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Abstract: Heat shock transcription factors (HSFs) are a family of transcription regulators. Although
HSFs’ functions in controlling the transcription of the molecular chaperone heat shock proteins and
resistance to stresses are well established, their effects on the pathogenicity of plant pathogenic fungi
remain unknown. In this study, we analyze the role of CgHSF1 in the pathogenicity of Colletotrichum
gloeosporioides and investigate the underlying mechanism. Failure to generate the Cghsf1 knock-out
mutant suggested that the gene is essential for the viability of the fungus. Then, genetic depletion
of the Cghsf1 was achieved by inserting the repressive promoter of nitrite reductase gene (PniiA)
before its coding sequence. The mutant showed significantly decrease in the pathogenicity repression
of appressorium formation, and severe defects in melanin biosynthesis. Moreover, four melanin
synthetic genes were identified as direct targets of CgHSF1. Taken together, this work highlights the
role of CgHSF1 in fungal pathogenicity via the transcriptional activation of melanin biosynthesis.
Our study extends the understanding of fungal HSF1 proteins, especially their involvement in
pathogenicity.

Keywords: HSF1; melanin; appressorium; pathogenicity; Colletotrichum gloeosporioides

1. Introduction

The genus Colletotrichum spp. is a group of plant pathogenic fungi that can infect a
wide range of plants worldwide [1]. There is a total of 600 Colletotrichum species identified
by now; among these species, Colletotrichum gloeosporioides can infect over 470 plant species
and cause anthracnose diseases in both aerial plant parts and in post-harvest fruits, such as
banana, mango, avocado, coffee [2].

Most of Colletotrichum species employ a hemibiotrophic lifestyle, including conidia
germination, melanized appressorium formation, biotrophic intracellular hyphae, and
a necrotrophic phase on dead host cells [1]. During infection processes, Colletotrichum
higginsianum, Colletotrichum orbiculare, and C. gloeosporioides could adjust their strategies
to switch between these stages by regulating the expression of virulence factors, such as
effectors, secondary metabolite synthesis enzymes, and degradative enzymes [3,4]. In
addition, a number of transcription factors (TFs) were found to play important roles in
controlling the switch from non-pathogenic parasite to pathogeny in pathogenic fungi. For
example, Wor1, a conserved fungal TF from Candida albicans, controls the white–opaque
switching of cells and is required for virulence to humans [5,6]. In plant pathogenic fungi
from the genus Fusarium, SGE1 proteins, the orthologs of Wor1, regulate effector genes and
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secondary metabolite gene clusters [7–10], and are required for parasitic growth [11]. In
Botrytis cinerea, Verticillium dahliae, Zymoseptoria tritici, Ustilago maydis, and Magnaporthe
oryzae, orthologs of Wor1 also participate in the regulation of the expression of effector
genes and virulence to the hosts [12–16]. Some other TFs, such as the forkhead transcription
factor Fox1 and zinc finger transcription factor Mzr1 of Ustilago maydis, are involved in the
regulation of effector genes [17,18].

Heat shock transcription factors (HSFs) are a family of transcription regulators, which
were thus named for they can regulate the expression of heat shock proteins (HSPs) in
cells [19,20]. Since the first discovery and being cloned in Drosophila and yeast [21,22],
HSFs have been identified in a variety of species. HSFs are conserved in eukaryotes from
fungi, such as Saccharomyces cerevisiae, which has only one HSF gene, to humans whose
genome encodes six HSF proteins [22,23]. In plants, HSFs are a large and diverse gene
family with more complex functions due to their great differences in size and sequence [24].
HSFs were originally described to recognize and specifically bind the conserved motif of
the heat shock element (HSE) in the promoter region of HSP genes, thereby increasing
biological resistance to heat stress, chemical stimuli, and oxidative stress [24–26]. In yeast,
HSF1 is essential for survival and the modulation of chaperone levels in response to growth
temperature [27]. In mouse, the HSF1-dependent expression of HSP chaperones is required
to maintain redox homeostasis and to regulate antioxidative defenses [28]. Additionally,
the HSFs of plants play roles in response to oxidative, heavy metals, and biotic stresses
during the development of and differentiation in plants [29,30]. In addition to the roles
in stress response, there are growing evidences indicating that HSFs play pivotal roles in
development and differentiation [24,31]. For example, HSFB2a is required for gametophytic
development in Arabidopsis [32]; the mouse HSF4 regulates the development of lenses [33];
especially in C. albicans, both the depletion and overexpression of HSF1 could induce
the transition from yeast to filamentous growth, highlighting the key role of HSF1 in
virulence [34]. However, whether HSFs are required for development and virulence of
plant pathogenic fungi is still elusive.

In the present study, our goal is to investigate whether CgHSF1 is required for the
pathogenicity of C. gloeosporioides, and to figure out the possible mechanism. We found
that CgHSF1 depletion impairs the expression of melanin biosynthesis genes, compromises
appressorium formation, and leads to the decrease in pathogenicity. This work provides
new insight into HSF1′s role in fungal pathogenicity.

2. Materials and Methods
2.1. Fungal Strains and Plant Material

C. gloeosporioides Hevea (BioSample: SAMN17266943 (https://www.ncbi.nlm.nih.gov/
biosample/17266943 (accessed on 9 January 2021)) was isolated from H. brasiliensis previ-
ously and kept on potato dextrose agar medium (PDA) at 28 ◦C. The H. brasiliensis cultivar
Reyan 7-33-97 was cultured in a glass house and used for the pathogenicity assay.

2.2. Bioinformatics Analysis

The amino acid sequence of CgHSF1 was searched for the conserved domains against
Pfam database. The HSF1 homologues from other phytopathogenic fungi were retrieved
from NCBI GenBank database, and the maximum likelihood tree was constructed using
JTT + G+I model and 1000 bootstrap with MEGA 11 [35].

2.3. Construction of the Gene Knock-Out Strain, PniiA-Cghsf1 Inducible Strain, and the GFP or
FLAG Tagged Strains

The knock-out of Cghsf1 was attempted by replacing the Cghsf1 gene with the acetolac-
tate synthase gene (SUR) cassette from M. oryzae, which confers resistance to chlorimuron
ethyl (a sulfonylurea herbicide). Briefly, the upstream and downstream flanking fragments
of Cghsf1 were amplified from genomic DNA with TransStart® FastPfu DNA Polymerase
(TransGen Biotech, Beijing, China) and cloned into the plasmid pBS-SUR [36]. Then, the
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flanking sequences together with the truncated SUR were amplified and used for protoplast
transform (Supplementary Figure S1).

To modulate the expression of Cghsf1, an inducible promoter (PniiA) of nitrite reduc-
tase gene (niiA) was inserted between the coding sequence of Cghsf1 and its native promoter.
The hygromycin B resistance cassette (HPT) was used as the selective marker. Firstly, the
upstream flanking fragments of Cghsf1 were amplified with primer pairs HSF-5F/HSFhpt-
5MR, with the reverse primer having 17 nucleotides (nts) complementary to HPT sequence;
and a truncated HPT fragment was amplified with primer pairs HSFhpt-5MF/hpt-SPLR,
with the forward primer having 17 nts complementary to Cghsf1; then the two fragments
were ligated together via overlap PCR with the two fragments as templates. Secondly,
the other truncated HPT (with primers hpt-SPLF/hptniiA-MR), the PniiA promoter (with
hptniiA-MF/niiAHSF-MR), and the 800 bp nucleotides of 5′ part of Cghsf1 (Cghsf1-L) se-
quence (with niiAHSF-MF/HSF-L-R) were amplified, and then the three fragments were
fused by PCR. After that, the two fused fragments were used for protoplast transformation.

The modified plasmid pMD19-T, which contains the GFP/FLAG coding sequence, a
terminator of the tryptophan synthase of Aspergillus nidulans (TtrpC), and the HPT cassette,
was used to tag the CgHSF1 with GFP or FLAG. The 700 bp nucleotides of the 3′ part of
Cghsf1 without stop codon (Cghsf1-R) were amplified with the primers HSF-R-F/HSF-R,
and cloned into the plasmid right before the GFP/FLAG tag; then the fragment containing
the 3′ part of Cghsf1, GFP/FLAG, TtrpC, and the truncated HPT was prepared by PCR
using the primers HSF-R-F/hpt-SPLR. The downstream flanking fragments of Cghsf1
were amplified with hptHSF3-MF/HSF-3R, and fused with the other part truncated HPT
(amplified with primers hpt-SPLF/hptHSF3-MR) using PCR. After that, the two fused
fragments were used for protoplast transform (Supplementary Figures S2 and S3).

Protoplast preparation and transformation were conducted as described previously [36].
The transformants were selected by resistance to chlorimuron ethyl or hygromycin B. To
verify the correct integration of the recombinant fragments into the target site of the genome,
two independent PCR diagnoses were conducted with the primer pairs HSF-DF/hpt-DR
and niiA-DF/HSF-L-DR, with one primer being located outside of the homologous frag-
ments and one being located inside of the expression cassette for each primer pair. In
addition, an additional PCR was conducted to confirm the correctness of the inducible ex-
pression cassette, with one primer complementary to the beginning of PniiA and the other
primer complementary to the down-stream sequence of Cghsf1. Besides, the full length
of Cghsf1 in the GFP/FLAG tagged strains were amplified and sequenced for correctness.
After that, the heterokaryon of the correct transformants were purified by single conidia
isolation. The primers used are listed in Supplementary Table S2.

2.4. Pathogenicity Assay

The pathogenicity assay was performed as described in our previous report [36].
C. gloeosporioides conidia were collected and resuspended in 0.5% (w/v) malt extract broth
(Difco, Thermo Fisher, Waltham, MA, USA) to a final concentration of 2 × 105 conidia mL−1.
The intact “light green” leaves were detached from a rubber tree and used for the pathogen
inoculation. The leaves were divided into two groups, with one group of intact leaves and
the other group of leaves being pre-wounded with a sterile needle. Then, 5 µL of droplets
of the conidial suspensions were inoculated onto the leaves. After that, the inoculated
leaves were kept in Petri dishes with lids at 28 ◦C under natural illumination for 3 d, and
the disease symptoms were scored. Each treatment contained three replicates of 10 leaves,
and the entire experiment was repeated 3 times.

2.5. Quantitative RT-PCR Analysis

For the analysis of the expression levels of CgniiA, CgniaD, and Cghsf1 in response
to different nitrogen sources, C. gloeosporioides WT strain were cultured on a minimal
medium (0.5 g L−1 KCl, 1 g L−1 KH2PO4, 0.5 g L−1 MgSO4·7H2O, 0.01 g L−1 FeSO4.7H2O,
20 g L−1 sucrose, pH 6.9) supplemented with NaNO3 (20 mmol L−1), ammonium tartrate
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(C4H12N2O6) (10 mmol L−1), and glutamine (10 mmol L−1) as nitrogen sources. The
expression levels of Cghsf1 in the repressive mutant strain during in vitro and in planta
stages were also assayed. For the collection of in vitro samples, conidia were inoculated into
the liquid minimal medium supplemented with different nitrogen sources at a concentration
of 106 conidia mL−1; after incubation at 160 rpm, 28 ◦C for 1 d, the mycelium was collected
and used for RNA extraction. For the collection of in planta samples, the strains were
inoculated onto pre-wounded leaves as mentioned above. After incubation at 28 ◦C
for 2 d, the lesion area in the leaves were gathered and used for RNA extraction. The
samples were disrupted in liquid nitrogen using a mortar with a pestle, and the RNA
was extracted according to the manufacture’s instruction by using the RNAprep Pure
Plant Plus Kit (TIANGEN Biotech, Beijing, China). First strand cDNA was synthesized
with FastKing gDNA Dispelling RT SuperMix (TIANGEN Biotech, Beijing, China). Then,
a quantitative RT-PCR analysis was performed with ChamQ SYBR Color qPCR Master
Mix (Vazyme, Nanjing, China) via the QuantStudio 6 (Thermo Fisher, Waltham, MA,
USA). The primers named as gene-QF/gene-QR were used to perform the experiment
(Supplementary Table S2). The β2-tubulin coding gene was used as an endogenous control
for normalization. All the reactions consisted of three biological replicates.

2.6. Appressorium Formation Assay

Polyester with a thickness of 25 µm was placed on water agar; then aliquots of
the conidia suspension were inoculated onto the polyester to induce the appressorium
formation. After incubation at 28 ◦C for 8 and 18 h, conidia germination behavior and
appressorium formation were investigated under a microscope. At least 100 conidia
were observed to calculate the appressorium formation rate. Each strain contained three
biological replicates and the experiment was repeated twice.

2.7. Melanin Content Measurement

The melanin content was measured with the Fungal melanin quantification kit (GEN-
MED SCIENTIFICS INC, Wilmington, DE, USA). Briefly, the conidia of the strains were
inoculated into a liquid minimal medium supplemented with glutamine (10 mmol L−1)
as nitrogen source with the initial concentration of 104 conidia mL−1, and incubated at
160 rpm, 28 ◦C for 3 d. The mycelium was collected and grounded to a fine powder in
liquid nitrogen. Then, 0.1 g of the powder was used for melanin extraction according to the
manufacture’s protocol. After that, the melanin content was quantitated at 360 nm using a
spectrophotometer (Eppendorf, Donau City, Germany). Both WT and the mutant contained
three biological replicates.

2.8. Chromatin Immunoprecipitation (ChIP) and Quantitative PCR Analysis

ChIP analysis was performed according to our previous work with some modifica-
tion [37]. The FLAG-tagged mutant strain was used for the ChIP assays. The protoplast
was prepared and adjusted to the concentration of 107 cell mL−1, with a total volume
of 10 mL. Genomic DNA and protein were cross-linked with 0.75% of formaldehyde for
10 min and the reaction was then stopped using 125 mmol L−1 glycine. Then, the sample
was added with ChIP lysis buffer, and the nuclei were isolated by centrifugation at 4 ◦C,
1000× g for 10 min. After re-suspended with ChIP shearing buffer, the chromosome was
sonicated for 5 min, with the pulse of 8 s sonication and 5 s interval, to an average size of
200–500 bp via a Vibra-Cell Processors (Sonics, Newtown, CT, USA). A small aliquot of
sonicated chromatin was used as the input DNA control. After that, the chromatin solution
was immunoprecipitated using Anti-FLAG® M2 Magnetic Beads (Sigma-Aldrich, Louis,
MA, USA) for 12 h at 4 ◦C with rotation; the sample incubated with IgG2a Magnetic Beads
(MBL BEIJING BIOTECH, Beijing, China) was used as a mock/negative control. After the
reverse of the cross-link and DNA purification, the enrichment of the promoter regions
surrounding heat stress elements (HSEs) were determined by real-time quantitative PCR.
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Each sample contained three replicates and the experiment was conducted twice. The
primers used are listed in Supplementary Table S2.

2.9. Recombinant Protein Preparation and Electrophoretic Mobility Shift Assay (EMSA)

EMSA analysis was performed as described by Ream et al. [38]. The coding sequence
of Cghsf1 was amplified, digested with KpnI and HindIII, and cloned into the same sites
of pCOLD vector. The recombinant vector was transformed into Escherichla coli strain
BL21 (DE3). The expression of the recombinant proteins was induced by isopropyl β-D-
1-thiogalactopyranoside at 16 ◦C and purified with Ni-NTA Superflow (QIAGEN, Venlo,
The Netherlands) according to the manufacturer’s instructions. Oligonucleotide probes
containing the HSE element were synthesized based on sequences of the target gene
promoters. A total of 40 ng of double-stranded probes and 10 mg of protein were mixed in
50 µL volume and incubated at 25 ◦C for 2 h. After incubation, the samples were loaded
into 2% (w/v) agarose gel and electrophoresis was conducted using 0.5 × TB buffer at
10 V/cm. After staining with ethidium bromide (EB), the agarose gel was visualized using
a GelDoc imager system (BIO-RAD, Hercules, CA, USA).

2.10. Statistical Analysis

Data with a single variable were analyzed by one-way ANOVA, and mean separations
were performed by Duncan’s multiple range test. Differences at p < 0.05 were considered
significant.

3. Results
3.1. Identification and Bioinformatic Analysis of CgHSF1

The HSF1 protein coding gene Cghsf1 was identified in the C. gloeosporioides genomic
sequence. Cghsf1 contains a 2181 bp open reading frame separated by one intron, and it
encodes the protein CgHSF1 of 727 amino acids (Supplementary Table S1). To investigate
the similarity relationships of CgHSF1 between other fungal HSF1 proteins, an unrooted
phylogenetic tree was constructed (Figure 1A). The phylogenetic analysis indicated that
HSF1 proteins are highly conserved in plant pathogenic fungi, and CgHSF1 has a higher
similarity to that of other Colletotrichum genus. Through searching against the Pfam
database, CgHSF1 was found to contain a conserved HSF type DNA-binding domain at
the 137–238 amino acids (Figure 1B).

3.2. Subcellular Localization of CgHSF1

To investigate the subcellular localization of CgHSF1, the CgHSF1-sGFP tagged strain
was constructed (Figures 2A and S2). The strain expressing sGFP, which is driven by the
promoter of glyceraldehyde-3-phosphate dehydrogenase gene from Aspergillus nidulans
(PgpdA), was used as control check (CK). A thin layer of yeast casein sucrose (YCS) medium
(1g L−1 yeast extract, 1g L−1 acid hydrolyzed casein, 2% w/v sucrose, 0.5% w/v agar, pH 6.9)
was plated into dimples of slides. Then, a conidia suspension in ddH2O was inoculated
on the medium and the slides were kept in Petri dishes with lids at 28 ◦C for 12–16 h.
After incubation, the slide was observed under a confocal. The results showed that the
fluorescence of the CK was located in both the cell nucleus and cytoplasm, whereas that of
CgHSF1-sGFP was mainly located in the cell nucleus, as evidenced by the co-localization
of 4′,6-diamidino-2-phenylindole (DAPI) staining (Figure 2B).

3.3. Generation of the PniiA-Cghsf1 Strain

We firstly tried to construct the Cghsf1 knock-out mutant via a recombination strategy
(Supplementary Figure S1), but the results of three round transformation attempts were
unsuccessful; coupled with the previous reports [39], we concluded that Cghsf1 is essential
for the viability of C. gloeosporioides. Therefore, we generated the mutant strain in which
Cghsf1 was under the control of a repressive promoter PniiA (Figures 3A and S4). Three
independent PCR diagnoses and sequencings verified that the two recombinant fragments
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were correctly integrated into the locus between “ATG” of Cghsf1 and its native promoter;
and the expression cassette of PniiA-Cghsf1 was also correct in sequence (Figure 3B). After
purification by a single conidia isolation, the mutant strain was named as PniiA-Cghsf1.
After that, the transcription levels of Cghsf1 in the PniiA-Cghsf1 strain during in vitro and
in planta stage were investigated. Through qRT-PCR, we found that the expression level of
Cghsf1 in PniiA-Cghsf1 was about 4.27-fold lower than WT during in planta stage, whereas
when cultured on medium in vitro, the transcripts of Cghsf1 in the mutant were 4.21-fold
higher than that of WT (Figure 3C). These results suggested that in the mutant strain
PniiA-Cghsf1, Cghsf1 was significantly repressed in planta.
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indicate the nucleotides of 5′ part of Cghsf1 with about 800 bp. (B) Strategy for the construction
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3.4. CgHSF1 Is Required for Pathogenicity

To analyze the role of CgHSF1 in the pathogenicity of C. gloeosporioides to Hevea, the
conidia of the strains were inoculated on detached leaves with or without wounds. The
results showed that WT strain caused typical anthracnose symptoms on the intact leaves
with a disease incidence of 55%, and the lesions were about 7 mm in diameter at 3 dpi;
whereas the PniiA-Cghsf1 caused no lesions on the intact leaves (Figure 4A–C). When
inoculated onto the pre-wounded leaves, both WT and PniiA-Cghsf1 successfully infected
the leaves (Figure 4D,E); however, the lesion diameters caused by PniiA-Cghsf1 were merely
2 mm, in comparison with that of 8 mm in WT (Figure 4F). These results suggested CgHSF1
is required for the pathogenicity of C. gloeosporioides through the regulation of both the
initial infection process and the following hyphae development in host cells.
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Figure 4. Pathogenicity assay of PniiA-Cghsf1. Figures and the data were captured at 3 d post
inoculation. Disease symptoms of the intact rubber tree leaves (A) and pre-wounded leaves (D).
Disease incidence of the intact rubber tree leaves (B) and pre-wounded leaves (E). Lesion diameters
in the intact rubber tree leaves (C) and pre-wounded leaves (F). Values are shown as the means
± standard deviations (SD) of three groups of samples. Asterisks indicate significant difference at
p < 0.05 (*) and p < 0.01 (**).

3.5. CgHSF1 Plays a Role in Appressorium Formation

To investigate whether CgHSF1 is involved in appressorium formation, the conidia
of PniiA-Cghsf1 was inoculated onto polyester and the germination behavior was ana-
lyzed. The results showed that WT and PniiA-Cghsf1 had similar germination rates after
incubation for 8 h (Figure 5B). In addition, about 73% of the WT conidia formed typical
appressoria, together with the melanin deposition at the appressorium cell wall, whereas
only 23% conidia of PniiA-Cghsf1 formed appressoria with abnormal shapes and longer
germ tubes; furthermore, there is little melanin deposition in these abnormal appressoria.
After incubation for another 10 h, over 80% of the WT conidia formed appressoria with
obvious melanism; in comparison, only 34% conidia of PniiA-Cghsf1 formed appressoria,
most of which are with abnormal shapes (Figure 5A,C).
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Figure 5. Conidia germination and appressorium formation analysis. (A) Microscopes of conidia
after incubation on polyester for 8 and 18 h. AP: appressoria. GT: germ tube. Bar = 50 µM. (B) Conidia
germination rates of WT and PniiA-Cghsf1 strains. (C) Appressorium formation rates of WT and
PniiA-Cghsf1 strains. Values are shown as the means ± standard deviations (SD) of three groups of
samples. Asterisks indicate significant difference at p < 0.01 (**).

3.6. CgHSF1 Plays a Role in Melanin Biosynthesis

To investigate whether CgHSF1 plays a role in melanin biosynthesis, the melanin
biosynthesis in the PniiA-Cghsf1 mutant was observed and measured. WT and PniiA-
Cghsf1 strains were cultured on solidified minimal medium supplemented with different
nitrogen sources for 6 d. The results (Figure 6A) showed that when cultured on the rich
medium with yeast extract as the nitrogen source, WT and the PniiA-Cghsf1 mutant showed
a higher growth rate than that cultured with the other nitrogen sources, and the colonies of
the two strains were both with obvious melanism at 3 and 6 d. When cultured on a medium
with NaNO3 as the sole nitrogen source, the mutant showed a decrease in colony growth
rate than WT (Figure 6B); besides, both WT and the mutant showed obvious melanism
at 6 d. When cultured on minimal medium with ammonium tartrate and glutamine, WT
colonies showed a strong melanism at 3 d; in comparison, those of the PniiA-Cghsf1 showed
only a little melanism; in addition, after culture for another 3 d, the PniiA-Cghsf1 mutant
still produced obviously less melanin than WT on the medium with glutamine. Then, WT
and the PniiA-Cghsf1 mutant strains were incubated in a liquid medium supplemented
with glutamine, and the melanin content was quantitated. After incubation in the liquid
medium for 3 d, the mycelium of WT produced 485 µg melanin per g of fresh mycelia,
while that of PniiA-Cghsf1 was only 202 (Figure 6C). These results suggest that CgHSF1
plays a role in melanin biosynthesis.
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Figure 6. Growth analysis and measurement of melanin biosynthesis. (A) Colony morphology
(bottom) of WT and the PniiA-Cghsf1 mutant after growth on minimal medium supplemented with
yeast extract (YE, 2 g L−1), NaNO3 (20 mmol L−1), ammonium tartrate (C4H12N2O6) (10 mmol L−1),
and glutamine (10 mmol L−1) as nitrogen sources. (B) Colony area after growth on minimal medium
for 3 and 6 d. (C) Quantitation of melanin after growth in a liquid minimal medium supplemented
glutamine for 3 d. Columns with asterisks indicate significant difference at p < 0.05 (*) and p < 0.01 (**).

3.7. CgHSF1 Regulates Transcription of Melanin Biosynthesis Genes

There was a total of eight proteins involved in melanin biosynthesis being identified
in C. gloeosporioides, including the transcription factor CMR1, polyketide synthase (PKS),
polyketide shortening (YG), HN reductase (T4HRa and T4HRb), scytalone dehydratase
(SCD), multicopper oxidase (T3HR), and laccase (Supplementary Table S2). To investigate
whether CgHSF1 regulates the transcription of these melanin biosynthesis pathway genes,
the qRT-PCR was conducted. The results showed that these genes except for T3HR were
significantly down-regulated in both the appressoria and in planta hyphae of PniiA-Cghsf1
(Figure 7).
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Figure 7. Normalized expression levels of melanin biosynthesis pathway genes in the appressoria
and in planta stages of PniiA-Cghsf1. The β2-tubulin coding gene was used as an endogenous control
for normalization. Values are shown as the means ± standard deviations (SD). Asterisks indicate
significant difference at p < 0.05 (*) and p < 0.01 (**).

3.8. CgHSF1 Directly Binds to the Promoters of Melanin Biosynthesis Genes

The presence of HSE (GAAnTTC and GAAnnTTC) elements was examined in the 2
kb upstream regions of these melanin biosynthetic genes. The in silicon analysis showed
that seven of eight genes except PKS contain at least one HSE element in their promoters.
Therefore, we performed a ChIP-qPCR using the CgHSF1-FLAG tagged strain. The chro-
matin pellet was immunoprecipitated using Anti-FLAG, and the enrichment of promoter
fragments containing HSEs was expressed as the percentage relative to the input DNA. The
results show an enrichment in the promoter regions of four genes, CMR1, YG, T4HRa, and
SCD, compared with when nonspecific antibodies (IgG2a) were used (Figure 8). Addition-
ally, the control experiment with the promoter region of β2-tubulin showed that there is no
non-specific enrichment for the sequences that do not contain HSE elements. Furthermore,
the bindings of CgHSF1 to the corresponding probes containing HSEs of the four candidate
genes were confirmed by the gel shift bands of the EMSA assay (Figure 9). Taken together
with the gene expression analysis that revealed that the expression of melanin-related genes
was lower in the mutant than in WT, these data suggest that CgHSF1 directly binds to the
promoters and activates the transcription of these four melanin-biosynthesis-related genes.
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ducing virulence factors, including effectors, enzymes, and secondary metabolites. The 

expression of the related genes is under tight regulation to assure successful infection and 

Figure 8. ChIP-qPCR assays indicated that CgHSF1 directly binds to the promoters of four melanin
biosynthesis genes. The promoter structures are shown in the schematic diagrams. Blue boxes
with numbers represent the positions of HSE elements to the translational start site. Green frag-
ments represent the regions used for ChIP-qPCR. Values are the percentage of DNA fragments that
were coimmunoprecipitated with specific anti-FLAG antibodies or non-specific antibodies relative
to the input DNA. Error bars represent the standard deviations (SD) of three independent exper-
iments. Asterisks indicate significant difference at p < 0.05 (*) and p < 0.01 (**) between samples
co-immunoprecipitated with anti-FLAG and IgG2a.
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Figure 9. Gel mobility shift assays revealed that CgHSF1 directly binds to the HSE elements in the
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4. Discussion

Pathogenic fungi have evolved sophisticated mechanism to infect their hosts by pro-
ducing virulence factors, including effectors, enzymes, and secondary metabolites. The
expression of the related genes is under tight regulation to assure successful infection and
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colonization. Our goal was to determine if the HSF transcription factor modulates virulence
in C. gloeosporioides. The phylogenetic analysis and protein domain analysis revealed that
CgHSF1 is highly conserved in phytopathogenic fungi, and it contains a typical HSF-type
DNA-binding domain. The microscopic analysis showed the specific subcellular location
of CgHSF1 in the nucleus. These results confirmed that CgHSF1 is a transcription factor.
To investigate its biological functions, we firstly tried to construct the Cghsf1 knock-out
mutant. However, the failures of the attempts suggested that CgHSF1 is essential for the
viability C. gloeosporioides. Similar results were also found in HSFs of C. albicans, which are
required for core gene expression [39]. In many filamentous fungi, nitrite reductase (niiA)
and nitrate reductase (niaD) genes were inducible by the presence of nitrate when cultured
in vitro [40–42]. In this study, we found that the transcription of CgniiA was dramatically
repressed when cultured with glutamine as the sole nitrogen source and during the in
planta stage (Supplementary Figure S4). Therefore, the promoter of CgniiA (PniiA) was
used to modulate the expression of Cghsf1, and the mutant PniiA-Cghsf1 was constructed
by inserting the PniiA promoter between the coding sequence of Cghsf1 and its native
promoter. The following qRT-PCR analysis showed that the expression level of Cghsf1 in
PniiA-Cghsf1 was induced by NaNO3 and repressed by glutamine when cultured in vitro;
moreover, the expression level of Cghsf1 was reduced about fourfold than that of WT during
in planta colonization.

Then, the pathogenicity of PniiA-Cghsf1 was assayed to investigate the role of CgHSF1
in the infection process. Here, the Hevea leaves were inoculated in two ways, with one
group of leaves being pre-wounded and the other non-wounded. When inoculated onto
the wounds of leaves, PniiA-Cghsf1 could infect the leaves and formed typical anthracnose
symptoms; however, the lesion diameter caused by the mutant was significantly smaller
than that of WT. Microorganisms that colonize plants are continually challenged with plant
defense responses, of which the oxidative burst, the rapid release of reactive oxygen species
(ROS), is one of the earliest responses of plant hosts against pathogens at the invasion
site [43,44]. In our previous work, rubber tree leaves were found to have a strong ROS
burst after the infection of C. gloeosporioides [36]. Moreover, HSF1 and its downstream
target HSP90 is well known to play a primary and global role in stress responses in
eukaryotic organisms [19,45]. In the soybean stem and root rot pathogen Phytophthora
sojae, PsHSF1 is critical for the pathogenicity of the pathogen by detoxifying the plant’s
oxidative burst [46]. Thus, we speculated that the attenuated pathogenicity of PniiA-Cghsf1
was mainly due to the decreased tolerance to oxidative stress. Meanwhile, when inoculated
onto the intact leaves, PniiA-Cghsf1 caused no lesion at all, suggesting that the mutant
lost ability to penetrate the leaves. Colletotrichum species breach the intact cuticles of
plant hosts via the formation of the specialized structures called appressoria [3]. So, the
appressorium formation of PniiA-Cghsf1 was surveyed. The results showed that depletion
of Cghsf1 significantly decreased appressorium formation; moreover, PniiA-Cghsf1 only
formed appressoria with abnormal shapes and relative long germ tubes, and there is
little melanin deposition in these abnormal appressoria. A series of proteins are already
known for being involved in appressorium formation in pathogenic fungi, including cell
cycle control regulators [47], autophagy components [48], MAP kinase pathway and the
cAMP response pathway [49–51]. In the human pathogen C. albicans, HSF1 is required for
virulence via controlling cell transition from yeast to filamentous growth [34]. These results
enlightened us that CgHSF1 might control the cell developmental transition from germ
tube to appressorium via interaction with these pathways, although there are different
mechanisms in pathogenicity between C. albicans and plant pathogenic fungi.

It is interesting that melanin deposition was significantly impaired in the abnormal
appressoria of PniiA-Cghsf1. There are two well-characterized pathways for melanin biosyn-
thesis, the DOPA pathway and the DHN pathway [52,53]; and most of plant pathogenic
fungi synthesize melanin via the DHN pathway. Melanin is well known for its biological
function in the detoxification of ROS and protection against environmental stresses in living
cells. In plant pathogenic fungi, melanin plays a myriad of biological roles in morphogen-
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esis, virulence, and energy transduction [54,55]. To investigate whether the depletion of
Cghsf1 impairs melanin biosynthesis, the PniiA-Cghsf1 mutant was cultured on a solidified
or in liquid minimal medium supplemented with different nitrogen sources. The colony
growth analysis showed that induction or repression of transcription of Cghsf1 did not
impair the vegetative growth, but significantly influenced the melanism in the PniiA-Cghsf1
mutant. When the expression of Cghsf1 was induced by nitrate, the colony melanism
was observational increased in the mutant compared with WT, while when Cghsf1 was
repressed by glutamine, the colony melanism was significantly reduced in the mutant,
which was in accordance with the melanin quantitation results. Notably, the melanization
of appressoria is indispensable for the successful infection of intact leaves, for it is required
for development of high pressures within appressoria [56] and/or cell-wall rigidity in
appressoria of the corn pathogen [57]. Then, the effect of CgHSF1 on the transcription of
melanin biosynthesis enzymes was analyzed via a qRT-PCR analysis. The results showed
that in the PniiA-Cghsf1 mutant, transcripts of six of seven melanin biosynthesis genes were
significantly reduced in the appressoria, and all seven genes were reduced in the in planta
tissues.

In fungi, the genes involved in secondary metabolite biosynthesis are frequently
physically linked in the genome, which are named as clusters; in addition, expression of
these gene clusters depends on specialized TFs [58]. Here, we found that transcription of
the TF CMR1, the transcriptional activators of melanin biosynthesis [59,60], was down-
regulated in PniiA-Cghsf1. Although HSF proteins display a wide variability between
different species, the heat shock element (HSE) that targeted by HSFs are well conserved.
The HSE consists of three contiguous repeats of the short sequence 5′-nGAAn-3′ [61].
The examination of the promoter regions of these seven melanin biosynthesis genes and
CMR1 showed that CMR1, YG, T4HRa, and SCD, contained at least one HSE element
(Supplementary Table S1). The following ChIP-PCR and EMSA analysis confirmed that
the four genes were direct targets of CgHSF1. Although the other four genes, PKS, T4HRb,
T3HR, and Laccase were not identified as the direct targets of CgHSF1, their transcriptions
were also under the regulation of CgHSF1. We speculated that it is because that these four
genes are the direct targets of CMR1 [52,53], and CgHSF1 could regulate their transcription
in an indirect way. These findings revealed that, in addition to CMR1, CgHSF1 may also
function as transcriptional activators of melanin biosynthesis.

Taken together, we conclude that CgHSF1 is involved in the pathogenicity of C.
gloeosporioides through the activation of melanin biosynthesis genes and the regulation of
appressorium formation (Figure 10). Our study extends the understanding of fungal HSF1
proteins, especially their involvement in pathogenicity.
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