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Abstract: The association of chronic pain with depression is becoming increasingly recognized. 
Treating both the conditions together is essential for an effective treatment outcome. In this regard, 
it is important to identify a shared mechanism involved in the association of chronic pain with de-
pression. Central serotonin (5-hydroxytryptamine; 5-HT) neurotransmission has long been known 
to participate in the processing of signals related to pain. It also plays a key role in the pathogenesis 
and treatment of depression. Although functional responses to serotonin are mediated via the activa-
tion of multiple receptor types and subtypes, the 5-HT1A subtype is involved in the processing of 
nociception as well as the pathogenesis and treatment of depression. This receptor is located pre-
synaptically, as an autoreceptor, on the perikaryon and dendritic spines of serotonin-containing 
neurons. It is also expressed as a heteroreceptor on neurons receiving input from serotonergic neu-
rons. This article targets the 5-HT1A receptors to show that indiscriminate activation of pre and 
postsynaptic 5-HT1A receptors is likely to produce no therapeutic benefits; biased activation of the 
5-HT heteroreceptors may be a useful strategy for treating chronic pain and depression individually 
as well as in a comorbid condition. 
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1. INTRODUCTION 

 Chronic pain, defined as sustained or intermittent pain 
which lasts for more than 12 weeks, may arise as a conse-
quence of injury such as a back sprain. It may be due to ill-
ness or even no evident reason. It is often categorized as neu-
ropathic or nociceptive pain [1, 2]. Neuropathic pain is pro-
duced by a lesion/damage to the nervous system, while noci-
ceptive pain is associated with a damage to non-neuronal 
tissues and sustained activation of nociceptors. Chronic pain 
conditions are highly prevalent and disabling [3], and are 
often associated with emotional disorders including anxiety 
and depression. Considering and treating these conditions 
with the associated emotional disorder is essential for effec-
tive and sustained treatment outcome [4-6]. 

 The association of chronic pain with depression is be-
coming increasingly recognized. Prevalence studies show 
that the occurrence of a comorbid condition of chronic pain 
associated with depression is much higher than the individual  
 
 

*Address correspondence to this author at the Neuroscience Research 
Laboratory, Dr. Panjwani Center for Molecular Medicine & Drug Research 
(PCMD), International Center for Chemical and Biological Science 
(ICCBS), University of Karachi, Karachi 75270, Pakistan;  
E-mails: darakhshan_haleem@yahoo.com, djhaleem@uok.edu.pk 

occurrence of chronic pain or depression [7-9]. A meta-
analysis shows that about 65% of patients with clinical 
symptom of depression have chronic pain, while a number of 
chronic pain patients (5-85%, depending on the severity of 
pain) have depression [10]. Moderate to severe pain highly 
impairs productivity and when it is associated with depres-
sion, the condition becomes worse and refractory to treat-
ment [11]. An understanding of the mechanisms involved in 
comorbidity is therefore highly essential. 

 Chronic pain is considered as the expression of maladap-
tive plastic changes within the nociceptive pathway, such as 
ectopic generation of the action potential and facilitation or 
disinhibition of synaptic transmission [12]. It may also result 
because of the loss of synaptic connectivity or even the for-
mation of new synaptic circuits and neuroimmune interac-
tions. The activation of microglial cells in response to nerve 
injury is often implicated in the development of neuropathic 
pain [13]. These studies show that a variety of mediators are 
released from the injured tissue or neuron. These mediators 
have the ability to activate receptors on microglial cells to 
produce structural changes and the release of factors can lead 
to chronic pain. Thus, interaction between microglia, other 
glial cells and neuronal cells is involved in the development 
of chronic pain [14]. The role of glial cells, microglia and 
astrocytes, in neuronal plasticity related to depression is also 
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becoming increasingly recognized [15, 16]. Investigations to 
characterize and portray common neuroplasticity changes 
shared by chronic pain and depression are also emerging [17, 
18]. These efforts may help identify new drug targets for 
effectively treating chronic pain with depression. The focus 
of the present article is to understand serotonin1A receptor-
dependent control of pain and depression for improving ther-
apy in chronic pain with depression. 

 Failure to adapt to chronic stress may lead to chronic 
pain as well as depression [19, 20]. Central serotoninergic 
mechanisms playing a key role in responses to stress are also 
known to modulate pain transmission. Serotonin (5-
Hydroxytryptamine; 5-HT) is the principal neurotransmitter 
involved in the pathophysiology as well as pharmacotherapy 
of depression. There is evidence that chronic pain patients 
with associated depression are at enhanced risk of addiction. 
These patients excessively use opioid drugs and benzodi-
azepines to manage chronic pain and the associated psycho-
logical condition [21, 22], which worsens the treatment. In 
this regard, it is important to point out that 5-HT1A receptors 
are also targeted for effectively modulating pathways in-
volved in drug addiction [23, 24]. Buspirone, an antianxiety 
and antidepressant drug, and an agonist on 5-HT1A recep-
tors, is shown to block addictive and hyperalgesic effects of 
morphine [25-27]. Moreover, buspirone itself can reduce 
pain perception [28]. Overall, these studies suggest that tar-
geting 5-HT1A receptors can help to develop strategies for 
treating pain, depression and associated drug addiction, if 
any. The present article concerns a 5-HT1A receptor-
mediated model that incorporates the treatment of chronic 
pain and depression, simultaneously. 

2. SEROTONIN (5-HYDROXYTRYPTAMINE; 5-HT) 

 Serotonin, a biogenic amine, is present in animals as well 
as plants. It was identified as a gut stimulating factor (en-
teramine) in 1940 [29] and as a vasoconstrictor (serotonin) 
eight years later [30]. Both enteramine and serotoninwere 
chemically identified as 5-hydroxytryptamine (5-HT). The 
presence of this biogenic amine in the central nervous sys-
tem (CNS) was reported soon thereafter [31, 32]. Although 
only a small amount of total body’s serotonin is synthesized 
in the CNS, as a neurotransmitter it is involved in almost 
every physiological function. It has a key role in the patho-
genesis and pharmacotherapy of depression [23, 33, 34] and 
other psychiatric illnesses such as anxiety [35], migraine 
[36], anorexia [37, 38] and schizophrenia [39]. In addition, 
its functional significance in pain transmission is also well 
established [126, 40-42]. 

 On the other hand, it is important to note that only about 
5% of the total body 5-HT is present in the brain and most of 
it is produced and present peripherally. The peripheral 5-HT 
synthesized largely in the enterochromaffin cells of the gas-
trointestinal tract is secreted into the bloodstream. It is taken 
up by the blood platelets and stored there [43, 44]. Trans-
ported by blood platelets to various tissues, including im-
mune cells and lymphatic system, serotonin is released upon 
activation [45]. Almost all the immune cells express 5-HT 
receptors, and evidence suggests that immune system com-
municates with the brain via humoral and neuronal mecha-
nisms and that targeting the immune system for therapeutic 

development may provide an important opportunity to treat 
mental illness [46]. 

 Neurons constituting serotonergic circuitry arise from the 
midbrain and brainstem raphe nuclei. Axons from the raphe 
extend rostrally and caudally to innervate, respectively, al-
most all brain regions and the spinal cord [47]. The func-
tional responses to serotonin are mediated via seven different 
types of receptors which are further divided into at least 15 
subtypes [48, 49]. All the types and subtypes of serotonin 
receptors, excluding 5-HT3, are G-protein coupled receptors 
[50]. Accumulating evidence suggests that activation of the 
5-HT1A receptor subtype can modulate processing and con-
trol of signals associated with pain [26]. 

 It is worth mentioning that serotonin is a precursor for 
melatonin, which is also implicated in pain reduction and 
mood elevation [51, 52]. It is, therefore, possible that some 
of the effects of increasing brain serotonin are processed via 
enhanced melatonin synthesis and function. However, the 
antinociceptive effects of 5-HT1A receptor and melatonin 
receptor activation do not seem to depend on each other. 
Thus pain-reducing effects of melatonin are antagonized by 
melatonin receptor antagonists [53] while antinociceptive 
effects of piromelatine, a multimodal sleep medication with 
agonist activity for melatonin as well as 5-HT1A receptors, 
are antagonized independently by melatonin as well as 5-
HT1A receptor antagonists [54]. 

3. THE 5-HT1A RECEPTOR AND ITS 
LOCALIZATION  

 The 5-HT1A receptor is a G-Protein-coupled receptor 
(Fig. 1). Activation of this receptor subtype reduces intracel-
lular concentrations of cAMP. As a result, K+ ion channels 
open and Ca+2 channels are closed [55, 56] to inhibit neu-
ronal firing (Fig. 2). This receptor subtype is present on the 
presynaptic, as well as on the postsynaptic sites (Fig. 3). As a 
presynaptic receptor, it is expressed on the cell soma and 
dendritic spines of neurons constituting serotonergic path-
ways. Low doses of 8-hydroxy-2-(di-n-propylamino) tetralin 
(8-OHDPAT) and buspirone preferentially activate 5-HT1A 
autoreceptors; consequently, the release of 5-HT from the 
serotonergic nerve endings is diminished [57-60]. The syn-
thesis of 5-HT is reduced as a feedback mechanism. The 5-
HT-1A heteroreceptors are expressed in many brain regions 
[61, 62], and the activation of these receptors inhibits the 
firing of neurons on which these receptors are located. 

 Differences in 5-HT1A autoreceptor and heteroreceptor 
coupling to G proteins have also been reported. The autore-
ceptors are mainly coupled with Gαi3; while heteroreceptors 
are preferentially coupled with Gαo in the hippocampus and 
equally with Gαo and Gαi3 in the cortex [63]. Differences in 
Gα coupling of 5-HT1A autoreceptors and heteroreceptors 
are thought to underlie differential signaling and desensitiza-
tion in these cells. For example, long term increases of 5-HT 
upon chronic administration of antidepressant drugs produce 
greater desensitization of 5-HT1A autoreceptors than het-
eroreceptors [64]. 

 In the raphe, 5-HT1A receptors are coupled via Gβγ 
subunits to inward rectifying potassium (GIRK) channels 
(Fig. 1) to produce neuronal hyperpolarization [65-67]. The 
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heteroreceptors of the hippocampus and cortex are also cou-
pled to GIRK channels. Thus, the activation of 5-HT1A 
autoreceptors as well as of heteroreceptors of the hippocam-
pus and the cortex increases GIRK current, leading to hyper-
polarization [68]. The coupling of 5-HT1A autoreceptors and 
heteroreceptors in the hypothalamus via Gαo and Gβγ 
subunits resulting in the deactivation of voltage-dependent 
calcium channels is also reported [69]. In addition, the acti-
vation of 5-HT1A receptors in the raphe, hypothalamus and 
hippocampus can also increase the levels of phosphorylated 
mitogen-activated protein kinase (MAPK) and extracellular 
signal-regulated kinase (ERK) [70, 71]. There is evidence 
that 5-HT1A receptor-activated ERK is involved in hippo-
campal neurogenesis [72]. 

 Buspirone is a partial agonist at the 5-HT1A heterorecep-
tor but a full agonist at 5-HT1A autoreceptors [73]. Admini-
stration of buspirone at low doses, therefore, activates 5-
HT1A autoreceptors and serotonergic functions via heterore-
ceptors are diminished. Moreover, 8-OH-DPAT, which is a 
selective full agonist at 5-HT1A autoreceptors as well as 
heteroreceptors also preferentially acts via autoreceptors 
when administered at low doses [73]. This receptor type is 

known to have an important role in responses to stress [20, 
38, 74] and in the pharmacotherapy of anxiety, depression 
and psychosis [34, 39, 75, 76]. 

 Interestingly, 5-HT1A receptors are also expressed on the 
afferent nociceptive fibers in the dorsal horn of the spinal 
cord (DHS) [77] and their activation results in the dimin-
ished release of glutamate and substance P from the afferent 
fibers [25, 26, 78]. The release of serotonin from serotoner-
gic projections arising from the brain stem and midbrain 
raphe [79] can activate 5-HT1A heteroreceptors located on 
the sensory neurons, resulting in an inhibition of nociceptive 
release from these fibers (Fig. 2). 

 The dorsal raphe nucleus (DRN) has the highest density 
of 5-HT1A receptors [80]; it projects rostrally to innervate 
almost all the forebrain regions, including those which play 
an important role in mood, emotions and responses to stress 
[81, 82]. It also extends caudally to provide serotonergic 
projections to brain stem raphe magnus, and descends to the 
DHS [83]. Furthermore, the activation of somatodendritic 
receptors by 5-HT1A agonists produces a robust decrease of 
5-HT release in terminal regions receiving input from DRN 

 

Fig. (1). Diagrammatic sketch of 5-HT1A receptor and its signal transduction Pathway: Activation of 5-HT1A receptor which is coupled 
with Gi/o protein inhibits adenylate cyclase activity; cAMP formation and protein kinase-mediated protein phosphorylation are reduced. The 
activation of 5-HT1A receptors also opens G protein-gated K+ channels and inhibits voltage-gated calcium channels to lead to reduced neu-
ronal firing. GIRK, G protein coupled inwardly-rectifying potassium; AC, adenylyl cyclase; cAMP, 3’, 5’-cyclic adenosine monophosphate; 
PKA, cAMP-dependent protein kinase. (A higher resolution / colour version of this figure is available in the electronic copy of the article). 
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[84-86]. The 5-HT1A receptors are also highly expressed in 
the DHS, where they act as heteroreceptors to modulate the 
release of pain neurotransmitters from the first-order neurons 
[87]. They are also highly expressed in the brain regions 
involved in emotional control (Fig. 3), where they play a key 
role in responses to stress and in the therapeutic effects of 
antidepressant drugs [34, 38]. 

 It may be noted that 5-HT1A receptors are targeted for 
the pharmacotherapy of a number of brain disorders. How-
ever, indiscriminate activation of pre and postsynaptic 5-
HT1A receptors is unlikely to produce any therapeutic bene-
fits. Efforts made for preferentially increasing serotonergic 
activity via postsynaptic 5-HT1A receptors have led to the 
concept of ‘biased agonism’. Thus, drugs simultaneously 
blocking 5-HT1A receptors and serotonin transporters can 
produce a faster onset of antidepressant action compared to 
selective serotonin reuptake inhibitors (SSRIs) [88]. Long 
term administration of drugs preferentially activating 5-
HT1A autoreceptors can desensitize feedback control over 
serotonergic activity to increase serotonin outflow towards 
postsynaptic 5-HT1A receptor to produce antidepressant 
effects [38]. 

4. 5-HT1A RECEPTOR-DEPENDENT CONTROL OF 
PAIN TRANSMISSION 

 Preclinical studies support the notion that the activation 
of 5-HT1A heteroreceptors in the DHS decreases pain 
transmission. These studies show that the administration of 
8-OHDPAT in the DHS produces a marked reduction in the 
activity of afferent sensory neurons [89], which is associated 
with a dose-dependent decrease in NMDA receptor-
dependent glutamate response [90]. These studies suggest 
that 5-HT1A receptor-dependent inhibition of nociceptive 
signals is due to the inhibition of glutamate release. 

 It was shown in a previous study that intrathecal and in-
tracerebral administration of 8-OH-DPAT produced opposite 
effects on nociceptive behavior [91]. The drug injected sys-
temically in low doses was found to enhance pain perception 
while high doses attenuated it. We now know that low doses 
of 8-OH-DPAT preferentially activate 5-HT1A autoreceptors 
(Fig. 3). The associated decrease in the firing of serotonergic 
neurons and diminished 5-HT availability in the DHS can 
reduce 5-HT1A heteroreceptor-mediated inhibitory control 
over nociceptive signals to facilitate pain perception [25, 26]. 

 

Fig. (2). Serotonergic innervation of dorsal horn of the spinal cord showing localization of 5-HT1A heteroreceptors and inhibition of pain 
signals by the activation of these receptors. (A higher resolution / colour version of this figure is available in the electronic copy of the article). 
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On the other hand, higher doses of 8-OHDPAT activate 5-
HT1A autoreceptors in the raphe region as well as heterore-
ceptors in the DHS. Adequate heteroreceptor activation can 
counteract autoreceptor-mediated enhancement in pain per-
ception; it can also produce an additional antinociceptive 
effect. Likewise, intrathecally injected 8-OH-DPAT activates 
5-HT1A heteroreceptors to reduce pain. Conversely, intrac-
erebral administration preferentially activates autoreceptors 
to produce nociceptive effects. Nociception, due to an elec-
trical stimulus, is also attenuated by intrathecally adminis-
tered 8-OH-DPAT [92], while the antinociceptive effect of 
8-OHDPAT is antagonized by a 5-HT1A antagonist. Moreo-
ver, the antinociceptive effects of piromelatine in mice with 
partial sciatic nerve ligation are also blocked by 5-HT1A 
receptor antagonism [93]. Transcription regulation studies of 
5-HT1A receptor expression show that the transcription fac-
tor deformed epidermal autoregulatory factor-1 (Deaf-1) 
represses 5-HT1A autoreceptors expression, but enhances 
the 5-HT1A promoter activity for the expression of 5-HT1A 
heteroreceptors [94, 95]. These studies show that in Deaf-1 
knockout mice, 5-HT1A heteroreceptors were knocked out. 
Studies have been performed on 5-HT1A heteroreceptor 

knockout mice. In these mice, 5-HT1A autoreceptors were 
over-expressed and central serotonin levels were reduced 
[96]. A higher nociceptive response to pain-producing stim-
uli also occurred in these mice [97]. 

 Overall, these findings support the notion that the activa-
tion of 5-HT1A heteroreceptors in the DHS reduces pain 
transmission. Conversely, greater activity of 5-HT1A autore-
ceptors can diminish heteroreceptor-mediated antinocicep-
tion because the availability of 5-HT at functional antinoci-
ceptive sites is attenuated (Fig. 3). 

 Preclinical research on the effects of buspirone is also 
consistent. Buspirone is an FDA- approved prescription 
medication for treating depression and anxiety. It is an ago-
nist for 5-HT1A heteroreceptors as well autoreceptors but 
exhibits full agonist activity at autoreceptors and only partial 
activity at heteroreceptors [98, 99]. Some previous studies 
show that systemically injected buspirone reduces pain per-
ception [100, 101]. Recent studies show that low and high 
doses of buspirone produce opposite effects on pain percep-
tion [25, 26]. The perception of pain is enhanced and attenu-
ated, respectively, in rats injected with low doses and high 

 

Fig. (3). Diagrammatic sketch of serotonergic neurons arising from raphe and innervating DHS and limbic regions. Localization of 5-HT1A 
autoreceptors, heteroreceptors and functional responses to their activation are also depicted. (A higher resolution / colour version of this fig-
ure is available in the electronic copy of the article). 



5-HT1A Receptor in Pain and Depression Current Neuropharmacology, 2019, Vol. 17, No. 12    1103 

doses of buspirone. The opposite effects of low and high 
doses of buspirone on pain perception are also explicable in 
terms of preferential stimulation of autoreceptors at low 
doses while high doses stimulate autoreceptors as well as 
heteroreceptors. Autoreceptor occupancy is expected to de-
crease 5-HT release; effects of 5-HT via 5-HT1A heterore-
ceptors on afferent sensory fibers are reduced to facilitate 
pain transmission (Fig. 2). On the other hand, the activation 
of 5-HT1A heteroreceptors in the DHS following the ad-
ministration of high doses of buspirone can counteract pain 
facilitatory effects of autoreceptor activation. It has been also 
shown that repeated administration of buspirone produces 
hypoalgesia [25] because the efficacy of autoreceptor-
mediated control of the firing of serotoninergic neurons is 
diminished. 

5. 5-HT1A RECEPTORS IN DEPRESSION AND 
ANTIDEPRESSANT ACTION 

 The role of 5-HT1A receptors in depression and antide-
pressant action has been addressed in many studies [20, 
102]. These preclinical studies show that the activation of 5-
HT1A receptors by the selective agonist 8-OH-DPAT pro-
duces antidepressant-like effects [103-105]. It has been also 
shown that these effects are produced because of the activa-
tion of 5-HT1A heteroreceptors in the limbic pathway [20, 
106]. Located on the adjacent neurons, these heteroreceptors 
inhibit the activity of GABA interneurons (Fig. 3); glutamate 
input to VTA dopamine neurons is enhanced to elevate 
mood [26]. Conversely, the activation of 5-H1A autorecep-
tors decreases the firing of serotonergic neurons and dimin-
ished activation of 5-HT1A heteroreceptors elicits depres-
sion-like behavior [20, 107]. Exposure to uncontrollable 
stress produces depression-like behavior in rats [108] and 
this is associated with an upregulation of 5-HT1A autorecep-
tors [58]. Conversely, adaptation to repeated predictable 
stress downregulates 5-HT1A receptors, and extracellular 5-
HT concentration increases to produce antidepressant-like 
effects. 

 The antidepressant effects of SSRIs are also explained on 
the same lines. These drugs inhibit high affinity reuptake of 
serotonin to increase extracellular 5-HT, which activates 
autoreceptors to produce a feedback effect on 5-HT release. 
The availability of serotonin at postsynaptic receptors, in-
cluding 5-HT1A receptors, is reduced. Ineffectiveness of 
SSRIs for treating depression after single or short term ad-
ministration is often explained on the same lines. Repeated 
or long term administration desensitizes autoreceptors and 
the flow of serotonin towards postsynaptic receptors is en-
hanced, leading to the antidepressant effect [109]. Therefore, 
blocking 5-HT1A autoreceptors is often used as adjunctive 
therapy for improving acute antidepressant effects of SSRIs 
[110, 111]. 

6. CLINICAL RESEARCH ON THE USE OF 
ANTIDEPRESSANTS FOR TREATING PAIN 

 Although antidepressants drugs were designed for the 
treatment of depression, interest in their analgesic effect 
emerged because of the association of chronic pain with de-
pression. Some, but not all antidepressant drugs are reported 
to produce the desired effect in relieving chronic pain [112, 

113]. SSRIs are at present the most commonly prescribed 
first line agents for treating depression largely, as these drugs 
have fewer side effects. Despite the significant role of 5-
HT1A heteroreceptors as well as autoreceptors in the 
mechanism of action of SSRIs and in the modulation of pain; 
there are limited studies justifying the treatment efficacy of 
SSRIs for chronic pain conditions and the reported results 
are not conclusive. 

 Fluoxetine is one of the prototype SSRIs approved as a 
prescription medication for depression. Treatment with 
fluoxetine is reported to be effective in tension headache 
[114] but not in diabetic neuropathic pain [115]. However, it 
is effective in ameliorating somatoform pain disorder in de-
pressed patients [115, 116]. Fluvoxamine, another SSRI, is 
also effective in tension-type headache [117], post-stroke 
pain and osteoarthritis [118, 119] but not in chronic cancer 
pain [120]. Sertraline is shown to be effective in non-cardiac 
chronic chest pain [121]. Paroxetine is shown to have effi-
ciency for treating pain associated with diabetic neuropathy 
[122]. Treatment with citalopram produces a moderate anal-
gesic effect in somatoform pain disorder [123-125]. Escita-
lopram has, however, been shown to be useful for a number 
of chronic pain conditions including diabetic neuropathy, 
somatoform disorder and pain associated with depression 
[126-128]. 

 On the other hand, it is widely believed that tricyclic an-
tidepressants and serotonin-noradrenaline reuptake inhibitors 
(SNRIs) are more effective than SSRIs in treating 
chronic/neuropathic pain [129]. In this context, it is impor-
tant to note that SSRIs do not selectively target 5-HT1A het-
eroreceptors. Preferential activation of 5-HT1A heterorecep-
tors by a co-drug can potentially enhance the efficacy and 
potency of SSRIs in treating depression, chronic pain and 
comorbidity. 

CONCLUSION: OVERLAPPING PHARMACOTHERAPY 
OF PAIN AND DEPRESSION 

 Accumulated evidence as described above suggests that 
the activation of 5-HT1A heteroreceptors in the DHS and in 
the limbic region produces, respectively, an inhibition of 
nociceptive signal and antidepressant-like effect (Fig. 3). 
These studies also show that desensitization of 5-HT autore-
ceptors increases the flow of serotonin towards 5-HT1A het-
eroreceptors to produce antidepressant as well as antinoci-
ceptive effects. The overlapping pharmacotherapy of chronic 
pain and depression is indicative of a causal relationship 
between chronic pain and depression. It tends to suggest that 
an overexpression of 5-HT1A autoreceptors decreasing 5-HT 
outflow towards the DHS and limbic region may lead to 
chronic pain and depression, respectively. Drugs producing 
indiscriminate activation of pre and postsynaptic 5-HT1A 
receptors are likely to produce no therapeutic benefits. Long-
term administration of drugs preferentially activating 5-
HT1A autoreceptors rather than heteroreceptors can increase 
serotonin outflow towards 5-HT1A heteroreceptors. These 
drugs can produce a delayed, but long-lasting effect in reduc-
ing pain as well as depression. On the other hand, simultane-
ous blockade of the 5-HT1A autoreceptor and serotonin 
transporter can produce a faster onset of analgesic as well as 
antidepressant effect. Targeting 5-HT1A receptors for par-
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ticularly biased activation of heteroreceptors may be a useful 
strategy for treating chronic pain and depression as well as 
comorbid pain with depression. These strategies may also 
help to develop novel agents for treating chronic pain and 
depression. 
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