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Abstract  
Objective: A computational model of insulin secretion and glucose metabolism for assisting the diagnosis 

of diabetes mellitus in clinical research is introduced. The proposed method for the estimation of parameters for 
a system of ordinary differential equations (ODEs) that represent the time course of plasma glucose and insulin 
concentrations during glucose tolerance test (GTT) in physiological studies is presented. The aim of this study 
was to explore how to interpret those laboratory glucose and insulin data as well as enhance the Ackerman math-
ematical model. Methods: Parameters estimation for a system of ODEs was performed by minimizing the sum 
of squared residuals (SSR) function, which quantifies the difference between theoretical model predictions and 
GTT's experimental observations. Our proposed perturbation search and multiple-shooting methods were applied 
during the estimating process. Results: Based on the Ackerman's published data, we estimated the key param-
eters by applying R-based iterative computer programs. As a result, the theoretically simulated curves perfectly 
matched the experimental data points. Our model showed that the estimated parameters, computed frequency and 
period values, were proven a good indicator of diabetes. Conclusion: The present paper introduces a computa-
tional algorithm to biomedical problems, particularly to endocrinology and metabolism fields, which involves two 
coupled differential equations with four parameters describing the glucose-insulin regulatory system that Acker-
man proposed earlier. The enhanced approach may provide clinicians in endocrinology and metabolism field in-
sight into the transition nature of human metabolic mechanism from normal to impaired glucose tolerance.

Key words: Coupled ordinary differential equations, glucose tolerance test, parameters estimation, sum of 
squared residuals, cost function, multiple shooting method

INTRODUCTION
Diabetes mellitus is a chronic metabolic disorder 

characterized by abnormally high urine and blood 
glucose levels (i.e., hyperglycemia) due to insufficient 

insulin levels. Based on the statistics of American 
Diabetes Association (ADA)[1], approximately 23.6 
million people, or 7.8% of the population, in the USA 
are afflicted with this disease. While an estimated 17.9 
million people have been diagnosed with diabetes, 
regrettably, 5.7 million people (or nearly one quarter) 
are unaware that they have the disease. The total an-
nual economic cost of diabetes in 2007 was estimated 
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to be $174 billion. Diabetes can cause serious health 
complications including blindness, heart disease, kid-
ney failure, stroke, nerve damage, and lower extremity 
amputations. According to the statistical report from 
Centers for Disease Control and Prevention (CDC), di-
abetes is the sixth leading cause of death in the USA[2]. 
Consequently, diagnosis, treatment, control and pre-
vention of diabetes, are extremely critical in the cur-
rent medical era.

In a normal subject, the beta-cells (β -cell) in the 
pancreas release insulin in response to rises in the 
level of glucose in the blood, which results in the 
storage of this source of energy as glycogen in the 
liver. Type Ⅰ diabetes, also called juvenile or insulin-
dependent diabetes mellitus (IDDM), often manifests 
in childhood and may result from autoimmune de-
struction of insulin-producing β-cells of the pancreas. 
Thus, insulin hormone can no longer be produced. 
This type of diabetes is fatal without treatment with 
exogenous insulin to replace the missing hormone or 
providing patients with a functional replacement for 
the destroyed pancreatic β-beta cells, such as pancreas 
or islet-cell transplantation. Type Ⅱ diabetes (for-
merly called non-insulin-dependent diabetes mellitus, 
NIDDM, or adult-onset diabetes), a more widespread 
metabolic disorder, is primarily characterized by in-
sulin resistance, relative insulin deficiency and hy-
perglycemia. Some cases of type Ⅱ diabetes also ap-
pear to be an autoimmune disease where the immune 
system attacks the β-cells, decreasing the function of 
producing insulin, while other type Ⅱ diabetes cases 
may simply result from excessive body weight that 
strains the ability of the β-cells to produce sufficient 
insulin. However, in both type Ⅰ and type Ⅱ cases, 
the human body loses its ability to regulate blood 
sugar, which causes a significantly negative effect on 
the patients' quality of life or even be potentially fatal.

It is a common knowledge that blood glucose con-
centration in normal humans is maintained within a 
precise and stable range. Many external and internal 
factors affect the level of blood glucose such as food 
intake, rate of digestion, excretion, exercise, sleep, and 
psychological state. These individual or combinational 
influences constantly alter the physiological proc-
esses that regulate plasma glucose level. For instance, 
if blood glucose is elevated, after a regular meal (i.e., 
post-prandial), certain cells in the pancreatic islets 
of Langerhans named β-cells, will release the insulin 
hormone. The secreted insulin, then, leads to the up-
take of glucose from the blood into the liver and other 
cells, such as muscle cells. Thus, blood glucose level 
will eventually go down to the normal range. On the 
other hand, blood glucose level may decrease im-

minently due to muscular activity, particularly when 
food intake is confined. This reduced level of blood 
glucose is immediately recognized by other sensi-
tive pancreatic cells, the alpha-cells (α-cells). These 
cells then release glucagon that act on the cells of the 
liver to initiate the release of glucose. This results 
in blood glucose level elevating back to the normal 
range. Briefly, these islet-cell arguments establish the 
fact that the capacity to lower blood glucose depends 
on the responsiveness of the pancreatic beta-cells to 
glucose and the sensitivity of the glucose utilized by 
tissues to the released insulin. Thus, both pancreatic 
β-cell responsiveness and insulin sensitivity contribute 
to glucose tolerance. Low glucose tolerance in lean 
humans could be associated with diminished β -cell 
response to glucose, whereas low glucose tolerance 
in obese people could be associated with decreased 
insulin sensitivity. Furthermore, a shortage of plasma 
insulin and low glucose tolerance, resulting in a seri-
ous inability to lower blood glucose, will cause insulin 
resistance, which is the key symptom underlying the 
potential development of diabetes. However, to tackle 
diabetes disease and obesity problems, clinicians 
and researchers are now turning to mechanism-based 
mathematical models to reach quantitative diagnoses 
of glucose intolerance and insulin resistance, and also 
to predict the likely outcomes of therapeutic interven-
tions. Their ultimate goal is to develop a mathemati-
cal model that can be used to accurately predict the 
outcomes and most successful treatment options for 
people who have diabetes.

Speaking of theoretical solutions to diabetic prob-
lems, we should mention the term, "mathematical 
model", which is a representative depiction of a real 
system via mathematical tools in these medicines' 
golden years. The fundamental nature of a good 
mathematical model must be simple in design and 
exhibit the basic properties of the real system that we 
are attempting to simulate and understand. All well-
developed models should be validated and tested 
against empirical data. In a practical sense, the quan-
titative comparisons of the model to the real system 
should lead to an improved mathematical model. The 
successful model can be applied to suggest the cor-
responding experiment to highlight a particular aspect 
of the weakness or problem, which may improve the 
method of data collection or the procedure of experi-
mental processes. Thus, modeling itself is an evo-
lutionary process, which is a evolving procedure in 
which something changes into a different but better 
form. Similarly, developing and using a successful 
mathematical model will guide us to learn more about 
certain simulating or existing processes rather than 
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finding an entirely actual state of the system.
During the last few decades, a massive range of 

mathematical models, computer algorithms and sta-
tistical methods have been proposed in order to un-
derstand different aspects of diabetes, such as glucose 
metabolism, insulin kinetics, β -cell mass, and the 
glucose-insulin regulatory system. Several reviews have 
been devoted to mathematical models and diabetic 
disease[3-8] and are worthwhile to be referenced. Other 
than those reviewing journal articles, a pioneering 
work on modeling the glucose-insulin regulatory sys-
tem and its ultradian insulin secretory oscillations can 
be traced back to Bolie[9]. In this pioneering study, a 
system of glucose-insulin regulation in terms of cou-
pled differential equations of feedback was analyzed 
with the so-called critical damping criteria of a self-
regulating feedback system (i.e., servomechanism 
theory). The secretion of insulin in the glucose-insulin 
endocrine metabolic system occurs in an oscillatory 
manner over a range of 50-150 min and is usually re-
ferred to as ultradian oscillations[10]. In 1965 and 1969, 
Ackerman et al.[11,12] pioneered the concept of offering 
their full exploratory work for the blood glucose reg-
ulatory response to the glucose tolerance test (GTT), 
which was governed by two coupled differential 
equations. In the following sections, we will introduce 
their conceptually illuminating model in greater detail, 
and also develop our computational model, which will 
be validated by using their model equations and other 
published experimental data and results.

In order to determine whether or not a patient has 
pre-diabetes or diabetes, health care providers usu-
ally conduct a fasting plasma glucose (FPG) test or a 
GTT. The ADA recommends the FPG test because it 
is easier, faster, and less expensive. Therefore, in the 
following, several quantitative assessment methods 
are briefly introduced. Unquestionably, due to the ad-
vantage of skipping GTT procedures, fasting plasma 
glucose level is simpler and quicker to measure, and 
its measurement is more acceptable to patients than 
any glucose tolerance test.

The homeostasis model assessment (HOMA) is an 
index of insulin resistance (IR). It was developed by 
Matthews et al.[13,14] and derived from the product of 
FPG and fasting plasma insulin (FPI) divided by a 
constant, 22.5.

 	  					   
	                                                                         

where glucose is given in mg/dL and insulin is given 
in μU/mL. In this equation, the constant 405 should be 
replaced by 22.5 if the glucose is reported in mmol/L.

Since hepatic glucose production (HGP) is the main 

determinant of FPG concentration, and FPI concen-
tration is the main regulator of HGP, HOMA-IR index 
is practically a measure of hepatic IR. For easy in-
terpretation, lower HOMA-IR values indicate greater 
insulin sensitivity, whereas higher HOMA-IR values 
indicate lower insulin sensitivity (i.e., IR).

Another way to see this HOMA index function, an-
other index, insulin sensitivity (IS), is defined as

	  				               (1.2)

By applying the same fasting values, pancreatic 
β-cell function (HOMA β-cell) can be estimated by 
the evaluation form:

					                (1.3)

where the unit of FPI is μU/mL, and the unit of 
FPG is mmol/L.

Moreover, a worth mentioning index, Quantita-
tive Insulin Sensitivity Check Index (QUICKI)[15], is 
derived by calculating the inverse of the sum of loga-
rithmically expressed values of fasting glucose and 
fasting insulin:

	  					   
	

in which G0 is the fasting glucose level and I0 is 
the fasting insulin value. Many investigators and re-
searchers believe that QUICKI is superior to HOMA 
in determining insulin sensitivity, although those two 
values correlate well.

Other than the above fasting-value methods, the 
simplest and widely used test for detection of diabe-
tes is GTT. For this test, a subject fasts for 12 h, and 
is then given a large amount of glucose. During the 
next few hours, blood samples are drawn and glucose 
levels are measured and recorded. By fitting the GTT 
data to a mathematical model proposed by Ackerman 
et al.[11,12], the diagnosis information from the model 
can be applied to indicate which subject has diabe-
tes. This model is described by a differential equation 
system where the variables are deviations of glucose 
levels from the subject's baseline value in blood (in 
the morning after fasting overnight) and the similar 
deviation of insulin concentration. The differential 
equation system governing this GTT model is ex-
pressed as follows:(1.1)

(1.4)

(1.5)

(1.6)
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for both normal and diabetic subjects in the Results 
section. For the purpose of algorithm integration, the 
section "Computational methods and theory" will de-
scribe the mathematical formulation in greater detail. 
It has to be noted here that the analytical demonstra-
tion of an appropriate qualitative and quantitative 
behavior for this mathematical model is the great de-
parture point for the subsequent experimentally clini-
cal and theoretically numerical determination of an 
optimal key parameter for diagnosing the disease.

It has been reported that glycemic variability (or 
brittleness) scores can be assessed by both the Lability 
Index (LI)[16,17] and the Mean Amplitude of Glycemic 
Excursions (MAGE)[18-20] methods.

This LI score provides a measure of blood glucose 
variability in diabetes and is based on the square of 
change in levels of blood glucose from one reading to 
the next, divided by the time interval and summed for 
a week. A value of LI for each of 4 w is derived based 
on computing the following sum for each week in the 
period:

                                                                               (1.9)	
 						    

where glucose (mmol/L) is the ith reading of the 
week taken at time Houri. The upper bound, N, is 
the total number of readings in 1 w. The minimum 
and maximum time intervals used are 1 h and 12 
h, respectively. Consequently, the median LI in 
typeⅠ diabetes control subjects (n = 100) was 223 
m(mol/L)2/(h·week) (25th to 75th interquartile range: 
130-329). Patients who received islet transplant (n = 
51) had a median LI value of 497 m(mol/L)2/(h·week) 
(25th to 75th interquartile range: 330-692) before trans-
plantation. After transplantation, their median LI 
values became 40 m(mol/L)2h·week (25th to 75th inter-
quartile range: 14-83). It is clearly seen that there is a 
large decrease in LI scores after islet transplantation. 
This indicates that islet transplantation is effective in 
curing typeⅠdiabetes and also results in better glucose 
control (i.e., smaller blood glucose swings) for these 
patients, at least, for the first few years after their 
transplantations. It is also shown that the LI scoring 
system does provide a metric to make a quantitative 
comparison between patient groups and also comple-
ment the clinical assessment of glucose variability in 
diabetic patients.

The MAGE is another measurement and a reflection 
of how much blood glucose increases or decreases 
throughout a day. It measures the amplitude of the 
daily "large" blood glucose excursions. The question 
is "how large is the amplitude?" The answer is that the 
intraday glycemic excursions with their amplitudes 

where pi (i=1, 2, 3, 4), are positive constants, J is the 
rate of glucose infusion from the intestines (or intra-
venously), g(t) is the difference between blood glucose 
concentration G(t) and its baseline value G0, and i(t) 
is the difference between plasma insulin concentration 
I(t) and its baseline value I0, as shown in the following 
equations.

	
The reason for this variable transformation is be-

cause we are usually more interested in the difference 
values (i.e., fluctuations or excursions) of glucose and 
insulin (i.e., the relative values, not the absolute val-
ues). The diagram of this two-compartment model is 
shown in Fig. 1.

Fig. 1  Sketchy diagram of the mathematical model of 
the glucose-insulin regulatory system.

glucose infusion
oral intake J

Production Production

Utilization p1(-)

Plasma
Glucose

Plasma
Insulin

Plasma
Insulin

stimulates insulin secretion p3(+)

promotes glucose utilization p2(-)

(1.7)

(1.8)

The construction of the model equations (1.5) and 
(1.6) is based on the following hypotheses:

1) Each variable, g and i, has various influences 
upon the appropriate change speed with a negative 
feedback (i.e., utilization or clearance) process, which 
is shown as the parameters -p1 and -p4 in both equa-
tions.

2) An increase in blood gluose levels provokes an 
increase of insulin secretion, which is expressed as the 
positive feedback (i.e., stimulation) parameter +p3 in 
the second equation.

3) An increase of hormone insulin secretion leads 
to a reduction in blood glucose levels, which is for-
mulated as the negative feedback (i.e., utilization) 
parameter-p2 in the first equation.

The differential term dg/dt is defined as the change 
in blood glucose difference with respect to the change 
in time. Similarly, the expression di/dt is defined as 
the change in plasma insulin difference with respect 
to the change in time. To illustrate this method, we 
have simulated the glucose-insulin dynamics system 
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  In this figure, I(t) is the plasma insulin level, and Ib 
represents its basal level; G(t) is the plasma glucose 
level, and its basal level is denoted as Gb. The coupled 
differential equations corresponding to the glucose 
minimal model are expressed as

 			    			 

with G(0)=G0 and X(0)=0. In these equations, X(t) 
is the interstitial insulin at time t. There are a total of 
four unknown parameters in this model: G0, p1, p2, and 
p3, which are also defined with the units and brief de-
scriptions are provided below:
p1	 [min-1], glucose effectiveness, p1=SG, the rate of 

net glucose utilization without dynamic insulin 
response (i.e., insulin-independent).

p2	 [min-1], rate constant expressing the spontaneous 
decrease of tissue glucose uptake ability.

p3	 [min-2 (μU/mL)-1], insulin-dependent increase in 
tissue glucose uptake ability.

G0	 [mg/dL], theoretical glycemia at time 0 after the 
instantaneous glucose bolus.

The MM describes the time-course of glucose plas-
ma concentrations, depending upon insulin concentra-
tions and the new intermediate variable X, represent-
ing the "insulin activity in a remote compartment". 
This synthetically contrived and physiologically in-
accessible variable X plays a transitive role between 
blood glucose and plasma insulin. It is clearly shown 

are greater than one standard deviation (SD). Theo-
retically, the MAGE requires at least 14 blood glu-
cose measurements over consecutive 48 h before and 
2-h after breakfast, lunch and dinner, and at bedtime 
with an optional measurement at 3 AM. A glycemic 
excursion is then computed as the absolute differ-
ence in peak and subsequent nadir (or vice versa) 
glucose values, with the direction (decrease - peak to 
nadir vs increase - nadir to peak) determined by the 
first quantifiable excursion in the 48 h. All excursions 
greater than one SD of the 7+ glucose readings for 
the day were summed and divided by the number of 
qualified excursions to give the MAGE score in mg/
dL (or mmol/L) glucose. To emphasize major glucose 
swings and eliminate minor ones, however, excursions 
less than one SD are ignored. It is recognized that the 
MAGE scores are lower in healthy research partici-
pants than in diabetic research participants. In other 
words, the lower the MAGE score, the less severe the 
swings of the blood glucose levels. Roughly speaking, 
MAGE score average is approximately about < 90 
mg/dL in healthy subjects and about > 150 mg/dL in 
diabetic patients or subjects with poor glycemic con-
trol. As shown in the study by Ryan et al.[16,17], blood 
glucose excursions expressed as MAGE score were 
significantly lower after islet transplantation.

A well-known blood glucose meter, continuous glu-
cose monitoring system (CGMS), is an FDA-approved 
device that records subjects' blood glucose levels 
throughout the day and night. In other words, CGMS is 
used to provide continuous "real-time" readings about 
trends in blood glucose levels[21]. This may allow users 
to know the levels of their glucose and whether they 
are rising or falling and to intervene by eating food or 
taking insulin to prevent them from going too high or 
too low. Clinically, blood glucose regulation can be 
evaluated based on the CGMS device. DirecNet study 
group[22] has pointed out that no simple test currently 
exists for assessment of glycemic variability in pa-
tients with diabetes. They have done the first report to 
compare eight-point testing with CGMS as a means 
to evaluate glycemic control. Despite the much larger 
number of measurements with CGMS than with eight-
point testing, the overall mean glucose levels were 
nearly identical. However, these few-sample-point 
device and CGMS are the essential tools in measur-
ing the blood glucose levels, and the recorded data are 
used for physiologic analysis to control the glucose 
variance.

Recently, the Minimal Model (MM), proposed by 
the team of Bergman and Cobelli[23-35], is one of the 
most informative computational methods for studying 
glucose and insulin kinetics in metabolism. The MM 

for glucose kinetics is illustrated in Fig. 2. 

Fig. 2 The compartmental flow chart of the minimal 
model for glucose kinetics.

(1.10)

(1.11)
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that this virtual variable in equation (1.11) has re-
placed the position of the insulin variable in equation 
(1.6).

It is commonly recognized that MM is a well-known 
and successful mathematical model in simulating 
glucose metabolism and insulin kinetics. This is also 
why we cannot skip the introduction of the model. 
In our current study, however, we focused mainly 
on presenting a new approach of parameters estima-
tion on glucose-insulin regulatory system. Since MM 
has been extensively studied by many clinicians and 
researchers, we have restricted ourselves to only the 
coupled ordinary differential equations based on the 
Ackerman's model. Unquestionably, the application 
of MM using our proposed approach will be carried 
out in future trials.

COMPUTATIONAL METHODS AND 
THEORY

Glucose-insulin dynamics
The majority of mathematical models proposed 

in the literature were dedicated to the dynamics of 
glucose-insulin, including oral glucose tolerance test 
(OGTT), intravenous glucose tolerance test (IVGTT), 
and frequently sampled intravenous glucose tolerance 
test (FSIVGTT). In 1970, various mathematical mod-
els have been applied to evaluate glucose disappear-
ance and insulin-glucose dynamics[36-38]. Particularly, 
Bolie[9], among the pioneers in this field, used two 
coupled ordinary differential equations to constitute 
the following simple model:

where G = G(t) represents blood glucose concentra-
tion, I = I(t) represents plasma insulin and p, a1, a2, a3, 
and a4 are parameters.

In 2005, Wu[39] proposed the following model for 
self-management of type Ⅱ diabetes:

where x represents blood glucose level over the base-
line at time t and ω 0 is the system natural frequency. 
The postprandial blood glucose excursion can be con-
sidered as a hormone regulated springy system. The 
food intake is treated as a bolus injection of glucose 
and expressed as the impulse force f(t). Effects of 
exercises and hypoglycemic medication are lumped 
as the damping factor, β . The differential equation of 

such an oscillatory system, which is used to describe 
postprandial blood glucose excursions, can be found 
in many physics and mathematics textbooks.

Generally speaking, preprandial blood glucose lev-
els are generally fluctuating with relatively insignifi-
cant magnitudes, and, thus, can be approximated as 
a flat level. If the impulse force f(t) takes the form of 
the Dirac delta function, Fδ(t-0) with F being a food 
intake dependent parameter, the solution of equation 
(2.3) is given by

                                                                                (2.4)
where

                                                                                (2.5)
is the frequency of the system. As you can see from 
equation (2.4), it is described as a three-parameter 
model, F, ω  and β . Implications of these three param-
eters not only could reveal distinctive characteristics 
of diabetic and normal individuals but also provide 
guidelines to adjust diabetic patient's treatment and 
lifestyle.

It has been demonstrated in the study of Ackerman 
et al.[40] that the response of blood-glucose concentra-
tion (G) as a function of time (t) is represented ad-
equately by an equation involving four parameters in 
the equation: 

				  
The values of these four parameters are defined 

by the four experimental measurements (see Table 
1) usually made in an ordinary GTT. On the basis of 
measurements in over 750 persons in their study, it 
was suggested that the value of ω 0 could be used to 
distinguish normal from diabetic subjects more closely 
than any other parameters. It should also be noted that 
the solution of the oscillatory pattern in equation (2.6) 
has the same form as the expression in equation (2.4).

As indicated earlier, the mathematical models 
proposed by Ackerman[11,12,40], Bolie[9] and Wu[39] are 
the simplest models and have been indisputably use-
ful in physiological diabetes research and served as a 
starting point for many other models. Therefore, our 
present work extends the scope of the public-recog-
nized model by introducing a novel approach using 
the perturbation method for parameters estimation and 
the multiple-shooting method for solving two cou-
pled ordinary differential equations on glucose-insulin 
regulatory system.

The derived model equations in this study are writ-
ten as the forms in equations (1.5)-(1.8), which de-
scribes the blood glucose regulatory system during a 
GTT.  Actually, the starting equations are expressed 

(2.1)

(2.2)

(2.3)

(2.6)
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as these simple forms:

                                                                                (2.7)

 						    
                                                                                (2.8)

where t is time, G is blood glucose concentration, 
and I is plasma insulin concentration. The impulse 
function, J(t), is basically a delta function representing 
the large dose of glucose given initially in the GTT 
after the subject has fasted.  In this section, we only 
briefly list some key formulas and equations for the 
purpose of attracting readers' focus.

After a lengthy derivation, the deviation g(t) of a 
subject's blood glucose concentration satisfies the 
second-order differential equation:

	  			                            

                                                                               (2.9)
                                                                                
which can be rearranged as

	  						    
	

where the decay constant  , the natu-

ral frequency , and the input 

glucose impulse function  .  Dur-

ing a very short period of time at t = 0, the Q(t) can be 
expressed as a Dirac delta, δ , function. After starting 
GTT, t > 0, the Q(t) function is assumed to be zero.

In physics terminology, if a frictional (i.e., damp-
ing -α  term) force proportional to the velocity does 
exist, the harmonic oscillator will be described as a 
"damped" harmonic oscillator. When the damping 
factor, α , is greater than zero, the dynamic system will 
decay, but may or may not oscillate, depending on the 
relation between the damping factor α  and the natural 
frequency ω 0. As a consequence, the solution g(t) will 
have three possible outcomes:

1) When , the solution has an expo-
nential decay with the oscillatory component. This is 
called the "under-damping" solution.

2) When , the solution represents an 
exponential decay or growth. This is called the "over-
damping" solution.

3) When , the "critically damped" 
oscillator rapidly approaches the maximum position, 

and then smoothly drops to the equilibrium state.
However, all those curve tendencies may not be 

reflected as the same patterns on other damped os-
cillatory systems, as they really depend upon their 
amplitudes, angular frequencies and damping factors.  
Consequently, the period of oscillation is finally for-
mulated as

	                                                                 (2.11)

According to the general diabetologist's theory 
(detailed results and references in section Results), 
healthy individuals should satisfy the condition of 
T=2π /ω 0 < 4 h, conversely, while the reversed in-
equality of the period T indicated diabetic cases. As 
a matter of fact, this conditional situation actually 
occurs frequently in practice - the blood glucose con-
centration of a non-diabetic who has just absorbed a 
large amount of glucose will be at or below fasting 
level in 2 h or less.

Nonlinear Least Squares Fitting and Gauss 
Newton Method

The linear regression model is a system of linear 
equations that can express the model using data matrix 
X, response vector Y and parameter vector P. The ith 
row of X and Y will contain the x and y value for the ith 
data element. Thus, the model can be written as a de-
tailed matrix form:

                                                                                (3.1)

where ε  is the normally distributed random error term 
with the expected value of a column vector of zeros 
and variance σ 2 In, where In is the n×n identity matrix.

The pure matrix notation becomes
	  	       Y = XP + ε                               (3.2)
where
Y is an n-by-1 vector of responses
X is the n-by-m design matrix for the model, where 
m = 2
P is a m-by-1 vector of parameters, α and β, where 
m = 2
ε  is an n-by-1 vector of random errors

For nonlinear least squares fitting to a number of 
unknown equations' parameters, linear least squares 
fitting could be applied iteratively to a linear form of 
the function until convergence is achieved. Now we 
consider the nonlinear models of the form
                                yi = f (xi , P) + εi                                        (3.3)

(2.10)
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The least squares method still applies, with the sum 
of squared residuals (SSR) function to be minimized 
with respect to the parameter vector P. Please note that 
SSR is sometimes called RSS as it stands for residual-
squared-sum. The least square estimate of P, , is the 
set of parameters that minimizes the sum of squared 
residuals:

                                                                                
To obtain the normal equations, we consider the 

partial derivatives of SSR( ) with respect to each 
parameter , and set them equal to zero.  This gives 
us a system of m normal equations. Each normal equa-
tion is given by differentiating SSR( ),

	  			                             

                                                                                (3.5)

It yields

                                                                                (3.6)
	
Unfortunately, the partial derivatives of nonlinear 
functions are also functions of the parameters ; thus, 
an explicit solution (i.e., analytical solution) for  
cannot be obtained. We will have to get the solution 
by numerical optimization.

The basic concept of the Gauss-Newton optimiza-
tion method can be summarized as:

1) Use a Taylor series expansion to linearize a non-
linear function; 

2) Apply least-square theory to obtain new estimate 
of the parameters that move in the direction of mini-
mizing the SSR. 

If a continuous function is differentiable in p, it can 
be linearized locally as

                                                                                (3.7)

where J0 is the n×m gradient matrix with elements  

.   Here, the number of data points i = 

1, 2, 3, …, n, and the number of unknown equation 
parameters j = 1, 2, 3, …, m. This leads to the Gauss-
Newton algorithm for estimating the value of  p,

where matrix J0
t is the transpose of matrix J0 and ε is 

the vector of residuals. The Gauss-Newton algorithm 
will converge the estimated parameter values, , to 
the solution from a sufficiently good starting value. 
However, most of the nonlinear regression methods 
follow these standard steps:

1) Start with initial estimated values for each ad-
justable parameter in the equations.

2) Generate the data trajectory for the entire curve 
based on the initial input values. Independent random 
number generator and numerical integration subrou-
tine are required for implementation.

3) Calculate the sum-of-squares of the vertical dis-
tances of the data points from the curve. Or compute 
the weighted sum-of-squares if weighting factors are 
included.

4) Adjust the parameters to make the curve come 
closer to the data points by evaluating the correspond-
ing cost (or objective) function.

5) Stop the calculations and go to step 6 when the 
adjustments make virtually no difference in the sum-
of-squares or any available stopping criteria are sat-
isfied; if not, repeat simulation steps 2-4 with newly 
selected initial values.

6) Report the best-fitted parameter values.
Please note that steps 2, 3 and 4 are the only ones 

whose details differ from method to method.

The Perturbation Search Method
We should remark here that gradient-based meth-

ods frequently encounter divergent difficulties, and 
convergent case only occurs under certain restricted 
conditions. In addition, gradient-based methods usu-
ally pose the risk of being trapped in a local minimum, 
rather than in the global minimum. If inappropriate 
values of the initial parameter are selected and run 
for the entire simulation because they yield the best 
quality of data fit for the predefined working range, 
the incorrect conclusion will be drawn quickly with-
out letting developers having any further tests using 
other initial parameter sets. In common practice, local 
methods optimize the cost function directly with re-
spect to initial values and parameter vector. This opti-
mization scheme is often called initial-value approach 
or alternatively named "single-shooting method". Due 
to the presence of multiple minima in some cases, 
convergence of local optimization methods to the 
global minimum is usually limited to a rather small 
domain in search space. In contrast, global methods 
have an essentially larger convergence domain but the 
computational cost increases rapidly. At this point, it 
has to be mentioned that one of the stable and effec-
tive global searching methods is the multiple-shooting (3.8)

(3.4)
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algorithm developed by Bock[41-44]; a brief description 
will be given in the next subsection. The basic idea 
of the algorithm is to consider the task of the single 
initial-value approach as a multi-point boundary value 
problem. Mostly importantly, this multiple-shooting 
algorithm is used to incorporate the proposed pertur-
bation-search method in our current study. It has been 
concluded that single-shooting method steps quickly 
in local minima or runs into a divergent situation, 
whereas multiple-shooting method performs better 
than single-shooting approach at the expense of higher 
computational costs.

As a matter of fact, our concept of the perturbation 
search method was inspired by the prospect of ba-
sic perturbation theory. The principle of perturbation 
theory is to study dynamical systems that are small 
perturbations of integrable systems. Perturbation the-
ory is a technique in quantum mechanics for finding 
approximate solutions to real-world problems. It has 
a wide variety of applications throughout chemistry, 
physics and mathematics. In quantum mechanics, we 
often need to solve the Schrodinger equation that cor-
responds to a given physical potential or Hamiltonian. 
For a real-world potential or Hamiltonian, finding a 
solution analytically is almost impossible. In pertur-
bation theory, a complicated potential is broken down 
into a solvable potential (without perturbed terms), 
plus a small-change remainder. Basically, we solve the 
first part (without perturbed terms) of the equation as 
the reference solution, and then consider how the sec-
ond part (with perturbed terms) influences our answer. 
In general, perturbation theory solves such problem 
in two steps. First, we obtain the eigenfunctions and 
eigenvalues of the unperturbed Hamiltonian. Second, 
these eigenfunctions and eigenvalues are corrected to 
account for the perturbation's influence. As a matter 
of fact, perturbation theory gives these corrections as 
an infinite series of terms, which become increasingly 
smaller for well-behaved dynamic systems. Quite fre-
quently, the corrections are only taken through first 
or second order. As long as the perturbation is small 
compared to the unperturbed potential or Hamilto-
nian, perturbation theory will tell us how to correct the 
solutions to the unperturbed problem and to approxi-
mately account for the influence of the perturbation. 
It has to be indicated that this theory has no direct 
relationship with our mathematical model, but it does 
serve as a stimulant to creative thought of our ODE's 
parameters estimation approach.  Recently, we have 
presented a perturbation-based estimate algorithm for 
parameters of coupled ordinary differential equations 
and its application from chemical reactions to meta-
bolic dynamics[45].

Perturbation search is a systematic direct search 
method for solving optimization problems that does 
not require any information about the gradient of the 
cost function. However, it does require the presence 
of pre-defined perturbed values for each parameter 
pi. Briefly speaking, the algorithm searches a set of 
symmetric points around the current parameter val-
ues, looking for the points where the cost function is 
lower than the cost function at the previous parameter 
set. This systematic direct search method can be used 
to solve a variety of parameters' estimation problems 
that are not well suited for standard optimization al-
gorithms, including problems in which the cost func-
tion is discontinuous, nondifferentiable, stochastic or 
highly nonlinear.

While the gradient of cost functions is evaluated, 
the derivatives of the cost function can be intuitively 
known and simply formulated as

                        
                                                                                (4.1)

Thus, it is computed numerically through the finite 
difference method. The choice of  can be rather in-
fluential, and generally  should be taken as some 
fractional part of pj, such as 0.01 or 0.1.

Speaking of the gradient function or the "deriva-
tive" term in mathematics, we should also mention 
that, although the term of the gradient of cost function, 
such as the expression in the above equation, is not 
meaningful, it has already conveyed some sense of the 
"directional derivative". In light of equation (31), it is 
also worthwhile to note that instinctive understanding 
of the principles of metabolic dynamics that govern 
how the trajectories or cost functions move in vari-
ous situations is vital to success in parameters search-
ing. As everyone knows, in calculus, the derivative is 
a measurement of how a function changes when the 
values of its inputs change. Loosely speaking, a de-
rivative can be thought of as how much a quantity is 
changing at some given point. To interpret this term, 
a directional derivative, a partial derivative of f that 
measures its variation in the direction of the coordi-
nate axes, should be introduced here, which enables us 
to find the rate of change of a function of two or more 
variables in any direction.  For example, if f is a func-
tion of x and y, then its partial derivatives measure the 
variation in f in the x direction and the y direction. If 
we use three variables, we can define the directional 
derivatives in a similar manner.  For instance, the di-
rectional derivative of f at (x0, y0, z0) in the direction of 
a unit vector is
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                                                                                (4.2)
if the limit exists. The directional derivative can be 
written as follows:
						    

Now, suppose we have a function f of three vari-
ables, x, y, and z, and we consider all possible direc-
tional derivatives of f at a given point. These direc-
tional derivatives will provide us the rates of changes 
of f in all possible directions. The question is in which 
of these directions the function f changes the fast-
est and what the maximum rate of change is. Accord-
ing to equation (4.3), we have the answer: the maxi-
mum value of the directional derivative  
is and it only occurs when  is pointing to 
the same direction as the gradient vector . 
A comparison between equation (4.1) and its similar 
equation (4.2) does enlighten us to pursue our per-
turbation search algorithm, even though the variables 
used in these two equations are different - one de-
scribes the variation of ODE parameter, and the other 
one represents the displacement on axis.

In numerical analysis, finite difference method does 
play a significant role. They are one of the simplest 
ways of approximating a differential operator and are 
extensively used in solving differential equations. The 
difference quotient is defined as the increment of the 
value of a function divided by the increment of the 
independent variable, which includes three common 
forms: forward, backward and central differences. A 
forward difference of function is an expression of the 
form f(x+h)-f(x). A backward difference of function 
uses the function values at x and x-h, instead of the 
values at x+h and x, which is f(x)-f(x-h). The central 
difference of function is given by f(x+h/2)-f(x-h/2). 
All those three function's increments divided by the 
independent variable's increment, h, will give three 
different approximated derivative values. The cen-
tered difference approach is more accurate than both 
forward and backward difference formulas. Concep-
tually, the central difference approach uses two points 
on both sides of x, so it can reach the 2nd order accu-
racy if function f is expended in a Taylor series around 
the point x. It has to be noted here that this concept 
does give rise to motive ideas and becomes the source 
of inspiration for us to extend the perturbation theory 
idea to the estimation of ODE's parameters.

In fact, numerical optimization with the perturba-
tion search method in the current study is a "trial and 
error" process. We begin with a single parameter as 

the starting example. Starting from an initial set of 
parameter values for which the initial cost function is 
known, a new set of parameter values is calculated by 
perturbing each of the initial parameter values, and the 
corresponding cost functions will be evaluated. More 
specifically, three trials, two perturbation trials plus 
one trial without perturbation, for each iteration run 
are simulated by choosing the algebraic sign (-), re-
versing of sign (+) and no sign of each base parameter 
values.  The two computed cost function values SSR(p 
-荭p) and SSR(p+荭p), corresponding to negative and 
positive perturbations, plus the unperturbed cost func-
tion SSR(p) value are compared to the cost function 
value at the initial point or previous point. If a cost 
function value is less than the previous minimum cost 
function value, SSRmin, the current set of parameter 
values for which the cost function has its least value 
becomes the new starting point for the next trial. If 
neither value is less than the previous SSRmin value, the 
previous parameter values and its previous SSRmin will 
remain the same for the next trial.

The multiplication rule can be used to determine the 
total number of outcomes in a sequence of events. In a 
sequence of n events, the first one has k1 possibilities 
and the second event has k2 and the third has k3, and 
so forth. Thus, the total number of possibilities of the 
sequence will be the product of all possibility values, 
k1·k2·k3 …….

It can be concluded that the 2-possibility n events 
produce a total of 2n possibilities. Similarly, if there is 
a sequence of n = 5 events which have three possibili-
ties for each, it will yield the total possibility number 
3n = 35 = 243. The programming logic of this iterative 
parameter combination scheme is illustrated as the 
pseudo-code of 5-parameter-loop in Fig. 3.

              Do p1 = 1, 2, 3
                p1Trial <= p1-荭 p1, p1, p1+荭 p1
                Do p2 = 1, 2, 3
                  p2Trial <= p2-荭 p2, p2, p2+荭 p2
                  Do p3 = 1, 2, 3
                    p3Trial <= p3-荭 p3, p3, p3+荭 p3
                    Do p4 = 1, 2, 3
                      p4Trial <= p4-荭 p4, p4, p4+荭 p4
                      Do p5 = 1, 2, 3
                        p5Trial <= p5-荭 p5, p5, p5+荭 p5
	                   SSR and other calculation code
                      EndDo
                    EndDo
                  EndDo
                EndDo
              EndDo
Fig. 3  The algorithm for looping all five parameters.

(4.3)
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Coupled Ordinary Differential Equations 
Solver

To illustrate the solving method of ODE system, a 
system of first-order ODE is expressed as 
	  					   
	

where  n = 1, 2, 3, ……, N
In the dynamics of time series, the independent 

variable x is usually replaced with time t. Therefore, a 
simple but general vector form of a system ODEs with 
the initial condition is formulated as
	  		   				  
		

where y is the state vector of the system, t is time 
and θ  = [p, y0] is a parameter vector consisting of all 

It is worthwhile to mention that the parameter op-
timization can also be performed by a systematic re-
ducing parameter search range. For instance, the rel-
atively-wide initial search region is selected and used 
for running a number of iterations until the cost func-
tion reaches a constant-like value. Then, a reduction 
in the size of the search region at subsequent iteration 
will be carried out. The next iterations will follow 
the same procedures except that the search ranges of 
parameters are smaller. Basically, we hope the accu-
racy of the parameters will be enhanced through this 
range-reducing approach. From the practical point of 
view, the range reduction factor can be proposed as 
any appropriate expression based on the results of a 
trial run and output of each iteration. These steps are 
repeated until almost no variation of the estimated pa-
rameters or any predefined convergent criteria of the 
parameters and cost function are met. However, this 
adjusted approach of parameter range reduction can 
be implemented differently to suit the properties each 
individual ODE system.

Multiple-Shooting Method
In the initial-value approach of the ODE system, 

initial guesses for equation parameters are chosen 
and the dynamical equations are solved numerically. 
The parameters can be identified as those minimizing 
the cost function. For many dynamical simulations, 
this approach is numerically unstable by yielding a 
diverging trajectory or stopping in a local minimum. 
This problem can be circumvented by a multiple-
shooting algorithm developed by Bock[41-44]. The basic 
idea of the algorithm is to consider the task as a multi-
point boundary value problem.  The fitting time inter-
val [ti, tf] is partitioned into k subintervals,

For each subinterval, local initial values are in-
troduced as additional parameters. The dynamical 
equation is integrated piecewise and cost function is 
evaluated and minimized as exact in the initial value 
approach. While the dynamical parameter vector P 
is constant over the entire interval, the local initial 
values are optimized separately in each subinterval. 
Starting guesses for them are appropriately chosen 
to match the observations. This approach leads to an 
initially discontinuous trajectory, but is close to the 
measurements. The final trajectory will eventually 
be continuous as the computed solution at the end 
of one subinterval matches the local initial values of 
the next one. This condition is taken into account as 
equality constraints in the optimization procedure.

To achieve a good estimating of the domains of 

(5.4)

Fig. 4  Sketchy diagram illustrates the application of 
multiple shooting method. The red circles with yellow-
color fillings are the experimental sample points. The blue 
curve lines show the numerical integrated trajectories yi(ti, yi-1, 
p).  The green lines with double-end arrows represent the errors 
between theoretical integrated values and experimental data 
values.

Y

t0                              t1                              t2                             t3                              t4                             t5

Time

ODE parameters, we propose an optimal search with 
subinterval constraints and developed an algorithm to 
enforce it. The searched time interval is divided into 
a number of subintervals, which is the number of data 
points minus one. We have extended Bock's concept 
by replacing the one single-shooting SSR value in the 
initial-value approach by a summed value of "multi-
ple" subintervals' SSR values. To illustrate the appli-
cation of this method, a conceptual multiple-shooting 
method diagram is shown in Fig. 4. As you can see 
from this figure, we sum over all the SSR components, 
which are represented as green lines with double ar-
rows, of each subinterval.

(6.1)

(6.2)
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p parameters appearing in the right hand side of the 
ODE system and all initial-value vector y0.

Among numerical integration methods, the Euler 
method is the simplest integration method for solving 
ordinary differential equations, which is also called 
first-order Runge-Kutta method or Taylor series ex-
pansion of order one. The next common integration 
method is the second-order Runge-Kutta method, and 
its truncation error is higher than the one in the Euler 
method. However, detailed formulations and their ap-
plications of these methods are easily found in the lit-
erature and many numerical method books, which can 
also be clearly referenced in References[45,46].

Program flowchart
The flowchart of our numerical optimization algo-

rithm for ODE's parameter estimations is presented in 
Fig. 5. This flowchart outlines the order in which these 
functional elements in our computational approach 
were sequentially performed.

Program requirements and specifications
The implementation of the computerized perturba-

tion search methodology is straightforward. However, 
two functions or subroutines are required to accom-
plish the entire simulation. The first program is a cou-
pled differential equation solver using any numerical 
integration method, such as the Runge-Kutta method. 
The second program is a random number genera-
tor.  Fortunately, these two programs are available and 
easily found in most programming languages and sci-
entific software packages. It should be mentioned that 
R is a free software environment for statistical com-
puting and graphics, which provides a wide variety of 
statistical linear and nonlinear modeling. Therefore, 
our code of simulation model was written in R, but 
other languages, such as Fortran, C/C++, Java and 
Visual Basic, or other commercial mathematical and 
statistical software packages, such as Matlab® and 
SAS®, could also be used. In addition, the hardware 
platform is IBM-compatible personal computer (PC) 
with Microsoft® Windows 2000 and XP operating 
systems.

RESULTS
Here we give an example with four sets of data 

points to depict the glucose-insulin regulatory dy-
namic trajectories[47]. Table 1 shows an example for 
two subjects whose blood glucose and plasma insulin 
deviation values were sampled at four time points, 
initial-0 h, 1 h, 2 h, 3 h.

Based on those data, we estimated the four parame-
ters, p1, p2, p3, and p4, by using our perturbation search 

algorithm and multiple-shooting method. In addition, 
those computed parameter values are also applied to 
make fitted curves compared to the original sample 
data points (see the circles in Fig.6). As you can see 
from this figure, the theoretically simulated curves 
perfectly match the experimental data points.

As you can see from the graphs and the com-
puted results, the four parameter values, which vary 
from person to person, determine the evolution of the 
trajectory over time. Both subjects started with the 
positive glucose variation 80 mg/dL (i.e., 80 mg/dL 
above the fasting baseline), which were immediately 
measured right after the ingestion of a large dose of 
glucose. As you can tell from those glucose curves, 
there is a rapid drop at 1 h time for case 1; in contrast, 
there is a relatively slower decrease for case 2. As a 
whole, the glucose trajectory of case 1 oscillates faster 
than that of the case 2, and it also quickly reaches the 
equilibrium state (i.e., fasting level). For the same 
reason, a similar faster variation of the plasma insulin 
concentration for case 1 produces quicker fluctuations 
(i.e., higher frequency). This reflects that case 1 has 
a shorter period of time on recovering from an ini-
tially large glucose excursion to an equilibrium fasting 
level. This result thus indicates that case 1 is relatively 
normal (i.e., non-diabetic) compared to case 2.

The R-based code fragments and outputs are listed 
below for your reference.

p1 <- 0.00437
p2 <- 0.04016
p3 <- 0.02989
p4 <- 0.00450
omega01 <- p2×p3 + p1×p4
alpha1 <- ( (p1 + p4) / 2 ) ^ 2

p1 <- 0.00439
p2 <- 0.02996
p3 <- 0.01506
p4 <- 0.00453
omega02 <- p2×p3 + p1×p4
alpha2 <- ( (p1 + p4) / 2 ) ^ 2

> omega01
[1] 0.001220047
> alpha1
[1] 1.966922e-05
> omega02
[1] 0.0004710843
> alpha2
[1] 1.98916e-05
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and the second one is diabetic.  This also indicates that 
our computation method is correctly validated.

As you can see from these R-based programming 
calculated results, the values of alpha (α) are less than 
the values of omega zero (ω0), so the oscillations types 

Fig. 5  The flowchart of the current simulation program.

Start

Input experimental data

Assign an arbitrarily very large number to an 
objective function, sum of residual squares, as the 
initial minimum value of sum of residual squares

Set iteration counter i=1 and
specify initial parameters p,

starting response variables' values,
initial perturbation ranges of parameters

Each p loop consists of 3 trial parameter values, 
2 perturbation terms+1 no perturbed term

Generate random number from perturbation range 
and calculate each parameter's perturbed value, dp

Select each parameter's three trial values, p-dp, p and p+dp, which 
are negative perturbation, no perturbation, and positive perturbation

Solve coupled Ordinary Differential Equations (ODE) with the 
numerical method of fourth-order Runge-Kutta, 3N trial inte-

grating runs are simulated, where N is parameter #

Compute and record all integrated values at each subinterval end point

Calculate each squared residual between theoretically
integrated values and experimental values at the end of each 

subinterval, and sum them as a total squared residual

Compare 3N

summed squared residual values to
the minimim summed residual square

rss < rss Min

Save those trial parameters as new parameters, 
change new trial rss as minimum rss, rss Min

Output of each iteration's Pmin

The final optimum parameters are determined and displayed

The optimum set of ODE's parameters can be applied 
and integrated to simulate variable's trajectories and 
plotted to compare original experimental data curves. 

Next run
i = i + 1If i > iMax

No

No

P
loop

PN
loop

P2
loop

P1
loop

Yes

Yes

End

Sum all SSR 
values from each 
subinterval via 

multiple-shooting 
method

Our computed oscillation periods are Tsubject1=179.88 
min and Tsubject2=289.51 min. In Jorge Cruz's paper[47], 
their calculated oscillation periods are Tsubject1=179.9 
min and Tsubject2=289.9 min. These extremely close (i.e., 
consistent) results imply that the first subject is normal 
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we have demonstrated are categorized as the under-
damping type, α 2 < ω 0

2.  However, the detailed damp-
ing "type" classification is referenced in our study 
note.

Based on the final solutions of the three-type glu-
cose variation, those curves are plotted and compared.  
The R-based code fragments and graphical outputs are 
shown in the following two diagrams, Fig.7 and Fig.8.

1st case

c1 <- 10
c2 <- 0.1

omega <- 0.001
alpha <- 0.005
t <- seq(0, 1200, 10)

Fig. 7  Examples of damped oscillatory motion with 
arbitrary constants ω=0.001 and α=0.005.
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Table 1 Four measurements (deviations from base-
lines) of blood glucose and plasma insulin concentra-
tion in two subjects.

Case
1
1
2
2

Variable
Glucose
Insulin
Glucose
Insulin

Initial
80
0
80
0

1 h later
-29.7
46.4
18.1
41.4

2 h later
-24.8
-34.5
-38.8
18.6

3 h later
35.8
-1.5
-28.0
-15.9
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gUnder <- exp(-alpha×t)×(c1×cos(omega×t)+c2×sin(ome
ga×t))
gCritical <- (c1+c2×t)×exp(-alpha×t)
gOver <- c1×exp(-(alpha-omega)×t)+ c2×exp(-(alpha+ome-
ga)×t)
plot(t, gUnder, col="blue", xlab="Time", ylab="Glucose De-
viation", xlim=c(0, 1200), ylim=c(-2, 12))
points(t, gCritical, col="red")
points(t, gOver, col="green")
legend("topright", c("UnderDamped", "CriticalDamped", 
"OverDamped"), col=c("blue","red","green"), lty = c(1, 1, 1), 
text.col="purple", bg='gray90')

2nd case

par(mfrow=c(2, 2))
c1 <- 10
c2 <- 0.1
omega <- 0.01
alpha <- 0.005
t <- seq(0, 1200, 10)
gUnder <- exp(-alpha*t)*(c1*cos(omega*t)+c2*sin(omega*t))
gCritical <- (c1+c2*t)*exp(-alpha*t)
g O v e r  < -  c 1 * e x p ( - ( a l p h a - o m e g a ) * t ) +  c 2 * e x p ( -

(alpha+omega)*t)
plot(t, gUnder, col="blue", xlab="Time", ylab="Glucose De-
viation")
plot(t, gCritical, col="red", xlab="Time", ylab="Glucose De-
viation")
plot(t, gOver, col="green", xlab="Time", ylab="Glucose De-
viation")

The choices of two coefficients of the solutions, 
c1=10 and c2=0.1, are arbitrarily selected, but there is 
only one condition that needs to be met in this simu-
lation - all the simulated data should be started at the 
almost same initial point, such as 10 in these plots. 
Thus, based on the same starting point, we can visu-
alize and see the difference on how those metabolic 
trajectories move.

As you can see from Fig. 8, the over-damping os-
cillation represented by a green curve is dramatically 
elevated to an unrealistic high level. In practice, this 
situation in plasma glucose response to GTT actually 
can never occur. On the other hand, we should suggest 
that the curve patterns in both the under-damping and 
critical-damping types could play a reasonable role on 
the platform of glucose metabolic simulations.

Fig. 8 Examples of damped oscillatory motion 
with arbitrary constants ω=0.01 and α=0.005. 
The blue, red and green curves represent the under-
damping, critical-damping and over-damping trajec-
tories, respectively.
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DISCUSSION
Monitoring blood glucose concentration is crucial 

to the successful diagnosis and treatment of people 
with diabetes. The earlier the diagnosis of the disease 

the better the chances of controlling it with insulin and 
helping the subject live longer. One simple test for di-
agnosing diabetes is GTT, where the subject ingests a 
large amount of glucose, and then has his or her blood 
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monitored for about 4-6 h following the glucose ad-
ministration. The computational model in the present 
work has investigated this diabetic GTT metabolic test 
one step further, with respect to the already published 
Ackerman[11,12,40], Bolie[9], Wu[39], and Cruz[47] models, 
although they have provided a widely-accepted tool 
for clinicians and researchers to evaluate the excur-
sions of blood glucose levels and to diagnose the ex-
istence of diabetes.

In the section of Results, we present a motivating 
example from the online published articles[47] regard-
ing the theoretical diagnosis of diabetes. The classi-
fication of the dynamical system's behaviors, such as 
oscillating with period of time, T, usually depends on 
some conditions or relations between these system's 
parameters, such as damping factor and angular fre-
quency.

The most notable motion from our simulations 
and graphs is the under-damping oscillation, which 
is described by the product of the exponential term 
and sinusoidal cosine function. This product solution 
gradually decreases the amplitude of the oscillation 
until it reaches the equilibrium state (i.e., the term of 
"fasting state" or "baseline" in diabetes field). The 
exponential term acts as a boundary constraint for 
the amplitude of the sinusoidal function, resulting in 
a gradual decrease of oscillation. Another important 
concept from the graph is that the period of the oscil-
lation does not change, even though the amplitude is 
constantly decreasing. Therefore, the period, T=2π /ω 0, 
is the good index to be computed in this investigation 
and other studies. Other than that reason, based on 
other researchers' previous experience and evidence, 
experimental testing of the model showed that the pa-

rameter, , was quite robust and 
proved to be a good indicator of diabetes. In particu-
lar, healthy individuals satisfied the criteria:

                                                                                (7.1)

To simply interpret this mathematical expression, 
the blood glucose concentration of a non-diabetic who 
has just absorbed a large amount of glucose will be at 
or below fasting level in 4 h or less.  On the contrary, 
the reversed inequality indicates diabetic case.

                                                                            (7.2)

In practice, for a particular subject, the accuracy of 
the diagnosis can be benefited from multiple (i.e., re-
peated) measurements as the reliable ranges of the pa-
rameters, the values of 'mean±standard deviation' or 
even confidence intervals, can be accurately estimat-

ed. Thus, clinicians can safely evaluate the diagnostic 
conditions based on the reliably estimated parameters 
and the above formulas' criteria. However, due to the 
constraints of limited resources and the uneasy-fitted 
scheduled procedure time, GTT is usually performed 
only once within several months or a year. Neverthe-
less, our non-repeated GTT calculated result suggests 
that the dynamic response of diabetic subjects to typi-
cal hourly glycemic challenges extends over a much 
broader range in time domain than that of non-diabetic 
individuals. In other words, the oscillation period is 
higher in diabetic subject and lower in normal subject.

Ideal studies for characterizing blood glucose dy-
namics should include blood glucose measurements 
at a sufficiently regular sampling frequency to detect 
all variations over a period of several days (i.e., in 
MAGE evaluations), or even several weeks long (i.e., 
in LI measurements), while the subject is undergo-
ing a wide range of activities, such as meals, exercise 
and sleep. However, our simulations on the GTT stud-
ies were based on an ideal case with only four sample 
points at the hourly time ranges, (0-3 h), which are 
not sufficient enough to fit them to an appropriate 
curve that describes the entire blood glucose dynamics 
as well as to examine the special features of glucose 
excursions. Theoretically speaking, there are at least 
eight well-recorded sample points to monitor patient's 
glucose regulatory phenomena.

Lastly, based on the above two equations as well as 
our calculated results in section Results clearly indi-
cate that the Ackerman model and also the extended 
approach in the current study may play an important 
role in diagnosing diabetes, or even provide clinicians 
and scientists in endocrinology and metabolism fields 
insight into the transition nature of human's metabolic 
mechanism from normal to impaired glucose toler-
ance.

In conclusion, from a mathematical point of view, 
the conventional parameters estimation methods, 
such as the Gauss-Newton method, usually have the 
drawback of singular inverted matrix. The main pur-
pose of our approach is to develop a simple, stable 
and formula-derivation-free computational program 
and, most importantly, to avoid divergence problem. 
Furthermore, there are no bounded constraints ap-
plied, and thus the movements of all equations' pa-
rameters during the entire computer simulation are 
absolutely free. Clinically speaking, in order to de-
termine whether or not a subject has pre-diabetes or 
diabetes, health care providers usually conduct a GTT 
and apply standard HOMA and QUICKI methods. 
The aim of this study is to explore how to interpret 
those laboratory data as well as enhance the Acker-
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man mathematical model and how numerical analysis 
and computational iteration program are developed to 
search and identify coupled ODEs' parameter values.
As presented in four recently published articles[45,48-50] 
the proposed mathematical models and computation 
methods were successfully applied to have effectively 
direct measurements of insulin hormones secretion 
and dynamics in glucose metabolism.  The present 
work addressed the application of multiple-shooting 
method and perturbation-search algorithm to bio-
medical problems, particularly to endocrinology and 
metabolism fields, which involves two coupled dif-
ferential equations with four parameters describing the 
glucose-insulin regulatory system. Our demonstration 
showed that our approach could be used to practically 
evaluate the subject's glucose deviations and diagnose 
the diabetic disease as well as to theoretically serve 
as a promising starting point on ODE's parameters 
estimation. Hopefully, the current computer simula-
tion can be studied further to provide investigators an 
effective tool and key information for the design of 
clinical studies that involve blood glucose dynamics 
and also for the possible development of new glucose 
monitoring systems. On the other hand, the extended 
and enhanced approach in the current study could 
play an important role in diagnosing diabetes, or even 
provide clinicians and scientists in endocrinology and 
metabolism fields insight into the transition nature 
of human metabolic mechanism from normal to im-
paired glucose tolerance. Furthermore, the mathemati-
cal models can be used to suggest better treatments, 
such as to improve scheduling of insulin injections, 
to regulate patient's diet, and have a solid pancreas or 
novel islet-cell transplant treatment. Due to both new 
experimental clinical studies and improved mathe-
matical models, future treatments will certainly evolve 
to better regulate this metabolic disease's problem in 
diabetic patients.  Lastly, it should be emphasized that 
our integrated approach of perturbation search and 
multiple-shooting methods provides an attractive fea-
ture to numerical estimation of the coupled differential 
equations, although parameters estimation has been 
recognized as a well-known challenge and accom-
plishment in mathematics and statistics.
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