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Abstract
Cardiovascular diseases (CVDs) are the leading cause of mortality and morbidity worldwide leading to 31% of all global 
deaths. Early prediction and prevention could greatly reduce the enormous socio-economic burden posed by CVDs. Plasma 
lipids have been at the center stage of the prediction and prevention strategies for CVDs that have mostly relied on traditional 
lipids (total cholesterol, total triglycerides, HDL-C and LDL-C). The tremendous advancement in the field of lipidomics in 
last two decades has facilitated the research efforts to unravel the metabolic dysregulation in CVDs and their genetic deter-
minants, enabling the understanding of pathophysiological mechanisms and identification of predictive biomarkers, beyond 
traditional lipids. This review presents an overview of the application of lipidomics in epidemiological and genetic studies 
and their contributions to the current understanding of the field. We review findings of these studies and discuss examples 
that demonstrates the potential of lipidomics in revealing new biology not captured by traditional lipids and lipoprotein 
measurements. The promising findings from these studies have raised new opportunities in the fields of personalized and 
predictive medicine for CVDs. The review further discusses prospects of integrating emerging genomics tools with the high-
dimensional lipidome to move forward from the statistical associations towards biological understanding, therapeutic target 
development and risk prediction. We believe that integrating genomics with lipidome holds a great potential but further 
advancements in statistical and computational tools are needed to handle the high-dimensional and correlated lipidome.
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Introduction

Cardiovascular diseases (CVDs) are a group of complex 
disorders affecting heart function, vascular structure and 
circulatory system. Genetic and epidemiological studies 

have greatly improved our understanding of pathophysiology 
underlying the complex CVDs and have identified several 
risk factors for CVDs. Amongst the well-recognized pre-
disposing factors (Fig. 1), lipid metabolism plays a central 
role in the development of CVDs [1, 2]. Since the landmark 
publications from the Framingham study [3], plasma lipids 
have been recognized as important predictors of future CVD 
events, with lipid lowering as a well-established interven-
tion to reduce CVD risk [4]. To assess CVD risk, plasma 
lipids are routinely monitored by profiling total cholesterol, 
triglycerides, high-density lipoprotein cholesterol (HDL-C) 
and low-density lipoprotein cholesterol (LDL-C) (referred as 
“traditional lipids”). Despite these advances, CVDs remain 
the leading cause of mortality and morbidity worldwide [5], 
as the current preventive strategies are ineffective in a large 
proportion of the population [6].

Human plasma is estimated to consist of thousands of 
functionally and chemically diverse molecular lipid species 
[7–9]. Because of the technological challenges to detect 
diverse yet structurally similar lipids and their isomers, 
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efforts to understand the role of lipids in CVD pathophysi-
ology had largely focused on traditional lipids, and to some 
extent on free fatty acids and lipoproteins, until last decade. 
Nevertheless, there have been tremendous advancements 
in the field of lipidomics that has facilitated the efforts to 
unravel the metabolic dysregulation in complex lipid-related 
disorders, particularly CVDs and to identify predictive 
biomarkers beyond traditional lipids [10, 11]. The prom-
ising findings from epidemiological studies have also led 
to a growing interest in understanding the genetic regula-
tion of lipid metabolism at molecular lipid species level. 
Consequently, genome-wide association studies (GWAS) of 
lipidome profiles, have not only identified new genetic loci/
genes influencing distinct molecular species but have also 
provided novel mechanistic insights to the known genetic 
loci associated with traditional lipids [12, 13].

This review presents an overview of the application of 
lipidomics in epidemiological and genetic studies of CVDs 
and their contributions to the current understanding of the 
field, along with a brief overview of lipidome diversity and 
commonly used analytical approaches. The review further 
discusses some new opportunities provided by integrat-
ing emerging genomics tools with the high-dimensional 
lipidome to move forward from the statistical associations 
towards therapeutic target development and personalized 
medicine with better prediction and prevention.

Human plasma lipidome

Lipidome, the total lipid content in a cell or tissue, is esti-
mated to contain  ~ 200,000 different molecular species 
with different abundance [9]. This extreme diversity arises 
from the extraordinary number of possible combinations of 
various head groups with numerous fatty acids of varying 
length and degree of unsaturation that are esterified to the 
head groups. The LIPID MAPS Initiative and the Interna-
tional Committee for the Classification and Nomenclature 
of Lipids (ICCNL) have provided a standard nomencla-
ture that classifies lipids into eight categories—fatty acyls, 
glycerolipids, glycerophospholipids, sphingolipids, sterols, 
prenols, saccharolipids and polyketides [14–16]. Lipids 
in each lipid category are further divided into classes and 
subclasses based on the head group and type of linkages 
[17, https ://www.lipid maps.org/].

The technological advances have tremendously helped 
in revealing the complexity of lipidome. The LIPID MAPS 
consortium revealed over 500 molecular lipid species 
from 6 major lipid categories, with over 200 and 160 dis-
tinct species of sphingolipids and glycerophospholipids 
respectively [18]. A lipidome analysis of human platelets 
detected over 5,600 unique lipids, with ~ 50% unidentified 
molecular species [19]. The major lipid categories that are 

Fig. 1  Cardiovascular diseases 
and their risk factors. CVDs 
encompass a broad range of dis-
orders affecting the heart, brain 
and blood vessels. The different 
manifestations of CVDs include 
myocardial infarction, stroke 
and peripheral artery disease. 
A number of modifiable and 
non-modifiable risk factors have 
been identified that predispose 
individuals to CVDs. Relation-
ships between lifestyle factors 
and lipids are well known and 
have been the target for preven-
tion strategies

https://www.lipidmaps.org/
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commonly identified in plasma lipidomics are discussed 
briefly here (Fig. 2), but are reviewed in detail in [7, 15, 
18, 20, 21].

Fatty acyls

Fatty acyls represent the most fundamental category of the 
lipids including fatty acids. Mostly present in esterified form 

with glycerol, cholesterol or other lipid components, fatty 
acids are carboxylic acids, often with long unbranched ali-
phatic chains of diverse length. Fatty acids are categorized 
as saturated (no carbon–carbon double bonds in aliphatic 
chain) and unsaturated with one (monounsaturated fatty 
acid-MUFA) or more double bonds (polyunsaturated fatty 
acid-PUFA). Human body can synthesize many of these fatty 
acids, except some essential fatty acids including linoleic 

Fig. 2  Human plasma lipidome. Six major lipid categories, of eight 
described by the LIPID MAPS classification system, are illustrated 
with their classes/subclasses and structure of representative of each 
lipid category. As shown, esterification of fatty acids with different 
backbone generates complex lipids including glycerolipids, glycer-

ophospholipids and sphingolipds. Lipids in each lipid category are 
further divided into classes and subclasses based on the head group 
and type of linkages between the backbone and acyl chains [https ://
www.lipid maps.org/]

https://www.lipidmaps.org/
https://www.lipidmaps.org/
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acid (omega-6 PUFA) and alpha-linolenic acid (omega-3 
PUFA). These two PUFAs are precursors for other omega-6 
and omega-3 PUFAs that play crucial roles in regulating 
lipid metabolism and atherosclerosis [reviewed in 22, 23].

Glycerolipids

Esterification of one, two or three fatty acyls to glycerol 
lead to the formation of glycerolipids and are accordingly 
classified as monoacylglycerol (MG), diacylglycerol (DG) 
and triacylglycerol (TG). Glycerolipids are a large group 
of lipids accounting for a high proportion of total lipids in 
plasma. TG is the most abundant lipid class and comprises 
the bulk of storage fat in tissues. MGs and DGs represent 
intermediates in the biosynthesis and hydrolysis of TGs and 
function as second messengers in signal transduction pro-
cesses [24, 25].

Glycerophospholipids

Also known as phospholipids, glycerophospholipids are 
diacylglycerides with a phosphatidyl ester attached to the 

terminal carbon. The terminal ester groups are mainly etha-
nolamine, choline, serine or inositol (Fig. 2). In addition, a 
number of fatty acids with varying length and unsaturation 
could attach to the remaining hydroxyl groups of glycerol 
via either acyl-, alkyl-, or alkenyl-bonds [18]. Hydrolysis of 
one of the fatty acids of the phospholipids by phospholipase 
A2 (PLA2) generates respective lysophospholipids, adding 
to the diversity of the lipid pool. Glycerophospholipids are 
the major structural component of cell membranes and are 
involved in various biological processes including inflam-
mation [21].

Sphingolipids

Sphingolipids are wide-range of complex lipids defined 
by 18-carbon sphingoid base, usually sphingosine (SPH). 
Condensation of SPH and free fatty acid generates the sim-
plest sphingolipids, ceramides which function as precursor 
for complex sphingolipids produced by the modification of 
hydroxyl group with phosphocholine (in sphingomyelins) or 
carbohydrates (in gangliosides) (Figs. 2, 3) [21, 26]. Sphin-
golipids constitute several hundreds of different species 

Fig. 3  Role of sphingolipid 
associated loci in major sphin-
golipid metabolic pathways. 
Most of the sphingolipid associ-
ated loci contain genes that code 
for enzymes (highlighted in red 
font) involved in sphingolipid 
metabolic pathways. SGPP1 
codes for a S1P phosphatase 
that catalyzes the degradation of 
sphingosine-1-P to sphingosine 
to facilitate ceramides synthesis 
catalyzed by ceramide synthases 
(CERS1-6) including CERS4 
and CERS6. SPTLC3 gene 
encodes a subunit of the serine 
palmitoyltransferase complex 
which catalyzes the rate-lim-
iting step of de novo pathway 
in sphingolipid biosynthesis. 
FADS1-2-3 locus encodes 
enzymes that regulate the 
desaturation of fatty acids and 
have important role in genera-
tion of unsaturated ceramides. 
GLTPD2 codes for glycolipid 
transfer protein domain-contain-
ing protein 2 and has putative 
role in transfer of ceramide-
1-phosphate
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originating from the combinations of different sphingoid 
bases, various fatty acids that can attach to the bases and 
numerous carbohydrates in gangliosides. Ceramide regulates 
numerous cellular processes such as proliferation, differen-
tiation, and cell signalling [27].

Sterol lipids

Sterols typically have a sterol nucleus composed of four 
tightly fused carbon rings and a hydroxyl group attached to 
the first ring [28]. Cholesterol, the well-known and widely 
measured lipid, is the simplest and most abundant sterol in 
plasma, accounting for more than 99% of all plasma sterols. 
Cholesterol exits in both free and esterified forms as choles-
terol esters, mainly in association with lipoproteins.

Prenols

Prenols are synthesized from five-carbon isoprene units that 
can be combined in wide variety of polymeric units and 
configuration to make diverse products [21]. Prenols include 
vitamins A, E and carotenoids and are essential for immune 
system or regulatory functions in the brain [21]. Prenols are 
understudied in the current lipidomic technologies.

Analytical methods in lipidomics

Of the hundreds of thousands of distinct lipid structures 
that are estimated to occur in nature, only a small fraction 
of lipids has been identified so far, highlighting the lack 
of knowledge and importance of development of high-
throughput screening methods for lipid identification and 
profiling. There are two main approaches in lipidomics: (a) 
targeted approach that focuses on detection of known lipids 
using pre-existing knowledge and (b) non-targeted approach 
that screens all the lipid species without preselection. Non-
targeted approach provides large coverage but is limited 
by the complexity of data processing and identification of 
lipids from large number of signals. Given the structural 
diversity of lipid species, no single analytical method could 
capture the entire lipidome, hence many different methods 
have been employed [reviewed in 29–35]. Here we briefly 
discuss two methods—Nuclear Magnetic Resonance (NMR) 
spectroscopy and Mass spectrometry (MS), that have been 
used commonly in the epidemiological and genetic studies 
of lipidome in the context of CVDs.

Lipidome analysis using NMR spectrometry is based 
on the measurement of magnetic spin of nuclei (1H, 13C, 
15N and 31P) contained in the lipids. NMR can efficiently 
and accurately quantify density, size and particle number of 
different lipoprotein subclasses along with their total lipid 
content (e.g., total TGs, total phospholipids, total cholesteryl 

esters, total sphingolipids in HDLs, LDLs, and very-low-
density lipoprotein (VLDL)) [35]. Identification of indi-
vidual lipid species within lipoprotein subclasses is difficult 
using NMR. As lipid composition of various lipoprotein 
subclasses varies considerably, NMR has been applied to 
measure lipid content in lipoproteins to examine their rela-
tionship with CVDs [36, 37] and to determine their genetic 
determinants [38–42].

MS, on the other hand, provides higher resolution of 
molecular composition of lipidome [reviewed in 31–34]. 
MS is either coupled with prior chromatographic separa-
tion such as gas chromatography (GC–MS) and liquid 
chromatography (LC–MS), or involve direct infusion of 
lipid extract (shotgun lipidomics). LC–MS which provides 
excellent separation efficiency, high sensitivity and strong 
specificity, is one of the most important and widely used 
methods for lipidomics research (Table 1, Supplementary 
Table 2). Liquid chromatography separates lipids based 
on their physiochemical properties, i.e., polar head group, 
carbon chain length, number of double bonds. After chro-
matographic separation, the isolated lipids are ionized that 
are detected using a mass analyser [31]. GC–MS provides 
limited coverage of the lipidome and hence, is restricted 
to studies focused on specific lipid classes and fatty acids 
quantifications [43–45]. In recent times, shotgun lipidomics 
has gain popularity due to its relative simplicity of operation 
and short run times to quantify hundreds of lipids [32–34] 
and has been applied in several large-scale studies [12, 46, 
47]. Shotgun lipidomics technology directly infuses lipids 
extract into an electrospray ionization mass spectrometer 
for the detection of lipids, without chromatographic separa-
tion. Shotgun lipidomics has lower sensitivity than LC–MS 
and hence many of the low abundant lipid species are not 
captured in shotgun lipidomic approaches.

Lipidomics in CVD risk prediction

With the advances in high-throughput lipidomics technolo-
gies, several studies were undertaken to perform in-depth 
examination of role of distinct lipid species in CVDs. The 
studies and their major findings are described in Supple-
mentary Table 1. Taken together, findings from these studies 
suggest: (1) ceramides as prognostic markers for CVDs, (2) 
opposite effects of saturated or MUFA containing lipids and 
PUFA containing lipids on the risk of future CVD events or 
death, and (3) distinct role of TG species based on carbon 
content (Table 1).

Ceramides as prognostic markers for CVDs

Though first regarded as inert components of cell mem-
brane, sphingolipids have emerged as important bioactive 
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molecules owing to their wide-range of biological functions. 
Of particular note is the link between ceramides and CVDs 
mediated through atherosclerotic processes by promoting 
LDL infiltration into blood vessel wall, aggregation of LDL 
in arterial plaque and accumulation of cholesterol in mac-
rophages [48, 49]. Findings from in vitro and in vivo animal 
studies have also supported their role in cardiometabolic dis-
orders including atherosclerosis, and heart failure [27]. In 

this regard, lipidomics of human plasma in large cohorts not 
only reinforced the role of ceramides in CVD manifestations, 
but has also pointed to the distinct ceramide species which 
are independent predictors of future CVD events or death.

Relationship between distinct ceramide species, 
particularly Cer(d18:1/16:0), Cer(d18:1/18:0) and 
Cer(d18:1/24:1), and CVD mortality was first suggested by 
the LURIC study [50], which was supported by report from 

Table 1  Major findings of lipidomics-based epidemiological studies of CVDs

CAD coronary artery disease, CE cholesteryl ester, Cer ceramide, CHD coronary heart disease, DG diacylglyceride, LPC lysophosphatidylcho-
line, LPE lysophosphatidylethanolamine, LC–MS liquid chromatography–mass spectrometry, MACE major adverse cardiovascular event, MS 
mass spectrometry, NMR nuclear magnetic resonance, PC phosphatidylcholine, PC O phosphatidylcholine–ether, PE phosphatidylethanolamine, 
PE O phosphatidylethanolamine–ether, SM sphingomyelin, TG triacyglycerol

Study Reference, Cohort Platform Samples Lipids analysed

Ceramides as prognostic markers
Sigruener et al. [50], LURIC study Shotgun MS 3316 (768 incident CVD; 484 

mortality)
38 PCs, 15 LPCs, 30 PC Os, 31 PEs, 

24 PE Os, 33 SMs, 7 Cers
Cheng et al. [51], ATHEROREMO-

IVUS
LC–MS 581 (underwent angiography) 8 lipids (CEs and Cers) identified in 

LURIC study
Laaksonen et al. [52], Corogene, 

SPUM-ACS, BECAC 
LC–MS 3377 (mostly CVD patients) 4 Cers (C16:0, C18:0, C24:0, C24:1)

Havulinna et al. [54], FIN-
RISK2002

LC–MS 8101 healthy subjects (813 incident 
MACE)

4 Cers (C16:0, C18:0, C24:0, C24:1)

Wang et al. [53], PREDIMED LC–MS 1017 (230 incident cases; 787 
random samples)

4 Cers (C16:0, C22:0, C24:0, C24:1)

Anroedh et al. [46], ATHER-
OREMO-IVUS

Shotgun MS 581 (underwent angiography) 10 lipids (CEs and Cers) identified in 
LURIC study

Alshehry et al. [55], ADVANCE Targeted LC–MS 3779 (case–control) Lipidome-wide (310 lipid species)
Paynter et al. [56], WHI, PRED-

IMED
LC–MS 944 (472 incident CHD; 472 con-

trols); 627 (312 incident CHD; 
315 controls)

Lipidome-wide (217 lipids)

Poss et al. [57], Utah population LC–MS/MS 674 (462 CAD patients; 212 
controls)

32 Sphingolipids

Opposite effects of MUFA and PUFA containing phospholipids
Sigruener et al. [50], LURIC study Shotgun MS 3316 (768 incident CVD; 484 

mortality)
38 PCs, 15 LPCs, 30 PC Os, 31 PEs, 

24 PE Os, 33 SMs, 7 Cers
Alshehry et al. [55], ADVANCE Targeted LC–MS 3779 (case–control) Lipidome-wide (310 lipid species)
Wang et al. [69], PREDIMED LC–MS 1017 (230 incident CVD; 787 

random samples)
Lipidome-wide (200 lipids)

Wurtz et al. [36], FINRISK, 
SABRE, BWHHS

Targeted NMR metabolomics 7256 (800 CVD events); 2622 (573 
CVD events); 3563 (368 CVD 
events)

14 lipoprotein subclasses and fatty 
acid composition

Razquin et al. [68], PREDIMED LC–MS 983 (case–control) Lipidome-wide (202 lipids)
Mundra et al. [66], LIPID, 

ADVANCE
LC–MS 5991; 3779 Lipidome-wide (342 lipids)

TG species and risk of CVDs
Fernandez et al. [47], MDC study Shotgun MS 427 (211 incident CVD; 216 

controls)
85 lipids (TGs, DGs, CEs, SMs, PC 

Os, LPCs, PEs, PE Os)
Stegemann et al. [65], Bruneck 

study
Shotgun MS 685 (90 incident CVD) 135 lipids (PCs, LPCs, CEs, SMs, 

PSs, PEs, LPEs, TGs)
Alshehry et al. [55], ADVANCE Targeted LC–MS 3779 (case–control) Lipidome-wide (310 lipid species)
Razquin et al. [68], PREDIMED LC–MS 983 (case–control) Lipidome-wide (202 lipids)
Wang et al. [69], PREDIMED LC–MS 1017 (230 incident CVD; 787 

random samples)
Lipidome-wide (200 lipids)
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ATHEROREMO-IVUS study [51]. This led to a growing 
interest in these ceramide species among the researchers and 
several studies focusing on them added to the supporting evi-
dences of their relationship with secondary CVD outcomes 
[46, 52, 53] and future CVD events in healthy individuals 
[54]. The findings were also corroborated by lipidome-wide 
studies [55–58] and a large meta-analysis of seven cohort 
studies with over 29,800 individuals [59]. On the contrary, 
a recent study by Seah et al. that explored association of 79 
sphingolipid species with CVDs in a Chinese ethnic popu-
lation did not support the role of ceramides in CVD [60]. 
Although reasons such as difference in quantification meth-
ods and statistical power could not be ruled out, this study 
may point to the population-specific effect of lipid species on 
CVD risk. The meta-analysis by Mantovani et al. also sug-
gested that associations may be stronger for ceramides with 
long acyl chain and for those with unsaturated acyl chain 
[59]. On the similar lines, Lemaitre earlier showed associa-
tions of higher plasma levels of shorter sphingolipids (C16 
acyl chain) with increased risk of heart failure, whereas 
higher levels of longer sphingolipids (C20-24 acyl chains) 
with decreased risk of heart failure [61].

Clinical utility of prediction scores based on ceramide 
species has been proposed by several independent stud-
ies (Table 2). Laaksonen et al. [52] showed that CERT 
score based on Cer(d18:1/16:0), Cer(d18:1/18:0) and 
Cer(d18:1/24:1) and their ratios with Cer(d18:1/24:0) pre-
dict cardiovascular death in patients with stable CAD and 
acute coronary syndromes beyond LDL-C. It was further 
shown that the prognostic value of CERT score could be 
improved by adding phosphatidylcholine (PC) species [62]. 
Subsequently, the predictive value of ceramide-based scores 
have been repeatedly confirmed by many independent stud-
ies including the Framingham Heart study [63], Mayo clinic 
study [64] and FINRISK2002 [54]. All these strong evi-
dences provided basis for the ceramide-based clinical test 

recommended by the Mayo clinic [https ://news.mayoc linic 
labs.com/ceram ides-mihea rt/] to assess risk of adverse clini-
cal outcomes in CAD patients. A recent study showed that in 
addition to ceramides, sphingomyelin species (SM) could be 
important predictor of CVD and proposed a new risk score 
termed as the sphingolipid-inclusive CAD (SIC) risk score 
which included dihydro-Cer(d18:0/18:0), Cer(d18:1/18:0), 
Cer(d18:1/22:0), Cer(d18:1/24:0), SM(d18:0/24:1), 
SM(d18:1/24:0), SM(d18:1/18:0) and sphingosine [57]. 
Authors showed that the SIC risk score provides strong 
prediction value and outperform other measures including 
LDL-C and CERT score. Thus, through lipidomics-based 
studies, plasma ceramides have emerged as promising new 
diagnostic or prognostic marker for CVD with clinical 
application.

Opposite effects of MUFA and PUFA containing 
phospholipids

Many distinct phospholipid species have been consist-
ently identified as risk factor for CVDs in lipidomics-based 
studies (Supplementary Table 1) [47, 50, 55, 56, 65–69]. 
Recently, alterations in phospholipids levels in patients 
with ischemic cardiomyopathy have been shown suggesting 
the changes in metabolic profiles during progression from 
ischemic heart disease to ischemic cardiomyopathy [70]. 
Addition of phospholipids to the base model of traditional 
risk factors also improved CVD risk prediction (Table 2). 
Bruneck study showed that addition of a phosphatidyletha-
nolamine species PE 36:5 and two other lipid species to a 
model including conventional risk factors increased predic-
tion value [65]. Similarly, LIPID study [66] and ADVANCE 
trial [55] showed that addition of phospholipid species to 
the traditional risk factors improved prediction of CVD 
events and mortality (Table 2). Although clinical utility of 
lysophospholipids has also been suggested by Ganna et al. 

Table 2  Lipidome-based prediction scores for CVD risk and death

C-statistic is a standard measure of the predictive accuracy of a model)
SIC sphingolipid-inclusive CAD risk score, CER Ceramide, DG diacylglyceride, GM monosialated ganglioside, LPC lysophosphatidylcholine, 
LPI lysophosphatidylinositol, PC phosphatidylcholine, PCO phosphatidylcholine-ether, PE phosphatidylethanolamine, PEO phosphatidylethan-
olamine-ether, SM sphingomyelin

Prediction score/Study Components C-statistics

CERT1, Laaksonen et al. [52] Cer(d18:1/16:0), Cer (d18:1/18:0), Cer (d18:1/24:1), Cer (d18:1/16:0)/Cer(d18:1/24:0), 
Cer (d18:1/18:0)/Cer(d18:1/24:0), Cer (d18:1/24:1)/Cer(d18:1/24:0)

0.80 for CVD death

CERT2, Hilvo et al. [62] Cer(d18:1/24:1)/Cer(d18:1/24:0), Cer(d18:1/16:0)/PC 16:0/22:5, Cer(d18:1/16:0)/PC 
14:0/22:6, PC 16:0/16:0

0.76 for CVD death

SIC, Poss et al. [57] Cer(d18:1/18:0), Cer(d18:1/24:0), SM(d18:1/24:0), SM(d18:0/24:1)/SM(d18:1/18:0), 
Cer(d18:1/18:0)/Cer(d18:1/22:0), Sphingosine

0.79 for risk of CAD

Mundra et al. [66] PC O-34:2, PC 38:5, PI 38:3, PC O-36:1, GM3(d18:1/16:0), LPI 18:2, PE 38:6 0.65 for CVD events
Alshehry et al. [55] PC O-36:1, CE 18:0, PE O-36:4, PC 28:0, LPC 20:0, PC 35:4, LPC 18:2 0.70 for CVD events
Alshehry et al. [55] PC O 36:1, DG 16:0_22:5, SM 34:1, PC O-36:5 0.76 for CVD death

https://news.mayocliniclabs.com/ceramides-miheart/
https://news.mayocliniclabs.com/ceramides-miheart/
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[67], there have been inconsistent reports on the direction of 
their effect on CVDs [47, 55, 65].

An interesting observation that emerged from these stud-
ies is that the phospholipids have opposite effects on CVD 
risk based on the degree of unsaturation of their acyl chains. 
It was first observed in the LURIC study that phospholip-
ids with saturated and monounsaturated fatty acyl chains 
were positively associated with risk of CVD, while polyun-
saturated phospholipids were inversely associated with the 
CVD risk [50]. Later, several lipidome-wide investigations 
including ADVANCE trial, LIPID study, PREDIMED trial, 
WHI study and Bruneck study provided consistent findings 
(Table 1). On the similar lines, Wurtz et al. showed that 
MUFAs levels increase cardiovascular risk, while higher 
omega-6 and omega-3 PUFAs lower the risk [36]. Consist-
ently, network-based analysis of lipidome data in PRED-
IMED study also showed that the lipid species are clustered 
based on degree of unsaturation and that the cluster contain-
ing phospholipids with more double bonds was associated 
with decreased risk of CVD [69]. Thus, the lipidomics-
based studies have suggested that there are two subgroups 
of phospholipids based on the degree of unsaturation that 
have opposite effects on CVD pathophysiology.

Distinct role of TG species in CVDs

The routine clinical risk assessment quantifies the total mass 
of triglycerides, however, their contribution to the develop-
ment of CVD has been debatable as clinical trials of lower-
ing TG with fibrates provided inconsistent results [71, 72], 
whereas genetic evidence supported the causal role [73]. 
The apparent inconsistency is not surprising due to the large 
number of functionally diverse TG species in circulation that 
have varied effects (opposite directions or different mag-
nitude) on CVD risk, as revealed by high-resolution lipi-
domics. The MDC study first identified association of five 
TG species including TG 48:1, TG 48:2, TG 48:3, TG 50:3 
and TG 50:4 with adverse CVD outcome, after adjusting 
for Framingham risk factors [47]. Later, many TG species 
were found to be associated with CVD risk over a 10-year 
observation period in the Bruneck study [65], but asso-
ciations were more pronounced for TGs of lower carbon 
number and double-bond content (saturated and MUFAs). 
Similarly, ADVANCE study found inverse association of 
TG 56:6 with recurrent CVD incidence and CVD mortality 
[55] whereas PREDIMED trial showed that short TGs were 
associated with increased risk of CVD [68]. These findings 
were further supported by the network and cluster analysis 
of lipidome in PREDIMED trial which showed that satu-
rated TGs cluster consisting mainly of DGs and TGs with 
saturated fatty acids was associated with increased CVD 
risk [69]. These studies clearly suggest that abnormalities 
in different TG molecular species levels could have different 

pathological consequences, which might not be detected in 
enzymatic measurement of total triglycerides, as evident 
from a study that found decrease in a TG species without 
observed change in total triglycerides [74].

Genetic regulation of lipidome

Despite the expected influence of dietary intake on the circu-
latory lipids, contribution of genetic factors in endogenous 
regulation of lipid metabolism is well recognized. Studies 
using pedigree information and genetic data have shown 
that 10−60% of the variation in plasma levels of circula-
tory lipid species is contributed by the genetic factors, with 
considerable variation across lipid categories [12, 75–77]. 
For example, in general, sphingolipids have higher herit-
ability than glycerophospholipids, with ceramides having 
highest estimated SNP-based heritability (35–40%) and 
phosphatidylinositols with the least heritability (11–31%) 
[12]. Interestingly, genetic mechanisms do not regulate all 
human plasma lipid species belonging to a lipid class in the 
same way [12, 75, 76], as also observed in mice lipidomics 
studies [78, 79]. Rather, it seems to depend on the length 
and degree of unsaturation of the acyl chains. For instance, 
lipids containing polyunsaturated fatty acids have higher 
heritability compared to other lipid species [12]. It is also 
reported that phosphatidylcholine species (PCs) with larger 
number of carbon atoms have lower heritability estimates, 
while PCs with a larger number of double bonds have higher 
heritability [80].

Although over 400 genomic loci are now known to 
influence the plasma traditional lipid levels [81, 82], their 
effects on detailed lipid metabolism at molecular levels are 
not completely known. As epidemiological studies have 
demonstrated that distinct molecular species (e.g., TGs and 
PCs) have different or opposite effect on disease outcomes, 
genetic variants/loci could potentially have different effect 
on functionally diverse lipid species. To ascertain that, sev-
eral genome-wide association studies have been performed 
with individual lipid species (Table 3) [12, 38–45, 83–100]. 
These studies have not only identified several new loci/
genes contributing to lipid metabolism, but also provided 
novel mechanistic insights to the known loci identified for 
traditional lipids. The major findings of these GWASs are 
discussed here. Figure 4 illustrates the genes identified for 
different lipid categories and their overlap. The list of all the 
genetic variants reported to be associated in these studies is 
provided in Supplementary Table 3.

Sphingolipids

The first genetic investigation of sphingolipids was per-
formed by Geiger et  al. in 2008 [83], that included 85 
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sphingolipids and 284 individuals of the KORA study. 
The study identified two loci for sphingolipids-PLEK and 
ANKRD30A at genome-wide significance that did not stand 
multiple testing correction. Later, large-scale studies for 33 
sphingolipids including over 4400 subjects from 5 diverse 
European populations identified 7 loci- ATP10D, FADS1-
2-3, SGPP1, CERS4, SPTLC3, APOE and GLTPD2-PLD2 
[84, 87]. As most of the loci identified by Hicks et al. [84] 
contains genes encoding enzymes involved in sphingolipids/
ceramide synthesis (Fig. 3), and none of the genes involved 
in ceramide degradation or signaling was identified, authors 
speculated that the plasma levels of ceramide are primarily 
regulated by genes involved in ceramide production. Given 
the prominent roles of these genes in sphingolipid metabolic 
pathways, association of these genes were subsequently 
replicated in many studies [12, 85, 92, 95]. Furthermore, 
new loci were also discovered by studies with larger sam-
ple sizes including PDE4D and CERS6 [88, 100]. A recent 
metabolomics-based GWAS in 7 European cohorts with total 
sample size of over 7,000 that included 14 sphingomyelins 
confirmed previous associations of SPTLC3, APOE, SGPP1, 
CERS4 with sphingomyelins, but no new locus was identi-
fied [13].

From these studies, 6 genes (SPTLC3, CERS4, CERS6, 
SGPP1, GLTPD2 and FADS1-2-3) with direct role in cera-
mide metabolism have emerged as prominent regulator of 
plasma levels of ceramides. The rate of ceramide synthesis 
is regulated by the first step of de novo pathway, which is 
catalyzed by serine palmitoyltransferase (SPT). SPTLC3 
codes for a subunit of the SPT complex which catalyses the 
condensation of serine with palmitoyl-CoA (Fig. 3). The 
increased expression or activity of SPTLC3 could result in 
increased ceramide production by increasing the influx of 

sphinganine in de novo pathway (Fig. 3). Several cis-eQTLs 
(expression quantitative trait) of SPTLC3 (GTEx v7) are 
found to be associated with plasma levels of ceramides and 
sphingomyelins (Supplementary Table 3), suggesting that 
genetic effect of SPTLC3 variants is mediated by regulat-
ing the expression of the gene. SPT product sphinganine 
is then metabolized to dihydroceramides by the addition of 
different acyl-chains by ceramide synthases (CerS) [101], 
which is subsequently converted to ceramides and sphingo-
myelins. CerS also catalyzes the conversion of sphingosine 
to ceramide in the salvage pathway. Six isoforms of CerS 
(CerS1-6) exist in humans with different preferences for 
specific fatty acids. CerS4 has high selectivity towards long 
acyl chains (C18-C20) while CerS6 has preference for short 
acyl chains (C14-C16) [102]. Consistently, association of 
variants in CERS4 that encode CerS4, with ceramides and 
SMs containing C18-C20 acyl chains have been identified 
repeatedly in many studies (SupplementaryTable 3).

FADS1-2-3 locus encodes three enzymes that regulate 
desaturation of fatty acids and production of unsaturated 
fatty acids. Unsaturated ceramides are synthesized by the 
incorporation of unsaturated fatty acids into sphingosine/
sphinganine bases. Association of variants in the FADS1-2-
3 locus with unsaturated ceramides levels suggests crucial 
role of fatty acid desaturases in generation of unsaturated 
ceramides and sphingolipid metabolic pathways [84]. On 
the other hand, SGPP1 codes for sphingosine-1-phosphate 
phosphohydrolase 1 that play important role in salvage path-
way. SGPP1 belongs to the phosphatase super-family that 
converts sphingosine-1-phosphate to sphingosine that is 
readily metabolized to ceramide. Enhanced SGPP1 activity 
could lead to elevated sphingolipid levels by shifting the 
stochiometric balance towards sphingosine and ceramide 

Fig. 4  Genetic loci identified in 
GWAS with lipidome. Genetic 
loci identified for different 
lipid classes and their overlap 
are shown. Genes highlighted 
in red font have direct role in 
lipid metabolic pathways. SMs: 
Sphingomyelins; PLs: Phospho-
lipids; CEs: Cholesteryl esters; 
TGs: Triacylglycerides
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production. Consistently, variants in SGPP1 have shown 
association with circulating sphingomyelins, mainly con-
taining C14-C16 and C22-C24 acyl chains. GLTPD2 codes 
for glycolipid transfer protein domain-containing protein 2 
and has putative role in transfer of ceramide-1-phosphate. 
Thus, findings from the major GWASs on sphingolipids sug-
gest that the plasma levels of ceramides and sphingomyelins 
are primarily driven by the genes involved in sphingolipid 
metabolism, particularly ceramide biosynthesis (Fig. 3).

Glycerolipids

Only a few GWASs have included molecular TG species 
[12, 13, 88, 94]. The study by Rhee et al. in over 2,000 par-
ticipants from Framingham Heart Study (FHS) included 46 
TG species and revealed association of FADS1-2-3, GCKR 
and APOA1-5 loci with several TG species [88]. These genes 
with direct role in triglyceride metabolism were subse-
quently replicated in other GWASs [12, 94]. The lead GCKR 
variant rs1260326, a missense variant (L446P) associated 
with TG species, is established as the likely causal vari-
ant through functional studies [103, 104]. In another study 
by Rhee et al. that focused only on the rare variants, no 
additional variants for TGs could be identified [94]. How-
ever, recent studies have suggested association of common 
variants at new loci for TGs. Our previous study suggested 
new signals for TGs at genetic variants in or near KAZN, 
VWA3B, ABLIM2, PDHA2, PTPRN2, LPL, APOA5, CD33 
and MIR100HG at genome-wide significance that did not 
remain significant after multiple testing correction [12]. 
Also, Demirkan et al. identified association between a new 
locus MLXIPL and TGs (TG 48:1 and TG 50:1) [13].

Interestingly, similar to epidemiological finding that dif-
ferent TG species have different effect on CVD risk, find-
ings from the genetic studies revealed different patterns 
of association of TG species with genetic variants. GCKR 
demonstrated a stronger association with TGs of relatively 
lower carbon content (TG 48:2, TG 48:3, TG 50:3, TG 50:2, 
TG 50:4) [13, 88], while APOA1/A5 and LPL have stronger 
effect on medium length TG species (TG 54:4, TG 52:3, 
TG 52:4) [12, 88]. On the other hand, FADS1-2-3 asso-
ciate with TGs in a fatty acid saturation specific manner, 
with the direction of effect differed at the extremes of TG 
carbon content, and strongest association with TGs of rela-
tively higher carbon and double bond content such as TG 
58:10 and TG 58:11 [13, 88]. Such a pattern of association 
was also observed in one of the loci identified in GWASs 
for enzymatically measured triglycerides-CILP2 that had 
different effect sizes across different TG species and was 
mainly associated with the unsaturated TGs [13]. These 
findings suggest that genes involved in TG metabolism have 
species-specific effect that apparently depend on the length 
of acyl chains. Further light on this was provided by our 

previous study which showed that a genetic variant at LPL 
locus (rs11570891) increases the expression and enzymatic 
activity of LPL [12]. We further showed that the increased 
LPL enzymatic activity had stronger effect on medium 
length TGs than other TGs. Taken together, GWAS findings 
suggest that genetic regulation of TGs is determined by their 
carbon content and degree of unsaturation and further rein-
force that such effects might not be detected by enzymatic 
measurement of total triglycerides.

Phospholipids

A number of genetic loci have been associated with plasma 
levels of distinct phospholipids species, including genes with 
direct role in phospholipid metabolism (Table 3; Fig. 4). In 
the KORA study that included 208 phospholipid species, 
Geiger et al. [83] identified association of phospholipids with 
FADS1-2-3 and LIPC. Later, Illig et al. [85] identified five 
loci for phospholipids-FADS1-2-3, ELOVL2, PLEKHH1, 
SYNE2 and SPTLC3 in a larger dataset. Further, a compre-
hensive genetic investigation of phospholipids with 57 PCs, 
20 lyso PCs, 27 PEs, 15 plasmalogens in over 4000 samples 
identified 25 loci at genome-wide significance [87]. In the 
pathway analysis, 13 genes (KCNH7, AGPAT1, PNLIPRP2, 
SYT9, FADS2, DAGLA, DLG2, APOA1, APOC3, ELOVL2, 
CDK17, LIPC and PLA2G10) located in 11 loci from the 25 
loci were mapped to the glycerophospholipid metabolism 
pathway [87]. Several additional loci for phospholipids were 
discovered as illustrated in Fig. 4 and listed in Supplemen-
tary Table 3. Here we discuss two examples that highlight 
the potential of lipidomics in identifying new lipid modify-
ing genes and providing mechanistic insights to the known 
lipid loci.

MBOAT7 encodes a lysophosphatidylinositol acyl-
transferase that incorporates arachidonic acid (C20:4) 
into lysophosphatidylinositol (LPI) to generate phosphati-
dylinositols (PI) [105]. The activity of MBOAT7 regulates 
the levels of free arachidonic acid and its availability for 
eicosanoid production which mediates pro-inflammatory 
signalling [106]. Consistent with its biochemical function, 
Shin et al. identified association of variants in MBOAT7 
with the ratio of arachidonate (20:4n6) to 1-arachidonoyl-
glycerophophoinositol [90]. Later, its association with PI 
species was confirmed in other studies [12, 96]. MBOAT7 
variants also increase the susceptibility to liver disorders 
including liver cirrhosis and non-alcoholic fatty liver dis-
ease (NAFLD) by inducing a reduction in its expression in 
liver [107–109]. Notably, our previous study also suggested 
association of MBOAT7 variant with venous thromboem-
bolism [12]. The example of MBOAT7 further exemplifies 
that lipidome-based GWAS could identify new genes with 
prominent role in lipid metabolism that could not be detected 
through GWAS of traditional lipids.
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Fatty acid desaturase (FADS) gene cluster has been consist-
ently reported to be associated with omega-3 and omega-6 
fatty acids levels with inverse effects on different PUFAs [43, 
44, 83, 87]. The FADS gene cluster contains genes coding 
for three key enzymes in PUFA metabolism-FADS1 (delta-5 
desaturase), FADS2 (delta-6 desaturase) and FADS3 (delta-9 
desaturase). The delta-6 desaturation by FADS2 generates 
gamma-linolenic acid (C18:3 n-6) and stearidonic acid (C18:4 
n-3) from linoleic acid (C18:2 n-6) and alpha-linolenic acid 
(C18:3 n-3) respectively, that by elongation yield dihomo-
gamma-linolenic acid (C20:3 n-6) and eicosatetraenoic acid 
(C20:4 n-3) [110]. Further, delta-5 desaturation of dihomo-
gamma-linolenic acid by FADS1 generates arachidonic acid 
(C20:4 n-6) and eicosapentaenoic acid (C20:5 n-3). Genetic 
variants in FADS1 and FADS2 genes are associated with the 
increased levels of phospholipids with three or less double 
bonds while with the decreased levels of phospholipids with 
four or more double bonds [12, 83]. We previously showed 
that a variant in FADS2 increases FADS2 expression while 
reduces the expression of FADS1 that explain the inverse rela-
tionship of FADS2 variants with lipids containing different 
polyunsatureated fatty acids (PUFAs) [12]. The association of 
FADS1-2-3 locus with the reduced levels of lipids containing 
arachidonic acid may also explain its assocition with reduced 
risk of atherosclerotic CVD outcomes-peripheral artery dis-
esae (PAD) and aterial embolism and thrombosis [12]. The 
example of FADS1-2-3 along with other known lipid genes 
such as LPL, GCKR (discussed above) highlights how detailed 
lipidomic profile could provide the mechanistic understanding 
of effects of well-established lipid loci.

Sterols

Sterol lipids including CEs are not represented well in the 
GWASs with lipidome or metabolome, and only two studies 
have reported association of CEs with genetic variants [12, 
88]. Rhee et al. [88] identified four loci associated with CE 
species- FADS1-2-3, GNAL, NTAN1 and SEC61G. We found 
previously association of three loci with CEs-ABCG5/8, 
FADS2 and SYNGR1. ABCG5/G8 codes for ABC cholesterol 
transporters G5 and G8, that have been associated with total 
cholesterol, LDL-C and cholesterol esters in LDL. However, 
our study revealed a novel association of ABCG5/G8 variant 
with a specific CE species- CE 20:2;0. All of the identified 
loci for CEs overlap with the loci associated with phospho-
lipids (Fig. 4).

Discussion

It is apparent from epidemiological and genetic studies that 
lipidomics has great potential in revealing new biology not 
captured by traditional lipids and lipoprotein measurements. 

Lipid species measurements, like other intermediate pheno-
types, increases statistical power to detect genetic associa-
tions and hence provide opportunity to discover new lipid 
loci [12, 111]. In an analysis with over 500 known genetic 
variants for traditional lipids, we previously showed that as 
compared to traditional lipids, associations with detailed 
molecular lipids are several orders of magnitudes stronger 
for the variants in or near genes involved in lipid metabolism 
such as FADS1-2-3, LIPC, ABCG5/8, SGPP1, SPTLC3 [12]. 
This demonstrates the prospects of lipidomics in identifying 
lipid-modulating variants, particularly the ones with direct 
role in lipid metabolism. Consistently, GWASs with distinct 
lipid species discovered many new genes with direct role in 
lipid metabolic pathways and provided new insights into the 
genomic loci associated with traditional lipids. For instance, 
detailed TG profiles revealed that the total triglycerides asso-
ciated loci such as GCKR, FADS1-2-3, LPL, APOA5 drive 
association of distinct TG species depending on number 
of carbon atoms and degree of unsaturation, as discussed 
above.

Integrating lipidomics and genomics: opportunities 
beyond GWAS

After the success of the GWASs in identifying new genomic 
loci associated with lipid species, one of the next challenges 
is to translate these findings towards predictive and personal-
ized medicine. Emerging tools in genomics provides many 
new opportunities in this direction [112]. This is demon-
strated by the success of genetic studies guiding the develop-
ment of antibodies targeting PCSK9 (proprotein convertase 
subtilisin/kexin type 9) to treat hyperlipidemia and CVD 
[113]. Here we discuss approaches that could be used to 
translate the statistical associations identified in epidemio-
logical studies and GWASs to biological understanding, 
drug target identification and disease risk characterization 
(Fig. 5).

Inferring causality towards drug targets 
development

Epidemiological studies have provided strong evidence of 
association of several distinct lipid species with CVD out-
comes. However, it cannot be inferred from simple obser-
vational studies which of these associated lipid species have 
causal effect on CVDs. Nonetheless, genomics provides an 
alternative approach to infer causality using the intrinsic 
properties of the genome, i.e., the random assortment of 
alleles at conception, in a statistical framework referred as 
Mendelian randomization (MR) [114–116]. MR is a rou-
tinely used genetic tool in observational studies which uses 
genetic variants as proxies for exposure variable (risk fac-
tors) to infer whether the increased or decreased risk factor 
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causes the disease [41, 117, 118]. First described in 1986 
[119], many methods and approaches in MR analysis have 
been developed that allow use of GWAS summary statistic 
data for risk factor and disease of interest, either from one 
dataset (one-sample MR) or two datasets (two-sample MR) 
[114]. Development of two-sample MR methods using the 
existing and publicly available GWAS summary data has 
made MR analysis increasingly easy and popular.

With the improved understanding of the genetic archi-
tecture of lipidome and availability of large-scale GWAS 
summary statistics data both for lipidome and CVD, MR 
provides an excellent avenue to infer the causal role of the 
CVD associated lipid species. Efforts at this front have been 
limited so far, most likely due to the highly correlated nature 
of the high-dimensional lipidome profiles. Ganna et al. [67] 
used summary stats from CARDIoGRAMplusC4D to reveal 
causal effect of MG 18:2 on CHD risk. On the other hand, 
a recent study performed a MR analysis to investigate the 
causal relationship between PC 38:3 and P wave duration 
(PWD, an indicator of atrial conduction) [120]. The study 
found that PC 38:3 and PWD association is not causal and is 
mediated by BMI. Larger efforts are required to highlight the 
lipid species with therapeutic potential from the large num-
ber of associations for follow-up investigations, as exhibited 
in a recent MR analysis [121]. The study performed GWAS 
on untargeted plasma metabolome with  ~ 11,000 metabo-
lites in  ~ 10,000 individuals and used two-sample MR 
approach to assess the causal effect of both identified and 

unidentified metabolites on 45 common diseases. The study 
provided evidence of causal effect of 31 metabolites on at 
least one of the 5 diseases- CHD, schizophrenia, bipolar dis-
order, rheumatoid arthritis, primary sclerosing cholangitis. 
Among the causal metabolites, 19 metabolites were causal 
for coronary heart disease and 6 of which were found to be 
associated with incident CHD. Recent development of multi-
variate MR methods provides a powerful tool to incorporate 
high-dimensional data like lipidome profiles in MR analysis 
[122–124]. Application of these approaches to infer the cau-
sality of CVD associated lipid species is one of the ways to 
move forward in the direction of drug target development.

Refining GWAS signals to causal variants to reveal 
metabolic networks

Although GWASs have been successful in identifying new 
genomic loci associated with lipid species, the associated 
variant, in most cases, does not cause the trait or disease 
itself but serve as surrogate for neighbouring SNPs in a 
large genomic region that are in linkage disequilibrium 
(LD) with it. Because of the complex LD patterns among 
the SNPs, pinpointing causal variants from the associ-
ated variants is a challenging task. However, statistical 
fine-mapping approaches allow the refinement of the trait-
associated regions to identify genetic variants with likely 
causal influence on the trait [125, 126]. The fine-mapping 
approach in lipidomics could not only help in refining the 

Fig. 5  Approaches to move 
beyond GWAS. New opportuni-
ties and prospects of application 
of genomics to translate find-
ings from lipidomics to develop 
better predictive and preventive 
strategies are illustrated
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genomic loci but the multidimensional association data 
may also help in highlighting the metabolite-specific 
effects and hence reveal new metabolic networks. For 
instance, Gallois et al. [127] performed fine-mapping of 
LIPC region which suggested that there are at least three 
distinct sites with metabolite-specific variants within the 
gene. The study showed that large HDL and triglyceride in 
lipoproteins are influenced by all the three sites in LIPC. 
But interestingly, intermediate density lipoproteins (IDLs) 
and fatty acids are mostly influenced by two sites and very 
small VLDL (very low-density lipoprotein) are influenced 
by only one of sites in the gene [127]. On the similar note, 
earlier Tukiainen et al. [111] showed that LIPC region has 
opposite associations between the lipid measures of larger 
and smaller HDL particles.

Another commonly used approach is targeted sequenc-
ing of the trait-associated region that allow identification 
of rare coding or loss-of-function (LoF) variants with puta-
tive causal effects in the region [128–132]. Exome or whole 
genome sequencing allow the identification of full spectrum 
of variants, including rare and loss-of-function variants that 
may have direct functional effects than the common variants 
[99, 133, 134]. Due to the limited sample sizes, the sequenc-
ing efforts have been so far less successful in lipidomics and 
only a few rare or LoF variants influencing lipid levels could 
be discovered [96–99]. Long et al. identified seven rare 
variants in four genes (ACADS, CRAT , DMGDH, ETFDH) 
involved in fatty acid metabolism [96]. Thus, larger sequenc-
ing efforts are required to better understand the potential 
role of rare coding variants involved in lipidomic variation.

Further insight to the putative causal variant could also be 
provided by integrating GWAS results with other “omics” 
data such as transcriptome, proteome and epigenome. About 
80% of the genetic variants identified by the GWASs lie in 
the non-coding regions, thus exploring the association with 
gene expression levels (eQTLs), protein levels (pQTLs) and 
epigenetic changes such as DNA methylation in relevant tis-
sues could provide information about the biological effects 
of the variants and putative causal genes. Also, utilizing the 
phenome-wide association (PheWAS) data for thousands 
of clinical outcomes from biobanks such as UK Biobank 
(https ://www.ukbio bank.ac.uk/) and FinnGen (https ://www.
finng en.fi/en) could further provide mechanistic insights. To 
facilitate the efforts in this direction, colocalization tools 
have been developed in recent years that can integrate multi-
omics datasets such as GWAS, eQTLs, pQTLs and PheWAS 
data using statistical methods [135–137]. The colocalization 
analysis by Franceschini et al. provided evidence for the role 
of novel genes in the subclinical measures such as carotid 
intima-media thickness (cIMT) and carotid plaque formation 
and provided insights into the regulatory mechanisms link-
ing atherosclerosis and clinical outcomes [137].

Predicting CVD risk using lipidome‑based genetic 
risk scores

Early prediction and prevention could greatly reduce the 
enormous socio-economic burden of the CVDs [138]. The 
intensity of risk management regime is generally guided by 
the risk estimates of the individuals [139], which are not 
always precise [140]. Moreover, existing clinical risk assess-
ment tools, that typically include traditional plasma lipids, 
identify individuals with high CVD risk at a stage when ath-
erosclerotic events have already developed. Polygenic risk 
scores (PRS), a weighted sum of the number of risk alleles 
carried by an individual, has shown potential in early predic-
tion, but currently have limited clinical utility [141–144]. 
Thus, the quest for better and early-stage prediction scores 
to maximize the benefits of risk management has been the 
focus of the CVD research, but have provided limited suc-
cess so far [145, 146].

One of the challenges in early CVD detection and preven-
tion is the heterogeneity owing to the diverse pathological 
conditions that are preceded by atherosclerotic and meta-
bolic events developing at young age [147], resulting in dif-
ferent CVD subtypes. Hence, individuals’ predisposition 
to different subtypes is influenced by multiple independent 
risk factors that need to be understood and incorporated in 
prediction algorithms to guide appropriate and personal-
ized interventions. Traditional lipid profiling that measures 
HDL-C, LDL-C, triglycerides and total cholesterol, does 
not reflect precise molecular perturbations in lipid metabo-
lism underlying CVD subtypes. Moreover, a PRS based on 
genetic loci for CVD represents a combination of genetic 
risk factors acting through different pathways, whose roles 
may vary in different CVD subtypes. In such scenario, indi-
viduals would respond very differently to the same risk 
management strategies. As revealed by genetic studies of 
lipidome that many genomic loci have lipid species specific 
effects, integrating information of genetic variants of lipid-
omic measures in PRS algorithms could provide more spe-
cific and sensitive CVD risk stratification than those based 
on CVD variants. Our proposition is that the risk prediction 
model should incorporate information on perturbations in 
individual’s lipidome profile and their genetic determinants. 
Thus, the next challenge is to develop predictive tools to 
incorporate the genetic data on high-dimensional lipidome 
profiles.

Conclusion

The increasing global burden of CVDs highlights the press-
ing need for better personalized prediction and prevention 
strategies. One key step is to open new therapeutic opportu-
nities by understanding the causal roles of lipid metabolism 

https://www.ukbiobank.ac.uk/
https://www.finngen.fi/en
https://www.finngen.fi/en
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at molecular lipid species/sub-species resolution in heter-
ogenous CVDs etiologies and their regulation by genetic 
and lifestyle factors. To this end, the technological advances 
in lipidomics and other omics technologies have led to a 
tremendous progress in the CVD research field in last two 
decades. Lipidomics has not only provided a closer look at 
the lipid metabolic perturbations in CVDs, but has improved 
our understanding of the genetic control of lipid metabo-
lism. Further improvement in technologies will continue to 
improve our understanding of CVDs. However, the ultimate 
goal of a personalized translational research is to find the 
right intervention (target biomarker) for right individual 
(CVD subtype) at the right time (at early stage). Integrat-
ing the emerging genomics tools with the high-dimensional 
lipidome holds a great potential in moving towards this goal. 
We discussed some of the commonly used approaches in 
translational research that could be employed in lipidomics-
based studies, however further advancements in statistical 
and computational tools would be required to deal with the 
high-dimensional and correlated structure of the lipidome 
profiles.

Acknowledgements We would like to thank Sari Kivikko and Ulla 
Tuomainen for management assistance.

Author contributions RT performed the literature search and data 
analysis; RT and SR had the idea and wrote the manuscript.

Funding Open access funding provided by University of Helsinki 
including Helsinki University Central Hospital. SR was supported by 
the Academy of Finland Center of Excellence in Complex Disease 
Genetics (Grant No 312062), the Finnish Foundation for Cardiovascu-
lar Research, the Sigrid Juselius Foundation and University of Helsinki 
HiLIFE Fellow and Grand Challenge grants.

Code availability Not applicable.

Compliance with ethical standards 

Conflict of interest The authors declare that they have no conflict of 
interest.

Availability of data and material Not applicable.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

References

 1. O’Donnell MJ, Xavier D, Liu L et al (2010) Risk factors for 
ischaemic and intracerebral haemorrhagic stroke in 22 coun-
tries (the INTERSTROKE study): a case-control study. Lancet 
376:112–123

 2. Yusuf S, Joseph P, Rangarajan S et al (2019) Modifiable risk fac-
tors, cardiovascular disease, and mortality in 155 722 individuals 
from 21 high-income, middle-income, and low-income countries 
(PURE): a prospective cohort study. Lancet 395:795–808

 3. Kannel WB, Dawber TR, Friedman GD, Glennon WE, Mcna-
mara PM (1964) Risk factors in coronary heart disease. an 
evaluation of several serum lipids as predictors of coro-
nary heart disease; the Framingham study. Ann Intern Med 
61:888–899

 4. Arnett DK, Blumenthal RS, Albert MA et al (2019) 2019 ACC/
AHA Guideline on the primary prevention of cardiovascular dis-
ease: a report of the American College of Cardiology/American 
Heart Association Task Force on clinical practice guidelines. 
Circulation 140:e596–e646

 5. Global Burden of Disease (2016) Causes of Death Collaborators 
(2017) Global, regional, and national age-specific mortality for 
264 causes of death, 1980–2016: a systematic analysis for the 
Global Burden of Disease Study 2016. Lancet 390:1151–1210

 6. Akyea RK, Kai J, Qureshi N, Iyen B, Weng SF (2019) Sub-
optimal cholesterol response to initiation of statins and future 
risk of cardiovascular disease. Heart 13:975–981

 7. Quehenberger O, Dennis EA (2011) The human plasma lipidome. 
N Engl J Med 365:1812–1823

 8. Dennis EA (2019) Lipidomics joins the omics evolution. Proc 
Natl Acad Sci USA 106:2089–2090

 9. Yetukuri L, Ekroos K, Vidal-Puig A, Oresic M (2008) Infor-
matics and computational strategies for the study of lipids. Mol 
Biosyst 4:121–127

 10. Lydic TA, Goo YH (2018) Lipidomics unveils the complexity of 
the lipidome in metabolic diseases. Clin Transl Med 7:4

 11. Shevchenko A, Simons K (2010) Lipidomics: coming to grips 
with lipid diversity. Nat Rev Mol Cell Biol 11:593–598

 12. Tabassum R, Rämö JT, Ripatti P et al (2019) Genetic architecture 
of human plasma lipidome and its link to cardiovascular disease. 
Nat Commun 10:4329

 13. Demirkan A, Pool R, Deelen J, Beekman M, Liu J, Harms AC, 
Vaarhorst A, Hagenbeek FA, Willemsen G, Verhoeven A, Amin 
N, van Dijk KW, Hankemeier T, Boomsma DI, Slagboom E, 
van Duijn CM (2019) Genome-wide association study of plasma 
triglycerides, phospholipids and relation to cardio-metabolic risk 
factors. BioRxiv. https ://doi.org/10.1101/62133 4

 14. Schmelzer K, Fahy E, Subramaniam S, Dennis EA (2007) 
The LIPID MAPS initiative in lipidomics. Methods Enzymol 
432:169–181

 15. Fahy E, Subramaniam S, Brown HA et al (2005) A comprehen-
sive classification system for lipids. J Lipid Res 46:839–861

 16. Fahy E, Subramaniam S, Murphy RC et al (2009) Update of the 
LIPID MAPS comprehensive classification system for lipids. J 
Lipid Res 50:S9–S14

 17. Fahy E, Cotter D, Sud M, Subramaniam S (2011) Lipid classifica-
tion, structures and tools. Biochim Biophys Acta 1811:637–647

 18. Quehenberger O, Armando AM, Brown AH, Milne SB, Myers 
DS, Merrill AH, Bandyopadhyay S, Jones KN, Kelly S, Shaner 
RL, Sullards CM, Wang E, Murphy RC, Barkley RM, Leiker TJ, 
Raetz CR, Guan Z, Laird GM, Six DA, Russell DW, McDon-
ald JG, Subramaniam S, Fahy E, Dennis EA (2010) Lipidomics 
reveals a remarkable diversity of lipids in human plasma. J Lipid 
Res 51:3299–3305

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/621334


2581Integrating lipidomics and genomics: emerging tools to understand cardiovascular diseases  

1 3

 19. Slatter DA, Aldrovandi M, O’Connor A, Allen SM, Brasher CJ, 
Murphy RC, Mecklemann S, Ravi S, Darley-Usmar V, O’Donnell 
VB (2016) Mapping the human platelet lipidome reveals cyto-
solic phospholipase A2 as a regulator of mitochondrial bioener-
getics during activation. Cell Metab 23:930–944

 20. Han X (2016) Lipidomics for studying metabolism. Nat Rev 
Endocrinol 12:668–679

 21. Stephenson DJ, Hoeferlin LA, Chalfant CE (2017) Lipidomics in 
translational research and the clinical significance of lipid-based 
biomarkers. Transl Res 189:13–29

 22. Sokoła-Wysoczańska E, Wysoczański T, Wagner J, Czyż K, 
Bodkowski R, Lochyński S, Patkowska-Sokoła B (2018) Pol-
yunsaturated fatty acids and their potential therapeutic role in 
cardiovascular system disorders—a review. Nutrients 10:1561

 23. Innes JK, Calder PC (2020) Marine omega-3 (N-3) fatty acids for 
cardiovascular health: an update for 2020. Int J Mol Sci 21:1362

 24. Coleman RA, Lee DP (2004) Enzymes of triacylglycerol synthe-
sis and their regulation. Prog Lipid Res 43:134–176

 25. Prentki M, Madiraju SR (2008) Glycerolipid metabolism and 
signaling in health and disease. Endocr Rev 29:647–676

 26. Hannun Y, Obeid L (2018) Sphingolipids and their metabolism 
in physiology and disease. Nat Rev Mol Cell Biol 19:175–191

 27. Summers SA, Chaurasia B, Holland WL (2019) Metabolic mes-
sengers: ceramides. Nat Metab 1:1051–1058

 28. Dufourc EJ (2008) Sterols and membrane dynamics. J Chem Biol 
1:63–77

 29. Tumanov S, Kamphorst JJ (2017) Recent advances in expanding 
the coverage of the lipidome. Curr Opin Biotechnol 43:127–133

 30. Züllig T, Trötzmüller M, Köfeler HC (2020) Lipidomics from 
sample preparation to data analysis: a primer. Anal Bioanal 
Chem 412:2191–2209

 31. Cajka T, Fiehn O (2014) Comprehensive analysis of lipids in 
biological systems by liquid chromatography-mass spectrometry. 
Trends Anal Chem 61:192–206

 32. Yang K, Cheng H, Gross RW, Han X (2009) Automated lipid 
identification and quantification by multidimensional mass spec-
trometry-based shotgun lipidomics. Anal Chem 81:4356–4368

 33. Wang M, Wang C, Han RH, Han X (2016) Novel advances in 
shotgun lipidomics for biology and medicine. Prog Lipid Res 
61:83–108

 34. Hsu FF (2018) Mass spectrometry-based shotgun lipidomics—a 
critical review from the technical point of view. Anal Bioanal 
Chem 410:6387–6409

 35. Aru V, Lam C, Khakimov B, Hoefsloot HC, Zwanenburg G, 
Lind MV, Schäfer H, van Duynhoven J, Jacobs DM, Smilde AK, 
Soren B (2017) Quantification of lipoprotein profiles by nuclear 
magnetic resonance spectroscopy and multivariate data analysis. 
Trends Anal Chem 94:210–219

 36. Würtz P, Havulinna AS, Soininen P et al (2015) Metabolite 
profiling and cardiovascular event risk: a prospective study of 3 
population-based cohorts. Circulation 131:774–785

 37. Holmes MV, Millwood IY, Kartsonaki C, Hill MR, Bennett DA, 
Boxall R, Guo Y, Xu X, Bian Z, Hu R, Walters RG, Chen J, Ala-
Korpela M, Parish S, Clarke RJ, Peto R, Collins R, Li L, Chen 
Z, China Kadoorie Biobank Collaborative Group (2018) Lipids, 
lipoproteins, and metabolites and risk of myocardial infarction 
and stroke. J Am Coll Cardiol 71:620–632

 38. Nicholson G, Rantalainen M, Li JV, Maher AD, Malmodin D 
et al (2011) A genome-wide metabolic QTL analysis in Europe-
ans implicates two loci shaped by recent positive selection. PLoS 
Genet 7:e1002270

 39. Inouye M, Ripatti S, Kettunen J, Lyytikäinen LP, Oksala N, 
Laurila PP, Kangas AJ, Soininen P, Savolainen MJ, Viikari 
J, Kähönen M, Perola M, Salomaa V, Raitakari O, Lehtimäki 
T, Taskinen MR, Järvelin MR, Ala-Korpela M, Palotie A, de 

Bakker PI (2012) Novel Loci for metabolic networks and multi-
tissue expression studies reveal genes for atherosclerosis. PLoS 
Genet 8:e1002907

 40. Kettunen J, Tukiainen T, Sarin AP et al (2012) Genome-wide 
association study identifies multiple loci influencing human 
serum metabolite levels. Nat Genet 44:269–276

 41. Kettunen J, Demirkan A, Würtz P et al (2016) Genome-wide 
study for circulating metabolites identifies 62 loci and reveals 
novel systemic effects of LPA. Nat Comm 7:11122

 42. Coltell O, Sorlí JV, Asensio EM, Barragán R, González JI, Gimé-
nez-Alba IM, Zanón-Moreno V, Estruch R, Ramírez-Sabio JB, 
Pascual EC, Ortega-Azorín C, Ordovas JM, Corella D (2020) 
Genome-wide association study for serum omega-3 and omega-6 
polyunsaturated fatty acids: exploratory analysis of the sex-spe-
cific effects and dietary modulation in mediterranean subjects 
with metabolic syndrome. Nutrients 12:310

 43. Lemaitre RN, Tanaka T, Tang W et al (2011) Genetic loci associ-
ated with plasma phospholipid n-3 fatty acids: a meta-analysis of 
genome-wide association studies from the CHARGE consortium. 
PLoS Genet 7:e1002193

 44. Wu JH, Lemaitre RN, Manichaikul A et al (2013) Genome-wide 
association study identifies novel loci associated with concentra-
tions of four plasma phospholipid fatty acids in the de novo lipo-
genesis pathway: results from the Cohorts for Heart and Aging 
Research in Genomic Epidemiology (CHARGE) consortium. 
Circ Cardiovasc Gene 6:171–183

 45. Hu Y, Tanaka T, Zhu J et al (2017) Discovery and fine-mapping 
of loci associated with MUFAs through trans-ethnic meta-analy-
sis in Chinese and European populations. J Lipid Res 58:974–981

 46. Anroedh S, Hilvo M, Akkerhuis KM, Kauhanen D, Koistinen 
K, Oemrawsingh R, Serruys P, van Geuns RJ, Boersma E, Laak-
sonen R, Kardys I (2018) Plasma concentrations of molecular 
lipid species predict long-term clinical outcome in coronary 
artery disease patients. J Lipid Res 59:1729–1737

 47. Fernandez C, Sandin M, Sampaio JL, Almgren P, Narkiewicz K, 
Hoffmann M, Hedner T, Wahlstrand B, Simons K, Shevchenko 
A, James P, Melander O (2013) Plasma lipid composition and 
risk of developing cardiovascular disease. PLoS ONE 8:e71846

 48. Bismuth J, Lin P, Yao Q, Chen C (2008) Ceramide: a common 
pathway for atherosclerosis? Atherosclerosis 196:497–504

 49. Borodzicz S, Czarzasta K, Kuch M, Cudnoch-Jedrzejewska A 
(2015) Sphingolipids in cardiovascular diseases and metabolic 
disorders. Lipids Health Dis 14:55

 50. Sigruener A, Kleber ME, Heimerl S, Liebisch G, Schmitz G, 
Maerz W (2014) Glycerophospholipid and sphingolipid species 
and mortality: the Ludwigshafen risk and cardiovascular health 
(LURIC) study. PLoS ONE 9:e85724

 51. Cheng JM, Suoniemi M, Kardys I, Vihervaara T, de Boer SP, 
Akkerhuis KM, Sysi-Aho M, Ekroos K, Garcia-Garcia HM, 
Oemrawsingh RM, Regar E, Koenig W, Serruys PW, van Geuns 
RJ, Boersma E, Laaksonen R (2015) Plasma concentrations of 
molecular lipid species in relation to coronary plaque characteris-
tics and cardiovascular outcome: results of the ATHEROREMO-
IVUS study. Atherosclerosis 243:560–656

 52. Laaksonen R, Ekroos K, Sysi-Aho M et al (2016) Plasma cera-
mides predict cardiovascular death in patients with stable coro-
nary artery disease and acute coronary syndromes beyond LDL-
cholesterol. Eur Heart J 37:1967–1976

 53. Wang DD, Toledo E, Hruby A et al (2017) Plasma ceramides, 
Mediterranean diet, and incident cardiovascular disease in the 
PREDIMED Trial (Prevención con Dieta Mediterránea). Circula-
tion 135:2028–2040

 54. Havulinna AS, Sysi-Aho M, Hilvo M, Kauhanen D, Hurme R, 
Ekroos K, Salomaa V, Laaksonen R (2016) Circulating cera-
mides predict cardiovascular outcomes in the population-based 



2582 R. Tabassum, S. Ripatti 

1 3

FINRISK 2002 cohort. Arterioscler Thromb Vasc Biol 
36:2424–2430

 55. Alshehry ZH, Mundra PA, Barlow CK et al (2016) Plasma lipid-
omic profiles improve on traditional risk factors for the prediction 
of cardiovascular events in Type 2 diabetes mellitus. Circulation 
134:1637–1650

 56. Paynter NP, Balasubramanian R, Giulianini F, Wang DD, Tinker 
LF, Gopal S, Deik AA, Bullock K, Pierce KA, Scott J, Martínez-
González MA, Estruch R, Manson JE, Cook NR, Albert CM, 
Clish CB, Rexrode KM (2018) Metabolic predictors of incident 
coronary heart disease in women. Circulation 137:841–853

 57. Poss AM, Maschek JA, Cox JE, Hauner BJ, Hopkins PN, Hunt 
SC, Holland WL, Summers SA, Playdon MC (2020) Machine 
learning reveals serum sphingolipids as cholesterol-inde-
pendent biomarkers of coronary artery disease. J Clin Invest 
130:1363–1376

 58. de Carvalho LP, Tan SH, Ow GS, Tang Z, Ching J, Kovalik 
JP, Poh SC, Chin CT, Richards AM, Martinez EC, Troughton 
RW, Fong AY, Yan BP, Seneviratna A, Sorokin V, Summers SA, 
Kuznetsov VA, Chan MY (2018) Plasma ceramides as prognostic 
biomarkers and their arterial and myocardial tissue correlates in 
acute myocardial infarction. JACC Basic Transl Sci 3:163–175

 59. Mantovani A, Dugo C (2020) Ceramides and risk of major 
adverse cardiovascular events: a meta-analysis of longitudinal 
studies. J Clin Lipidol 14:176–185

 60. Seah JYH, Chew WS, Torta F, Khoo CM, Wenk MR, Herr DR, 
Choi H, Tai ES, van Dam RM (2020) Plasma sphingolipids and 
risk of cardiovascular diseases: a large-scale lipidomic analysis. 
Metabolomics 16:89

 61. Lemaitre RN, Jensen PN, Hoofnagle A, McKnight B, Fretts AM, 
King IB, Siscovick DS, Psaty BM, Heckbert SR, Mozaffarian D, 
Sotoodehnia N (2019) Plasma ceramides and sphingomyelins in 
relation to heart failure risk. Circ Heart Fail 12:e005708

 62. Hilvo M, Meikle PJ, Pedersen ER et al (2020) Development and 
validation of a ceramide- and phospholipid-based cardiovascular 
risk estimation score for coronary artery disease patients. Eur 
Heart J 41:371–380

 63. Peterson LR, Xanthakis V, Duncan MS et al (2018) Ceramide 
remodeling and risk of cardiovascular events and mortality. J 
Am Heart Assoc 7:e007931

 64. Meeusen JW, Donato LJ, Bryant SC, Baudhuin LM, Berger PB, 
Jaffe AS (2018) Plasma ceramides. Arterioscler Thromb Vasc 
Biol 38:1933–1939

 65. Stegemann C, Pechlaner R, Willeit P, Langley SR, Mangino M, 
Mayr U, Menni C, Moayyeri A, Santer P, Rungger G, Spector 
TD, Willeit J, Kiechl S, Mayr M (2014) Lipidomics profiling 
and risk of cardiovascular disease in the prospective population-
based Bruneck study. Circulation 129:1821–1831

 66. Mundra PA, Barlow CK, Nestel PJ et al (2018) Large-scale 
plasma lipidomic profiling identifies lipids that predict cardio-
vascular events in secondary prevention. JCI Insight 3:e121326

 67. Ganna A, Salihovic S, Sundstrom J et al (2014) Large-scale 
Metabolomic profiling identifies novel biomarkers for incident 
coronary heart disease. PLoS Genet 10:e1004801

 68. Razquin C, Liang L, Toledo E et al (2018) Plasma lipidome pat-
terns associated with cardiovascular risk in the PREDIMED trial: 
a case-cohort study. Int J Cardiol 253:126–132

 69. Wang DD, Zheng Y, Toledo E et al (2018) Lipid metabolic 
networks, Mediterranean diet and cardiovascular disease in the 
PREDIMED trial. Int J Epidemiol 47:1830–1845

 70. Yang L, Wang L, Deng Y, Sun L, Lou B, Yuan Z, Wu Y, Zhou 
B, Liu J, She J (2020) Serum lipids profiling perturbances in 
patients with ischemic heart disease and ischemic cardiomyopa-
thy. Lipids Health Dis 19:89

 71. Rubins HB, Robins SJ, Collins D et al (2002) Diabetes, plasma 
insulin, and cardiovascular disease: subgroup analysis from the 
Department of Veterans Affairs high-density lipoprotein inter-
vention trial (VA-HIT). Arch Intern Med 162:2597–2604

 72. Keech A, Simes RJ, Barter P et al (2005) Effects of long-term 
fenofibrate therapy on cardiovascular events in 9795 people with 
type 2 diabetes mellitus (the FIELD study): randomised con-
trolled trial. Lancet 366:1849–1861

 73. Do R, Willer CJ, Schmidt EM et al (2013) Common variants 
associated with plasma triglycerides and risk for coronary artery 
disease. Nat Genet 45:1345–1352

 74. Sysi-Aho M, Koikkalainen J, Seppänen-Laakso T, Kaartinen M, 
Kuusisto J, Peuhkurinen K, Kärkkäinen S, Antila M, Lauerma 
K, Reissell E, Jurkko R, Lötjönen J, Heliö T, Orešič M (2011) 
Serum lipidomics meets cardiac magnetic resonance imaging: 
profiling of subjects at risk of dilated cardiomyopathy. PLoS 
ONE 6:e15744

 75. Bellis C, Kulkarni H, Mamtani M et al (2014) Human plasma 
lipidome is pleiotropically associated with cardiovascular risk 
factors and death. Circ Cardiovasc Genet 7:854–863

 76. Frahnow T, Osterhoff MA, Hornemann S, Kruse M, Surma 
MA, Klose C, Simons K, Pfeiffer AFH (2017) Heritability and 
responses to high fat diet of plasma lipidomics in a twin study. 
Sci Rep 7:3750

 77. Cadby G, Melton PE, McCarthy NS, Giles C, Mellett NA, Huynh 
K, Hung J, Beilby J, Dubé MP, Watts GF, Blangero J, Meikle PJ, 
Moses EK (2020) Heritability of 596 lipid species and genetic 
correlation with cardiovascular traits in the Busselton Family 
Heart Study. J Lipid Res 61:537–545

 78. Jha P, McDevitt MT, Gupta R, Quiros PM, Williams EG, Gariani 
K, Sleiman MB, Diserens L, Jochem A, Ulbrich A, Coon JJ, 
Auwerx J, Pagliarini DJ (2018) Systems analyses reveal physi-
ological roles and genetic regulators of liver lipid species. Cell 
Syst 6:722-733.e6

 79. Jha P, McDevitt MT, Halilbasic E, Williams EG, Quiros PM, 
Gariani K, Sleiman MB, Gupta R, Ulbrich A, Jochem A, Coon 
JJ, Trauner M, Pagliarini DJ, Auwerx J (2018) Genetic regula-
tion of plasma lipid species and their association with metabolic 
phenotypes. Cell Syst 6:709-721.e6

 80. Hagenbeek FA, Pool R, van Dongen J et al (2020) Heritability 
estimates for 361 blood metabolites across 40 genome-wide asso-
ciation studies. Nat Commun 11:39

 81. Surakka I, Horikoshi M, Mägi R et al (2015) The impact of 
low-frequency and rare variants on lipid levels. Nat Genet 
47:589–597

 82. Klarin D, Damrauer SM, Cho K et al (2018) Genetics of blood 
lipids among ~300,000 multi-ethnic participants of the Million 
Veteran Program. Nat Genet 50:1514–1523

 83. Gieger C, Geistlinger L, Altmaier E, Hrabé de Angelis M, Kro-
nenberg F, Meitinger T, Mewes HW, Wichmann HE, Weinberger 
KM, Adamski J, Illig T, Suhre K (2008) Genetics meets metabo-
lomics: a genome-wide association study of metabolite profiles 
in human serum. PLoS Genet 4:e1000282

 84. Hicks AA, Pramstaller PP, Johansson A et al (2009) Genetic 
Determinants of circulating sphingolipid concentrations in Euro-
pean populations. PLoS Genet 5:e1000672

 85. Illig T, Gieger C, Zhai G et al (2010) A genome-wide perspective 
of genetic variation in human metabolism. Nat Genet 42:137–141

 86. Suhre K, Shin SY, Petersen AK et al (2011) Human metabolic 
individuality in biomedical and pharmaceutical research. Nature 
477:54–60

 87. Demirkan A, van Duijn CM, Ugocsai P et al (2012) Genome-
wide association study identifies novel loci associated with cir-
culating phospho- and sphingolipid concentrations. PLoS Genet 
8:e1002490



2583Integrating lipidomics and genomics: emerging tools to understand cardiovascular diseases  

1 3

 88. Rhee EP, Ho JE, Chen MH et al (2013) A genome-wide asso-
ciation study of the human metabolome in a community-based 
cohort. Cell Metab 18:130–143

 89. Yu B, Zheng Y, Alexander D et al (2014) Genetic Determinants 
Influencing Human Serum Metabolome among African Ameri-
cans. PLoS Genet 10:e1004212

 90. Shin SY, Fauman EB, Petersen AK et al (2014) An atlas of 
genetic influences on human blood metabolites. Nat Genet 
46:543–550

 91. Ried JS, Shin SY, Krumsiek J et al (2014) Novel genetic associa-
tions with serum level metabolites identified by phenotype set 
enrichment analyses. Hum Mol Genet 23:5847–5857

 92. Draisma HHM, Pool R, Kobl M et al (2015) Genome-wide 
association study identifies novel genetic variants contributing 
to variation in blood metabolite levels. Nat Commun 6:7208

 93. Mozaffarian D, Kabagambe EK, Johnson CO et al (2015) Genetic 
loci associated with circulating phospholipid trans fatty acids: 
a meta-analysis of genome-wide association studies from the 
CHARGE Consortium. Am J Clin Nutr 101:398–406

 94. Rhee EP, Yang Q, Yu B et al (2016) An exome array study of the 
plasma metabolome. Nat Commun 7:12360

 95. Yu B, Li AH, Metcalf GA et al (2016) Loss-of-function variants 
influence the human serum metabolome. Sci Adv 2:e1600800

 96. Long T, Hicks M, Yu HC et al. Whole-genome sequencing iden-
tifies common-to-rare variants associated with human blood 
metabolites. Nat Genet 49:568–578

 97. Yousri NA, Fakhro KA, Robay A et al (2018) Whole-exome 
sequencing identifies common and rare variant metabolic QTLs 
in a Middle Eastern population. Nat Commun 9:333

 98. Feofanova EV, Yu B, Metcalf GA et al (2018) Sequence-Based 
Analysis of Lipid-Related Metabolites in a Multiethnic Study. 
Genetics 209:607–616

 99. Yazdani A, Yazdani A, Elsea SH et al (2019) Genome analysis 
and pleiotropy assessment using causal networks with loss of 
function mutation and metabolomics. BMC Genomics 20:395

 100. Lotta LA, Pietzner M, Stewart ID et al (2020) Cross-platform 
genetic discovery of small molecule products of metabolism 
and application to clinical outcomes. bioRxiv. https ://doi.
org/10.1101/2020.02.03.93254 1

 101. Mullen TD, Hannun YA, Obeid LM (2012) Ceramide synthases 
at the centre of sphingolipid metabolism and biology. Biochem 
J 441:789–802

 102. Mizutani Y, Kihara A, Igarashi Y (2005) Mammalian Lass6 and 
its related family members regulate synthesis of specific cera-
mides. Biochem J 390:263–271

 103. Beer NL, Tribble ND, McCulloch LJ, Roos C, Johnson PR, Orho-
Melander M, Gloyn AL (2009) The P446L variant in GCKR 
associated with fasting plasma glucose and triglyceride levels 
exerts its effect through increased glucokinase activity in liver. 
Hum Mol Genet 18:4081–4088

 104. Orho-Melander M, Melander O, Guiducci C et al (2008) Com-
mon missense variant in the glucokinase regulatory protein gene 
is associated with increased plasma triglyceride and C-reactive 
protein but lower fasting glucose concentrations. Diabetes 
57:3112–3121

 105. Lee HC, Inoue T, Imae R, Kono N, Shirae S, Matsuda S, Gengyo-
Ando K, Mitani S, Arai H (2008) Caenorhabditis elegans mboa-
7, a member of the MBOAT family, is required for selective 
incorporation of polyunsaturated fatty acids into phosphati-
dylinositol. Mol Biol Cell 19:1174–1184

 106. Gijón MA, Riekhof WR, Zarini S, Murphy RC, Voelker DR 
(2008) Lysophospholipid acyltransferases and arachidonate 
recycling in human neutrophils. J Biol Chem 283:30235–30245

 107. Luukkonen PK, Zhou Y, Hyötyläinen T, Leivonen M, Arola 
J, Orho-Melander M, Orešič M, Yki-Järvinen H (2016) The 
MBOAT7 variant rs641738 alters hepatic phosphatidylinositols 

and increases severity of non-alcoholic fatty liver disease in 
humans. J Hepatol 65:1263–1265

 108. Meroni M, Longo M, Fracanzani AL, Dongiovanni P (2020) 
MBOAT7 down-regulation by genetic and environmental fac-
tors predisposes to MAFLD. EBioMedicine 57:102866

 109. Buch S, Stickel F, Trépo E et al (2015) A genome-wide asso-
ciation study confirms PNPLA3 and identifies TM6SF2 and 
MBOAT7 as risk loci for alcohol-related cirrhosis. Nat Genet 
47:1443–1448

 110. Saini RK, Keum YS (2018) Omega-3 and omega-6 polyunsatu-
rated fatty acids: dietary sources, metabolism, and significance—
a review. Life Sci 203:255–267

 111. Tukiainen T, Kettunen J, Kangas AJ et al (2012) Detailed meta-
bolic and genetic characterization reveals new associations for 
30 known lipid loci. Hum Mol Genet 21:1444–1455

 112. Kamb A, Harper S, Stefansson K (2013) Human genetics as a 
foundation for innovative drug development. Nat Biotechnol 
31:975–978

 113. Hess CN, Low Wang CC, Hiatt WR (2018) PCSK9 Inhibitors: 
Mechanisms of Action, Metabolic Effects, and Clinical Out-
comes. Annu Rev Med 69:133–145

 114. Davey Smith G, Ebrahim S (2005) What can mendelian randomi-
sation tell us about modifiable behavioural and environmental 
exposures? BMJ 330:1076–1079

 115. Emdin CA, Khera AV, Kathiresan S (2017) Mendelian randomi-
zation. JAMA 318:1925–1926

 116. Davies NM, Holmes MV, Davey Smith G (2018) Reading Men-
delian randomisation studies: a guide, glossary, and checklist for 
clinicians. BMJ 362:k601

 117. Kamstrup PR, Tybjaerg-Hansen A, Steffensen R, Nordestgaard 
BG (2009) Genetically elevated lipoprotein(a) and increased risk 
of myocardial infarction. JAMA 301:2331–2339

 118. Gudbjartsson DF, Thorgeirsson G, Sulem P et  al (2019) 
Lipoprotein(a) concentration and risks of cardiovascular disease 
and diabetes. J Am Coll Cardiol 74:2982–2994

 119. Katan MB (1986) Apolipoprotein E isoforms, serum cholesterol, 
and cancer. Lancet 1:507–508

 120. Del Greco MF, Foco L, Teumer A et al (2019) Lipidomics, 
atrial conduction, and body mass index. Circ Genom Precis Med 
12:e002384

 121. Qin Y, Meric G, Long T, Watrous J, Burgess S, Havu-
linna A, Ritchie SC, Brozynska M, Jousilahti P, Perola M, 
Lahti L, Niiranen T, Cheng S, Salomaa V, Jain M, Inouye M 
(2020) Genome-wide association and Mendelian randomi-
zation analysis prioritizes bioactive metabolites with puta-
tive causal effects on common diseases. medRxiv. https ://doi.
org/10.1101/2020.08.01.20166 413

 122. Burgess S, Thompson SG (2015) Multivariable Mendelian ran-
domization: the use of pleiotropic genetic variants to estimate 
causal effects. Am J Epidemiol 181:251–260

 123. Zuber V, Colijn JM, Klaver C et al (2020) Selecting likely causal 
risk factors from high-throughput experiments using multivari-
able Mendelian randomization. Nat Commun 11:29

 124. Richardson TG, Sanderson E, Palmer TM, Ala-Korpela M, Fer-
ence BA, Davey Smith G, Holmes MV (2020) Evaluating the 
relationship between circulating lipoprotein lipids and apoli-
poproteins with risk of coronary heart disease: a multivariable 
Mendelian randomisation analysis. PLoS Med 17:e1003062

 125. Schaid DJ, Chen W, Larson NB (2018) From genome-wide asso-
ciations to candidate causal variants by statistical fine-mapping. 
Nat Rev Genet 19:491–504

 126. Spain SL, Barrett JC (2015) Strategies for fine-mapping complex 
traits. Hum Mol Genet 24(R1):R111–R119

 127. Gallois A, Mefford J, Ko A et al (2019) A comprehensive study 
of metabolite genetics reveals strong pleiotropy and heterogene-
ity across time and context. Nat Commun 10:4788

https://doi.org/10.1101/2020.02.03.932541
https://doi.org/10.1101/2020.02.03.932541
https://doi.org/10.1101/2020.08.01.20166413
https://doi.org/10.1101/2020.08.01.20166413


2584 R. Tabassum, S. Ripatti 

1 3

 128. Rivas MA, Beaudoin M, Gardet A et al (2011) Deep resequenc-
ing of GWAS loci identifies independent rare variants associated 
with inflammatory bowel disease. Nat Genet 43:1066–1073

 129. Nejentsev S, Walker N, Riches D, Egholm M, Todd JA (2009) 
Rare variants of IFIH1, a gene implicated in antiviral responses, 
protect against type 1 diabetes. Science 324:387–389

 130. van de Ven JP, Nilsson SC, Tan PL et al (2013) A functional 
variant in the CFI gene confers a high risk of age-related macular 
degeneration. Nat Genet 45:813–817

 131. Patel AP, Peloso GM, Pirruccello JP, Johansen CT, Dubé JB, 
Larach DB, Ban MR, Dallinge-Thie GM, Gupta N, Boehnke M, 
Abecasis GR, Kastelein JJ, Hovingh GK, Hegele RA, Rader DJ, 
Kathiresan S (2016) Targeted exonic sequencing of GWAS loci 
in the high extremes of the plasma lipids distribution. Athero-
sclerosis 250:63–68

 132. Service SK, Teslovich TM, Fuchsberger C, et al (2014) Re-
sequencing expands our understanding of the phenotypic impact 
of variants at GWAS loci. PLoS Genet 10:e1004147

 133. Liu DJ, Peloso GM, Yu H et al (2017) Exome-wide associa-
tion study of plasma lipids in >300,000 individuals. Nat Genet 
49:1758–1766

 134. Natarajan P, Peloso GM, Zekavat SM et al (2018) Deep-coverage 
whole genome sequences and blood lipids among 16,324 indi-
viduals. Nat Commun 9:3391

 135. Giambartolomei C, Vukcevic D, Schadt EE et al (2014) Bayesian 
test for colocalisation between pairs of genetic association studies 
using summary statistics. PLoS Genet 10:e1004383

 136. Hormozdiari F, Kostem E, Kang EY, Pasaniuc B, Eskin E (2014) 
Identifying causal variants at loci with multiple signals of asso-
ciation. Genetics 198:497–508

 137. Franceschini N, Giambartolomei C, de Vries PS et al (2018) 
GWAS and colocalization analyses implicate carotid intima-
media thickness and carotid plaque loci in cardiovascular out-
comes. Nat Commun 9:5141

 138. Carter HE, Schofield D, Shrestha R (2019) Productivity costs of 
cardiovascular disease mortality across disease types and socio-
economic groups. Open Heart 6:e000939

 139. Twenty Seventh Bethesda Conference (1995) Matching the 
intensity of risk factor management with the hazard for coro-
nary disease events. September 14–15, 1995. J Am Coll Cardiol 
27:957–1047

 140. Kent DM, Shah ND (2012) Risk models and patient-centered 
evidence: should physicians expect one right answer? JAMA 
307:1585–1586

 141. Torkamani A, Wineinger NE, Topol EJ (2018) The personal 
and clinical utility of polygenic risk scores. Nat Rev Genet 
19:581–590

 142. Mars N, Koskela JT, Ripatti P et al (2020) Polygenic and clini-
cal risk scores and their impact on age at onset and prediction 
of cardiometabolic diseases and common cancers. Nat Med 
26:549–557

 143. Elliott J, Bodinier B, Bond TA, Chadeau-Hyam M, Evangelou 
E, Moons KGM, Dehghan A, Muller DC, Elliott P, Tzoulaki I 
(2020) Predictive Accuracy of a polygenic risk score-enhanced 
prediction model vs a clinical risk score for coronary artery dis-
ease. JAMA 323:636–645

 144. Mosley JD, Gupta DK, Tan J, Yao J, Wells QS, Shaffer CM, 
Kundu S, Robinson-Cohen C, Psaty BM, Rich SS, Post WS, 
Guo X, Rotter JI, Roden DM, Gerszten RE, Wang TJ (2020) 
Predictive Accuracy of a Polygenic Risk score compared with 
a clinical risk score for incident coronary heart disease. JAMA 
323:627–635

 145. US Preventive Services Task Force, Curry SJ, Krist AH, Owens 
DK, Barry MJ, Caughey AB, Davidson KW, Doubeni CA, Epling 
JW Jr, Kemper AR, Kubik M, Landefeld CS, Mangione CM, 
Silverstein M, Simon MA, Tseng CW, Wong JB (2018) Risk 
assessment for cardiovascular disease with nontraditional risk 
factors: US Preventive Services Task Force Recommendation 
Statement. JAMA 320:272–280

 146. Lin JS, Evans CV, Johnson E, Redmond N, Coppola EL, Smith N 
(2018) Nontraditional risk factors in cardiovascular disease risk 
assessment: updated evidence report and systematic review for 
the US Preventive Services Task Force. JAMA 320:281–297

 147. Expert Panel on Integrated Guidelines for Cardiovascular Health 
and Risk Reduction in Children and Adolescents, National Heart, 
Lung, and Blood Institute (2011) Expert panel on integrated 
guidelines for cardiovascular health and risk reduction in children 
and adolescents: summary report. Pediatrics 128:S213–S256

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


	Integrating lipidomics and genomics: emerging tools to understand cardiovascular diseases
	Abstract
	Introduction
	Human plasma lipidome
	Fatty acyls
	Glycerolipids
	Glycerophospholipids
	Sphingolipids
	Sterol lipids
	Prenols

	Analytical methods in lipidomics
	Lipidomics in CVD risk prediction
	Ceramides as prognostic markers for CVDs
	Opposite effects of MUFA and PUFA containing phospholipids
	Distinct role of TG species in CVDs

	Genetic regulation of lipidome
	Sphingolipids
	Glycerolipids
	Phospholipids
	Sterols

	Discussion
	Integrating lipidomics and genomics: opportunities beyond GWAS
	Inferring causality towards drug targets development
	Refining GWAS signals to causal variants to reveal metabolic networks
	Predicting CVD risk using lipidome-based genetic risk scores

	Conclusion
	Acknowledgements 
	References




