatorial transcriptional engineering.
Nucleic Acids Res. 40, 18. doi:10.1093/nar/gks549

Egland, K. A., and Greenberg, E. P. (2000). Conversion of the Vibrio fischeri tran-
scriptional activator, LuxR, to a repressor. J. Bacteriol. 182, 805–811. doi:10.1128/
JB.182.3.805-811.2000

www.frontiersin.org October 2014 | Volume 2 | Article 40 | 7

http://dx.doi.org/10.1111/1751-7915.12098
http://dx.doi.org/10.1021/jp4013152
http://dx.doi.org/10.1016/j.copbio.2009.05.011
http://dx.doi.org/10.1186/1754-6834-7-99
http://dx.doi.org/10.1128/AEM.01086-14
http://dx.doi.org/10.1016/j.copbio.2014.07.014
http://dx.doi.org/10.1016/j.copbio.2014.07.014
http://dx.doi.org/10.3389/fmicb.2013.00246
http://dx.doi.org/10.1111/j.1742-4658.2009.07104.x
http://dx.doi.org/10.1111/j.1742-4658.2009.07104.x
http://dx.doi.org/10.1186/1754-1611-8-4
http://dx.doi.org/10.1002/biot.201100091
http://dx.doi.org/10.1002/biot.201200085
http://dx.doi.org/10.1073/pnas.87.19.7668
http://dx.doi.org/10.1016/j.tig.2012.10.004
http://dx.doi.org/10.1093/nar/gkj472
http://dx.doi.org/10.1021/ar050158u
http://dx.doi.org/10.1016/j.gde.2010.09.002
http://dx.doi.org/10.1093/nar/gks549
http://dx.doi.org/10.1128/JB.182.3.805-811.2000
http://dx.doi.org/10.1128/JB.182.3.805-811.2000
http://www.frontiersin.org
http://www.frontiersin.org/Synthetic_Biology/archive


Camsund and Lindblad Engineered transcription for cyanobacterial biotechnology

Evguenieva-Hackenberg, E., and Klug, G. (2011). New aspects of RNA processing in
prokaryotes. Curr. Opin. Microbiol. 14, 587–592. doi:10.1016/j.mib.2011.07.025

Formighieri, C., and Melis, A. (2014). Regulation of beta-phellandrene syn-
thase gene expression, recombinant protein accumulation, and monoterpene
hydrocarbons production in Synechocystis transformants. Planta 240, 309–324.
doi:10.1007/s00425-014-2080-8

Fujisawa, T., Narikawa, R., Okamoto, S., Ehira, S., Yoshimura, H., Suzuki, I., et al.
(2010). Genomic structure of an economically important cyanobacterium,
Arthrospira (Spirulina) platensis NIES-39. DNA Res. 17, 85–103. doi:10.1093/
dnares/dsq004

Gardner, T. S., Cantor, C. R., and Collins, J. J. (2000). Construction of a genetic
toggle switch in Escherichia coli. Nature 403, 339–342. doi:10.1038/35002131

Gatti-Lafranconi, P., Dijkman, W. P., Devenish, S. R. A., and Hollfelder, F. (2013). A
single mutation in the core domain of the lac repressor reduces leakiness. Microb.
Cell Fact. 12, 67. doi:10.1186/1475-2859-12-67

Geerts, D., Bovy, A., De Vrieze, G., Borrias, M., and Weisbeek, P. (1995). Inducible
expression of heterologous genes targeted to a chromosomal platform in
the cyanobacterium Synechococcus sp. PCC 7942. Microbiology 141, 831–841.
doi:10.1099/13500872-141-4-831

Griese, M., Lange, C., and Soppa, J. (2011). Ploidy in cyanobacteria. FEMS Microbiol.
Lett. 323, 124–131. doi:10.1111/j.1574-6968.2011.02368.x

Guerrero, F., Carbonell,V., Cossu, M., Correddu, D., and Jones, P. R. (2012). Ethylene
synthesis and regulated expression of recombinant protein in Synechocystis sp.
PCC 6803. PLoS ONE 7:e50470. doi:10.1371/journal.pone.0050470

Gunnelius, L., Hakkila, K., Kurkela, J., Wada, H., Tyystjarvi, E., and Tyystjarvi, T.
(2014). The omega subunit of the RNA polymerase core directs transcription
efficiency in cyanobacteria. Nucleic Acids Res. 42, 4606–4614. doi:10.1093/nar/
gku084

Heidorn, T., Camsund, D., Huang, H. H., Lindberg, P., Oliveira, P., Stensjö, K., et al.
(2011). Synthetic biology in cyanobacteria engineering and analyzing novel func-
tions. Meth. Enzymol. 497, 539–579. doi:10.1016/B978-0-12-385075-1.00024-X

Horie, Y., Ito, Y., Ono, M., Moriwaki, N., Kato, H., Hamakubo, Y., et al. (2007). Dark-
induced mRNA instability involves RNase E/G-type endoribonuclease cleavage
at the AU-box and SD sequences in cyanobacteria. Mol. Genet. Genomics 278,
331–346. doi:10.1007/s00438-007-0254-9

Huang, H. H., Camsund, D., Lindblad, P., and Heidorn, T. (2010). Design and
characterization of molecular tools for a synthetic biology approach towards
developing cyanobacterial biotechnology. Nucleic Acids Res. 38, 2577–2593.
doi:10.1093/nar/gkq164

Huang, H. H., and Lindblad, P. (2013). Wide-dynamic-range promoters engineered
for cyanobacteria. J. Biol. Eng. 7, 10. doi:10.1186/1754-1611-7-10

Imamura, S., and Asayama, M. (2009). Sigma factors for cyanobacterial transcrip-
tion. Gene. Regul. Syst. Bio. 3, 65–87.

Imamura, S., Tanaka, K., Shirai, M., and Asayama, M. (2006). Growth phase-
dependent activation of nitrogen-related genes by a control network of group 1
and group 2 sigma factors in a cyanobacterium. J. Biol. Chem. 281, 2668–2675.
doi:10.1074/jbc.M509639200

Imashimizu, M., Fujiwara, S., Tanigawa, R., Tanaka, K., Hirokawa, T., Nakajima, Y.,
et al. (2003). Thymine at -5 is crucial for cpc promoter activity of Synechocystis
sp. strain PCC 6714. J. Bacteriol. 185, 6477–6480. doi:10.1128/JB.185.21.6477-
6480.2003

Imashimizu, M., Tanaka, K., and Shimamoto, N. (2011). Comparative study of
cyanobacterial and E. coli RNA polymerases: misincorporation, abortive tran-
scription, and dependence on divalent cations. Genet. Res. Int. 2011, 572689.
doi:10.4061/2011/572689

IPCC. (2013). “Climate change 2013,” in The Physical Science Basis. Contribution of
Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change, eds T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen,
J. Boschung, et al. (Cambridge, NY: Cambridge University Press), 1535.

Ishiura, M., Kutsuna, S., Aoki, S., Iwasaki, H., Andersson, C. R., Tanabe, A., et al.
(1998). Expression of a gene cluster kaiABC as a circadian feedback process in
cyanobacteria. Science 281, 1519–1523. doi:10.1126/science.281.5382.1519

Jacobsen, J. H., and Frigaard, N. U. (2014). Engineering of photosynthetic man-
nitol biosynthesis from CO2 in a cyanobacterium. Metab. Eng. 21, 60–70.
doi:10.1016/j.ymben.2013.11.004

Jeamton, W., Dulsawat, S., Laoteng, K., Tanticharoen, M., and Cheevadhanarak, S.
(2011). Phycocyanin promoter of Spirulina platensis controlling heterologous
expression in cyanobacteria. J. Appl. Phycol. 23, 83–88. doi:10.1007/s10811-010-
9540-8

Johnson, C. H., Egli, M., and Stewart, P. L. (2008). Structural insights into a circadian
oscillator. Science 322, 697–701. doi:10.1126/science.1150451

Jones, P. R. (2014). Genetic instability in cyanobacteria – an elephant in the room?
Front. Bioeng. Biotechnol. 2:12. doi:10.3389/fbioe.2014.00012

Kaberdin, V. R., Miczak, A., Jakobsen, J. S., Lin-Chao, S., Mcdowall, K. J., and Von
Gabain, A. (1998). The endoribonucleolytic N-terminal half of Escherichia coli
RNase E is evolutionarily conserved in Synechocystis sp. and other bacteria but
not the C-terminal half, which is sufficient for degradosome assembly. Proc. Natl.
Acad. Sci. U. S. A. 95, 11637–11642. doi:10.1073/pnas.95.20.11637

Kaczmarzyk, D., Anfelt, J., Sarnegrim, A., and Hudson, E. P. (2014). Overexpression
of sigma factor SigB improves temperature and butanol tolerance of Synechocys-
tis sp. PCC6803. J. Biotechnol. 18, 54–60. doi:10.1016/j.jbiotec.2014.04.017

Kehr, J. C., Picchi, D. G., and Dittmann, E. (2011). Natural product biosyntheses
in cyanobacteria: a treasure trove of unique enzymes. Beilstein J. Org. Chem. 7,
1622–1635. doi:10.3762/bjoc.7.191

Kelly, J. R., Rubin, A. J., Davis, J. H., Ajo-Franklin, C. M., Cumbers, J., Czar, M.
J., et al. (2009). Measuring the activity of BioBrick promoters using an in vivo
reference standard. J. Biol. Eng. 3, 4. doi:10.1186/1754-1611-3-4

Khudyakov, I. Y., and Golden, J. W. (2001). Identification and inactivation of three
group 2 sigma factor genes in Anabaena sp. strain PCC 7120. J. Bacteriol. 183,
6667–6675. doi:10.1128/JB.183.22.6667-6675.2001

Kim, H. J., Turner, T. L., and Jin, Y. S. (2013). Combinatorial genetic perturbation
to refine metabolic circuits for producing biofuels and biochemicals. Biotechol.
Adv. 31, 976–985. doi:10.1016/j.biotechadv.2013.03.010

Klumpp, S., Zhang, Z. G., and Hwa, T. (2009). Growth rate-dependent global effects
on gene expression in bacteria. Cell 139, 1366–1375. doi:10.1016/j.cell.2009.12.
001

Labarre, J., Chauvat, F., and Thuriaux, P. (1989). Insertional mutagenesis by random
cloning of antibiotic resistance genes into the genome of the cyanobacterium
Synechocystis strain PCC 6803. J. Bacteriol. 171, 3449–3457.

Lalaouna, D., Simoneau-Roy, M., Lafontaine, D., and Masse, E. (2013). Regulatory
RNAS and target mRNA decay in prokaryotes. Biochim. Biophys. Acta. 1829,
742–747. doi:10.1016/j.bbagrm.2013.02.013

Lassen, L. M., Nielsen, A. Z., Ziersen, B., Gnanasekaran, T., Moller, B. L., and Jensen,
P. E. (2014). Redirecting photosynthetic electron flow into light-driven synthesis
of alternative products including high-value bioactive natural compounds. ACS
Synth. Biol. 3, 1–12. doi:10.1021/sb400136f

Li, Z., and Satish, K. N. (2012). Quorum sensing: how bacteria can coordinate activ-
ity and synchronize their response to external signals? Protein Sci. 21, 1403–1417.
doi:10.1002/pro.2132

Lindberg, P., Park, S., and Melis, A. (2010). Engineering a platform for photosyn-
thetic isoprene production in cyanobacteria, using Synechocystis as the model
organism. Metab. Eng. 12, 70–79. doi:10.1016/j.ymben.2009.10.001

Lopez-Maury, L., Garcia-Dominguez, M., Florencio, F. J., and Reyes, J. C. (2002).
A two-component signal transduction system involved in nickel sensing in
the cyanobacterium Synechocystis sp. PCC 6803. Mol. Microbiol. 43, 247–256.
doi:10.1046/j.1365-2958.2002.02741.x

Lou, C. B., Stanton, B., Chen, Y. J., Munsky, B., and Voigt, C. A. (2012). Ribozyme-
based insulator parts buffer synthetic circuits from genetic context. Nat. Biotech-
nol. 30, 1137–1142. doi:10.1038/nbt.2401

Lutz, R., and Bujard, H. (1997). Independent and tight regulation of transcriptional
units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory
elements. Nucleic Acids Res. 25, 1203–1210. doi:10.1093/nar/25.6.1203

Mackie, G. A. (2013). RNase E: at the interface of bacterial RNA processing and
decay. Nat. Rev. Microbiol. 11, 45–57. doi:10.1038/nrmicro2930

Markiewicz, P., Kleina, L. G., Cruz, C., Ehret, S., and Miller, J. H. (1994). Genetic
studies of the lac repressor. XIV. Analysis of 4000 altered Escherichia coli lac
repressors reveals essential and nonessential residues, as well as spacers which
do not require a specific sequence. J. Mol. Biol. 240, 421–433. doi:10.1006/jmbi.
1994.1458

Markson, J. S., Piechura, J. R., Puszynska, A. M., and O’Shea, E. K. (2013). Circadian
control of global gene expression by the cyanobacterial master regulator RpaA.
Cell 155, 1396–1408. doi:10.1016/j.cell.2013.11.005

Mitschke, J., Georg, J., Scholz, I., Sharma, C. M., Dienst, D., Bantscheff, J., et al.
(2011a). An experimentally anchored map of transcriptional start sites in the
model cyanobacterium Synechocystis sp. PCC6803. Proc. Natl. Acad. Sci. U. S. A.
108, 2124–2129. doi:10.1073/pnas.1015154108

Mitschke, J., Vioque, A., Haas, F., Hess, W. R., and Muro-Pastor, A. M. (2011b).
Dynamics of transcriptional start site selection during nitrogen stress-induced

Frontiers in Bioengineering and Biotechnology | Synthetic Biology October 2014 | Volume 2 | Article 40 | 8

http://dx.doi.org/10.1016/j.mib.2011.07.025
http://dx.doi.org/10.1007/s00425-014-2080-8
http://dx.doi.org/10.1093/dnares/dsq004
http://dx.doi.org/10.1093/dnares/dsq004
http://dx.doi.org/10.1038/35002131
http://dx.doi.org/10.1186/1475-2859-12-67
http://dx.doi.org/10.1099/13500872-141-4-831
http://dx.doi.org/10.1111/j.1574-6968.2011.02368.x
http://dx.doi.org/10.1371/journal.pone.0050470
http://dx.doi.org/10.1093/nar/gku084
http://dx.doi.org/10.1093/nar/gku084
http://dx.doi.org/10.1016/B978-0-12-385075-1.00024-X
http://dx.doi.org/10.1007/s00438-007-0254-9
http://dx.doi.org/10.1093/nar/gkq164
http://dx.doi.org/10.1186/1754-1611-7-10
http://dx.doi.org/10.1074/jbc.M509639200
http://dx.doi.org/10.1128/JB.185.21.6477-6480.2003
http://dx.doi.org/10.1128/JB.185.21.6477-6480.2003
http://dx.doi.org/10.4061/2011/572689
http://dx.doi.org/10.1126/science.281.5382.1519
http://dx.doi.org/10.1016/j.ymben.2013.11.004
http://dx.doi.org/10.1007/s10811-010-9540-8
http://dx.doi.org/10.1007/s10811-010-9540-8
http://dx.doi.org/10.1126/science.1150451
http://dx.doi.org/10.3389/fbioe.2014.00012
http://dx.doi.org/10.1073/pnas.95.20.11637
http://dx.doi.org/10.1016/j.jbiotec.2014.04.017
http://dx.doi.org/10.3762/bjoc.7.191
http://dx.doi.org/10.1186/1754-1611-3-4
http://dx.doi.org/10.1128/JB.183.22.6667-6675.2001
http://dx.doi.org/10.1016/j.biotechadv.2013.03.010
http://dx.doi.org/10.1016/j.cell.2009.12.001
http://dx.doi.org/10.1016/j.cell.2009.12.001
http://dx.doi.org/10.1016/j.bbagrm.2013.02.013
http://dx.doi.org/10.1021/sb400136f
http://dx.doi.org/10.1002/pro.2132
http://dx.doi.org/10.1016/j.ymben.2009.10.001
http://dx.doi.org/10.1046/j.1365-2958.2002.02741.x
http://dx.doi.org/10.1038/nbt.2401
http://dx.doi.org/10.1093/nar/25.6.1203
http://dx.doi.org/10.1038/nrmicro2930
http://dx.doi.org/10.1006/jmbi.1994.1458
http://dx.doi.org/10.1006/jmbi.1994.1458
http://dx.doi.org/10.1016/j.cell.2013.11.005
http://dx.doi.org/10.1073/pnas.1015154108
http://www.frontiersin.org/Synthetic_Biology
http://www.frontiersin.org/Synthetic_Biology/archive


Camsund and Lindblad Engineered transcription for cyanobacterial biotechnology

cell differentiation in Anabaena sp. PCC7120. Proc. Natl. Acad. Sci. U. S. A. 108,
20130–20135. doi:10.1073/pnas.1112724108

Mutalik, V. K., Guimaraes, J. C., Cambray, G., Lam, C., Christoffersen, M. J.,
Mai, Q. A., et al. (2013a). Precise and reliable gene expression via standard
transcription and translation initiation elements. Nat. Methods 10, 354–360.
doi:10.1038/nmeth.2404

Mutalik,V. K.,Guimaraes, J. C.,Cambray,G.,Mai,Q. A.,Christoffersen,M. J.,Martin,
L., et al. (2013b). Quantitative estimation of activity and quality for collections of
functional genetic elements. Nat. Methods 10, 347–353. doi:10.1038/nmeth.2403

Nakahira, Y., Ogawa, A., Asano, H., Oyama, T., and Tozawa, Y. (2013). Theophylline-
dependent riboswitch as a novel genetic tool for strict regulation of protein
expression in cyanobacterium Synechococcus elongatus PCC 7942. Plant Cell
Physiol. 54, 1724–1735. doi:10.1093/pcp/pct115

Niederholtmeyer, H., Wolfstadter, B. T., Savage, D. F., Silver, P. A., and Way, J. C.
(2010). Engineering cyanobacteria to synthesize and export hydrophilic prod-
ucts. Appl. Environ. Microbiol. 76, 3462–3466. doi:10.1128/AEM.00202-10

Oliver, J. W., Machado, I. M.,Yoneda, H., and Atsumi, S. (2014). Combinatorial opti-
mization of cyanobacterial 2,3-butanediol production. Metab. Eng. 22, 76–82.
doi:10.1016/j.ymben.2014.01.001

Paulmier, N.,Yaniv, M.,Von Wilcken-Bergmann, B., and Müller-Hill, B. (1987). Gal4
transcription activator protein of yeast can function as a repressor in Escherichia
coli. EMBO J. 6, 3539–3542.

Peca, L., Kos, P. B., and Vass, I. (2007). Characterization of the activity of heavy metal-
responsive promoters in the cyanobacterium Synechocystis PCC 6803. Acta Biol.
Hung. 58(Suppl.), 11–22. doi:10.1556/ABiol.58.2007.Suppl.2

Puerta-Fernandez, E., and Vioque, A. (2011). Hfq is required for optimal nitrate
assimilation in the cyanobacterium Anabaena sp. strain PCC 7120. J. Bacteriol.
193, 3546–3555. doi:10.1128/JB.00254-11

Qi, L. S., Larson, M. H., Gilbert, L. A., Doudna, J. A., Weissman, J. S., Arkin, A. P.,
et al. (2013). Repurposing CRISPR as an RNA-guided platform for sequence-
specific control of gene expression. Cell 152, 1173–1183. doi:10.1016/j.cell.2013.
02.022

Quax, T. E. F., Wolf, Y. I., Koehorst, J. J., Wurtzel, O., Van Der Oost, R., Ran, W.
Q., et al. (2013). Differential translation tunes uneven production of operon-
encoded proteins. Cell Rep 4, 938–944. doi:10.1016/j.celrep.2013.07.049

Saecker, R. M., Record, M. T. Jr., and Dehaseth, P. L. (2011). Mechanism of bacterial
transcription initiation: RNA polymerase - promoter binding, isomerization to
initiation-competent open complexes, and initiation of RNA synthesis. J. Mol.
Biol. 412, 754–771. doi:10.1016/j.jmb.2011.01.018

Sakurai, I., Stazic, D., Eisenhut, M., Vuorio, E., Steglich, C., Hess, W. R., et al.
(2012). Positive regulation of psbA gene expression by cis-encoded anti-
sense RNAs in Synechocystis sp. PCC 6803. Plant Physiol. 160, 1000–1010.
doi:10.1104/pp.112.202127

Salis, H. M., Mirsky, E. A., and Voigt, C. A. (2009). Automated design of syn-
thetic ribosome binding sites to control protein expression. Nat. Biotechnol. 27,
946–950. doi:10.1038/nbt.1568

Saramago, M., Barria, C., Dos Santos, R. F., Silva, I. J., Pobre, V., Domingues, S.,
et al. (2014). The role of RNases in the regulation of small RNAs. Curr. Opin.
Microbiol. 18, 105–115. doi:10.1016/j.mib.2014.02.009

Satya Lakshmi, O., and Rao, N. M. (2009). Evolving Lac repressor for enhanced
inducibility. Protein Eng. Des. Sel. 22, 53–58. doi:10.1093/protein/gzn069

Schneider, G. J., and Haselkorn, R. (1988). RNA polymerase subunit homology
among cyanobacteria, other eubacteria, and archaebacteria. J. Bacteriol. 170,
4136–4140.

Schuergers, N., Ruppert, U., Watanabe, S., Nurnberg, D. J., Lochnit, G., Dienst, D.,
et al. (2014). Binding of the RNA chaperone Hfq to the type IV pilus base is cru-
cial for its function in Synechocystis sp. PCC 6803. Mol. Microbiol. 92, 840–852.
doi:10.1111/mmi.12595

Schyns, G., Jia, L., Coursin, T., Tandeau De Marsac, N., and Houmard, J. (1998).
Promoter recognition by a cyanobacterial RNA polymerase: in vitro studies with
the Calothrix sp. PCC 7601 transcriptional factors RcaA and RcaD. Plant Mol.
Biol. 36, 649–659. doi:10.1023/A:1005983320006

Seshasayee, A. S., Sivaraman, K., and Luscombe, N. M. (2011). An overview of
prokaryotic transcription factors: a summary of function and occurrence in bac-
terial genomes. Subcell Biochem. 52, 7–23. doi:10.1007/978-90-481-9069-0_2

Sleight, S. C., Bartley, B. A., Lieviant, J. A., and Sauro, H. M. (2010). Design-
ing and engineering evolutionary robust genetic circuits. J. Biol. Eng. 4, 12.
doi:10.1186/1754-1611-4-12

Slomovic, S., and Schuster, G. (2011). Exonucleases and endonucleases involved in
polyadenylation-assisted RNA decay. Wiley Interdiscip. Rev. RNA. 2, 106–123.
doi:10.1002/wrna.45

Stanton, B. C., Nielsen, A. A. K., Tamsir, A., Clancy, K., Peterson, T., and Voigt, C.
A. (2014). Genomic mining of prokaryotic repressors for orthogonal logic gates.
Nat. Chem. Biol. 10, 99–105. doi:10.1038/nchembio.1411

Stazic, D., Lindell, D., and Steglich, C. (2011). Antisense RNA protects mRNA from
RNase E degradation by RNA-RNA duplex formation during phage infection.
Nucleic Acids Res. 39, 4890–4899. doi:10.1093/nar/gkr037

Taton, A., Unglaub, F., Wright, N. E., Zeng, W. Y., Paz-Yepes, J., Brahamsha, B., et al.
(2014). Broad-host-range vector system for synthetic biology and biotechnology
in cyanobacteria. Nucleic Acids Res. doi:10.1093/nar/gku673

Temme, K., Hill, R., Segall-Shapiro, T. H., Moser, F., and Voigt, C. A. (2012). Mod-
ular control of multiple pathways using engineered orthogonal T7 polymerases.
Nucleic Acids Res. 40, 8773–8781. doi:10.1093/nar/gks597

Tuominen, I., Tyystjarvi, E., and Tyystjarvi, T. (2003). Expression of primary sigma
factor (PSF) and PSF-like sigma factors in the cyanobacterium Synechocystis sp.
strain PCC 6803. J. Bacteriol. 185, 1116–1119. doi:10.1128/JB.185.3.1116-1119.
2003

Wang, B., Wang, J., Zhang, W., and Meldrum, D. R. (2012). Application of synthetic
biology in cyanobacteria and algae. Front. Microbiol. 3:344. doi:10.3389/fmicb.
2012.00344

Wösten, M. M. (1998). Eubacterial sigma-factors. FEMS Microbiol. Rev. 22, 127–150.
doi:10.1016/S0168-6445(98)00011-4

Xie, W. Q., Jäger, K., and Potts, M. (1989). Cyanobacterial RNA polymerase genes
rpoc1 and rpoc2 correspond to rpoc of Escherichia coli. J. Bacteriol. 171,
1967–1973.

Xu, W., Chen, H., He, C. L., and Wang, Q. (2014). Deep sequencing-based iden-
tification of small regulatory RNAs in Synechocystis sp. PCC 6803. PLoS ONE
9:e92711. doi:10.1371/journal.pone.0092711

Xu, Y., Alvey, R. M., Byrne, P. O., Graham, J. E., Shen, G., and Bryant, D. A. (2011).
Expression of genes in cyanobacteria: adaptation of endogenous plasmids as
platforms for high-level gene expression in Synechococcus sp. PCC 7002. Methods
Mol. Biol. 684, 273–293. doi:10.1007/978-1-60761-925-3_21

Young, E., and Alper, H. (2010). Synthetic biology: tools to design, build, and opti-
mize cellular processes. J. Biomed. Biotechnol. 2010, 130781. doi:10.1155/2010/
130781

Zhang, F. Z., Carothers, J. M., and Keasling, J. D. (2012). Design of a dynamic sensor-
regulator system for production of chemicals and fuels derived from fatty acids.
Nat. Biotechnol. 30, 354–359. doi:10.1038/nbt.2149

Zhang, J. Y., Deng, X. M., Li, F. P., Wang, L., Huang, Q. Y., Zhang, C. C., et al. (2014).
RNase E forms a complex with polynucleotide phosphorylase in cyanobacteria
via a cyanobacterial-specific nonapeptide in the noncatalytic region. RNA 20,
568–579. doi:10.1261/rna.043513.113

Zhou, J., Zhang, H., Meng, H., Zhu, Y., Bao, G., Zhang, Y., et al. (2014). Discovery of
a super-strong promoter enables efficient production of heterologous proteins
in cyanobacteria. Sci. Rep. 4, 4500. doi:10.1038/srep04500

Zhu, B., Tabor, S., Raytcheva, D. A., Hernandez, A., King, J. A., and Richardson, C.
C. (2013). The RNA polymerase of marine cyanophage Syn5. J. Biol. Chem. 288,
3545–3552. doi:10.1074/jbc.M112.442350

Conflict of Interest Statement: The authors declare that the research was conducted
in the absence of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Received: 08 July 2014; accepted: 15 September 2014; published online: 01 October
2014.
Citation: Camsund D and Lindblad P (2014) Engineered transcriptional sys-
tems for cyanobacterial biotechnology. Front. Bioeng. Biotechnol. 2:40. doi:
10.3389/fbioe.2014.00040
This article was submitted to Synthetic Biology, a section of the journal Frontiers in
Bioengineering and Biotechnology.
Copyright © 2014 Camsund and Lindblad. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use, dis-
tribution or reproduction in other forums is permitted, provided the original author(s)
or licensor are credited and that the original publication in this journal is cited, in
accordance with accepted academic practice. No use, distribution or reproduction is
permitted which does not comply with these terms.

www.frontiersin.org October 2014 | Volume 2 | Article 40 | 9

http://dx.doi.org/10.1073/pnas.1112724108
http://dx.doi.org/10.1038/nmeth.2404
http://dx.doi.org/10.1038/nmeth.2403
http://dx.doi.org/10.1093/pcp/pct115
http://dx.doi.org/10.1128/AEM.00202-10
http://dx.doi.org/10.1016/j.ymben.2014.01.001
http://dx.doi.org/10.1556/ABiol.58.2007.Suppl.2
http://dx.doi.org/10.1128/JB.00254-11
http://dx.doi.org/10.1016/j.cell.2013.02.022
http://dx.doi.org/10.1016/j.cell.2013.02.022
http://dx.doi.org/10.1016/j.celrep.2013.07.049
http://dx.doi.org/10.1016/j.jmb.2011.01.018
http://dx.doi.org/10.1104/pp.112.202127
http://dx.doi.org/10.1038/nbt.1568
http://dx.doi.org/10.1016/j.mib.2014.02.009
http://dx.doi.org/10.1093/protein/gzn069
http://dx.doi.org/10.1111/mmi.12595
http://dx.doi.org/10.1023/A:1005983320006
http://dx.doi.org/10.1007/978-90-481-9069-0_2
http://dx.doi.org/10.1186/1754-1611-4-12
http://dx.doi.org/10.1002/wrna.45
http://dx.doi.org/10.1038/nchembio.1411
http://dx.doi.org/10.1093/nar/gkr037
http://dx.doi.org/10.1093/nar/gku673
http://dx.doi.org/10.1093/nar/gks597
http://dx.doi.org/10.1128/JB.185.3.1116-1119.2003
http://dx.doi.org/10.1128/JB.185.3.1116-1119.2003
http://dx.doi.org/10.3389/fmicb.2012.00344
http://dx.doi.org/10.3389/fmicb.2012.00344
http://dx.doi.org/10.1016/S0168-6445(98)00011-4
http://dx.doi.org/10.1371/journal.pone.0092711
http://dx.doi.org/10.1007/978-1-60761-925-3_21
http://dx.doi.org/10.1155/2010/130781
http://dx.doi.org/10.1155/2010/130781
http://dx.doi.org/10.1038/nbt.2149
http://dx.doi.org/10.1261/rna.043513.113
http://dx.doi.org/10.1038/srep04500
http://dx.doi.org/10.1074/jbc.M112.442350
http://dx.doi.org/10.3389/fbioe.2014.00040
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org
http://www.frontiersin.org/Synthetic_Biology/archive

	Engineered transcriptional systems for cyanobacterial biotechnology
	Special characteristics that may affect transcriptional engineering in cyanobacteria
	Differences in RNA polymerases
	Sigma factors and promoter types
	Stability and degradation of mRNA
	Circadian rhythm effects on gene expression
	Gene dosage and cyanobacterial genome copy numbers

	Desired properties of transcriptional parts
	Decoupling and modularity
	Native and orthogonal parts

	Promoters used for regulated or constitutive gene expression
	Outlook and suggestions for future development
	Acknowledgments
	References


