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Splicing is an alternate oncogenic pathway
activation mechanism in glioma
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High-grade diffuse glioma (HGG) is the leading cause of brain tumour death. While the
genetic drivers of HGG have been well described, targeting these has thus far had little
impact on survival suggesting other mechanisms are at play. Here we interrogate the
alternative splicing landscape of pediatric and adult HGG through multi-omic analyses,
uncovering an increased splicing burden compared with normal brain. The rate of recurrent
alternative splicing in cancer drivers exceeds their mutation rate, a pattern that is recapitu-
lated in pan-cancer analyses, and is associated with worse prognosis in HGG. We investigate
potential oncogenicity by interrogating cancer pathways affected by alternative splicing in
HGG; spliced cancer drivers include members of the RAS/MAPK pathway. RAS suppressor
neurofibromin 1 is differentially spliced to a less active isoform in >80% of HGG downstream
from REST upregulation, activating the RAS/MAPK pathway and reducing glioblastoma
patient survival. Overall, our results identify non-mutagenic mechanisms by which cancers
activate oncogenic pathways which need to accounted for in personalized medicine
approaches.
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ARTICLE

he genetic drivers of high-grade glioma (HGG) have been

well-described, with isocitrate dehydrogenase (IDH)

mutations and epidermal growth-factor receptor (EGFR)
amplifications common in adult diffuse glioma, while pediatric
HGG (pHGG) harbor high-frequency mutations in histones H3.1
and H3.3 as well as platelet-derived growth-factor receptor alpha
(PDGFRA) alterations!~8. Some events are shared between
pediatric and adult HGG; for example, neurofibromin 1 (NFI) is
mutated in 5% of all cancers and 10% of HGG>*® However, the
prognosis for both children and adults diagnosed with this
devastating disease remains dismal. The oncogenicity of DNA
mutations has been well studied but is imperfect in its ability to
predict tumor behavior and therapeutic response, suggesting
other mechanisms, including epigenetic, transcriptomic, and
proteomic, are at play. Alternative splicing (AS), which increases
transcript diversity and has been shown to be altered in adult
cancer!9, has the potential to affect cancer genes through removal
or alteration of protein domains and post-translational mod-
ifications (PTM), nonsense-mediated decay, or protein
truncation.

Here, we find that AS more frequently targets cancer genes than
do point mutations across a broad spectrum of cancers, a phenom-
enon that is particularly striking in HGG where cancer-driver spli-
cing, but not mutation, burden is significantly associated with
survival. Characterization of the HGG AS landscape demonstrates a
convergence on cancer-driver genes. To test the potential for a
functional role of these AS events, we investigate the role of alter-
native splicing of NF1. We found preferential inclusion of NFI
exon23a in HGG increased RAS/MAPK activity independent of
other RAS/MAPK alterations and was associated with worse patient
survival. NFI3%9, is differentially spliced in over 80% of HGG,
indicating a much broader, NF1-mediated, RAS-activating event than
by mutation alone. Overall, our data demonstrate an alternative,
clinically relevant, mechanism of oncogenic pathway activation in
cancer that will be important to integrate into future therapeutic
workflows for optimal precision medicine.

Results

Spliceosome mutations are associated with increased alter-
native splicing in pHGG. Investigating the mutational landscape
of our pHGG cohort, we found that 34% of patients (n = 31/91)
had at least one spliceosome mutation including single nucleotide
variants or copy number alterations (Fig. la, Supplementary Fig.
Sla, and Supplementary Data 1 and 2). In an independent pHGG
cohort! 112, 289% (40/141) of patients had spliceosome mutations
(Supplementary Fig. S1b). The spliceosome is composed of
multiple subcomplexes, with many proteins involved in one or
more subcomplexes (Supplementary Data 2). Core components
that are used throughout the spliceosome lifecycle were the most
frequently mutated, with 11-23% of patients (n = 10-21) having
a mutation in any complex (Fig. 1a and Supplementary Fig. Slc).
Spliceosome mutations in genes including SF3B1, U2AF, and
SRSF2 frequently occur in other tumors such as leukemia and
myelodysplastic syndromel!3, while highly recurrent alterations in
the Ul snRNA were recently identified in multiple cancers,
including medulloblastoma!41>. Hotspot mutations in these
genes and the Ul snRNA alterations were not identified in our
cohort (Supplementary Data 2).

Given the frequent spliceosome mutations, we hypothesized
that pHGG may be prone to disrupted AS. In RNA-Seq analysis
comparing 64 pHGG (n = 64) with the normal brain (n = 20),
splicing pathways were upregulated (Fig. 1b and Supplementary
Data 1), irrespective of direct mutations in the spliceosome and
not related to differential DNA methylation (Supplementary
Fig. S1f). An upregulation of splicing pathways was also seen in

adult diffuse glioma using RNA-Seq from The Cancer Genome
Atlas (TCGA; IDH-wt (n = 243), IDH-mut/non-codel (n =270),
IDH-mut/codel (n = 173), normal brain (n =5)) and (P <0.005;
Supplementary Fig. S1d, e) suggesting this may be a general
glioma phenomenon.

In keeping with the upregulation of splicing pathways, analysis
of alternative splicing events (ASE) (rMATS!®), found 247,507
ASE across the dataset (Supplementary Fig. S2a, b) with 1827
differential ASE from 904 genes identified in pHGG compared
with a normal brain. 844 differential ASE (absolute Ay > 0.15,
FDR <0.05) associated with mutant spliceosomes, which were
mostly skipped exons or mutually exclusive exons and unique to
tumors mutated in a given complex (Fig. le and Supplementary
Fig. S1j, k). Subcomplexes E (the earliest assembly stage) and Bact
(the subcomplex where the catalytic core is fully assembled) had
the biggest effect on AS compared with spliceosome-WT tumors
(Fig. 1a, e and Supplementary Fig. S1k).

Globally, pHGG and normal brain could be efficiently separated
in unsupervised hierarchical clustering and t-SNE analyses based on
ASEs (Supplementary Fig. S1g, h). We then quantified alternative
splicing in pHGG compared with the normal brain. First, we found
that splice junction usage was more variable (P<2x 10716
Supplementary Fig. S1i). Next, we calculated the Shannon entropy
of each multi-isoform gene!’, finding a significant increase in
pHGG indicating that more isoforms are expressed than in the
normal brain, irrespective of spliceosome-mutant status (pHGG as
a whole vs normal brain P < 2 x 10716; spliceosome-WT pHGG vs.
normal brain P = 6 x 10~11; spliceosome-mutant pHGG vs. normal
brain P <1071 spliccosome-WT vs. spliccosome-mutant pHGG
P =0.037, Fig. 1c, d).

Cancer-driver genes are enriched among differential splicing
events in pHGG. In total, 1827 differential ASE from 904 genes
were identified in pHGG, predominantly skipped exon and
mutually exclusive exon events, (Fig. 2a and Supplementary Fig.
S2a-c). We validated select targets by RT-PCR in pHGG/normal
brain pairs (Supplementary Fig. S2d). In all, 79% of spliced genes
were not also differentially expressed, indicating the differential
ASE we identified are not expression-level artifacts (Supplemen-
tary Fig. S2e). To confirm our findings, we compared the targets
identified by rMATS!® with a second algorithm, SUPPA2!S,
which estimates splicing changes from transcript abundances
rather than junction counts and thus provides a very different
method of analyzing the splicing landscape of pHGG. SUPPA2
identified 2576 events from 1482 genes, with a highly significant
overlap in differentially spliced genes between the two approaches
(P=10"120; Supplementary Fig. S2f). Interestingly, although
large numbers of intron retentions have recently been described
in adult GBM!%1%, neither rMATS (6) or SUPPA2 (30) identified
large numbers of significantly differential intron retentions when
comparing pHGG with normal brain despite identifying over
4000 intron retention events across the dataset. This could be
algorithm-related, however, as using SplAdder, the algorithm
used in the adult GBM publication!?, identified >3x more
(13,866) RI events, and determined 565 to be significant (94 and
20x more than rMATS/SUPPA2, respectively). Importantly, three
genes in which we confirmed differential splicing in pHGG using
RT-PCR (FGFRI, MBDI1, SMARCC2) were identified only with
rMATS. Given that rMATS could identify additional true splicing
events beyond SUPPA2, while appearing more conservative
overall in terms of events identified, we proceeded with the 1827
differential ASE we identified in pHGG using rMATS for sub-
sequent analyses.

We found that the 1827 ASE in pHGG were differentially
spliced regardless of the spliceosome mutation status. In addition,
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Fig. 1 The landscape of alternative splicing in pHGG. a Frequency of spliceosome mutations in pHGG in total (Spliceosome) and by subcomplex. b Gene
set enrichment analysis (GSEA) comparing pHGG (n = 64) and normal brain (n=20) for spliceosome components and mRNA splicing pathway. NES
normalized enrichment score, FDR false discovery rate. ¢ Splicing burden, as measured by the median Shannon entropy of multi-isoform genes, was plotted
for normal brain (n =20) and pHGG (n = 64). The box shows the interquartile range (IQR), the line shows the median, and the whiskers extend to 1.5%IQR.
d Splicing burden was plotted for normal brain (n =20) plus pHGG with wild-type (WT, n=24) or mutant (n=28) spliceosomes. The box shows the
interquartile range (IQR), the line shows the median, and the whiskers extend to 1.5%IQR. e Differential splicing events (ASE; splice change|Ay|>0.15,
FDR < 0.05) were identified in pHGG with mutations in each spliceosome complex relative to pHGG with WT spliceosomes. Each bar shows the number of
each type of event that was preferentially included (Inc) or skipped in mutant pHGG. SE skipped exon, MXE mutually exclusive exon, A5SS alternative 5
splice site, A3SS alternative 3" splice site, Rl retained intron (see Supplementary Fig. S2a for schematic). Statistical tests: Wilcoxon rank-sum test (c),
Pairwise Wilcoxon rank-sum tests with Benjamini-Hochberg correction (d). Source data are provided as a Source Data file.

spliceosome-mutant pHGG have an increased burden of ASEs,
which varied with the component of the spliceosome complex
that was mutant (Fig. 1e and Supplementary Fig. S1k).

Differentially spliced genes were enriched in the RAS/MAPK
(P<2x10~%), chromatin (P = 1.3 x 10~%), cellular communica-
tion (P<3x107%), and trafficking (P=3x10"%) pathways
(Fig. 2b), with very similar findings among the genes identified
by SUPPA2 (Supplementary Fig. S2g). Remarkably, genes in the
Catalogue of Somatic Mutations in Cancer (COSMIC) cancer-
driver census? were enriched significantly more than expected
(P=3x1072%), with 78 genes (8%; 185 ASE) differentially
spliced in pHGG, in particular from the RAS/MAPK and
chromatin pathways (Supplementary Fig. S3a, b). Furthermore,
among oncogenic pathways curated by TCGA?, the RTK/RAS/
MAPK and PI3K pathways were significantly affected by splicing
but not by expression (Supplementary Fig. S3c). The majority of
differential ASE in cancer-driver genes were predicted to affect
protein domains (53%), intrinsically disordered regions (50%) or
PTMs (45%; Fig. 2¢, d).

Collectively, these data imply that pHGG frequently activates
oncogenic processes non-mutationally. Accordingly, the rate of
recurrent cancer-driver splicing was significantly higher than
mutation in pHGG within both individual samples and genes
(both P<1071; Fig. 2e). To test if the frequency of AS, and the
convergence on cancer drivers, was a more general phenomenon,
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we used TCGA data for 18 tumor types with available normal
tissue RNA-Seq. Remarkably, 17 had significantly higher cancer-
driver splicing burden per sample than mutations (P <10~17),
with most also having more recurrent AS alterations than
mutations (Fig. 2f and Supplementary Fig. S3d, e).

Adult diffuse gliomas (glioblastoma, GBM; lower-grade glioma;
LGG) had the highest level of splice-driven alterations (Fig. 2f, g).
Those with the highest differential cancer-driver splicing had
significantly worse overall survival (OS) (P < 10~1°) while those with
higher cancer-driver mutation burdens did not (Supplementary
Fig. S4a, b). Adult diffuse glioma occurs in three main subgroups
defined by isocitrate dehydrogenase (IDH) mutations and co-deletion
of chromosomes 1p and 19q*. IDH wild-type (IDH-wt) GBM have
poor outcome compared with IDH-mutant diffuse glioma (with
(IDH-mut/codel) or without (IDH-mut/non-codel) 1p/19q co-
deletion)*, and GBM had increased cancer-driver AS (Supplementary
Fig. S4c). However, on multivariate survival analysis the effect of
cancer-driver AS on OS was subgroup-independent (P =0.01;
Supplementary Fig. S4d). Splicing, but not mutation burden, was
significantly associated with worse OS for IDH-wt GBM (P = 0.007)
and IDH-mut/non-codel astrocytoma (P =0.015), with a trend
(P=0.18) for IDH-mut/codel oligodendroglioma (Fig. 2h, i and
Supplementary Fig. S4e-i).

To test the dependence of HGG on the spliceosome, we treated
both pHGG, GBM, and normal human astrocyte cell lines with
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Fig. 2 Pan-cancer alternative splicing converges on cancer-driver genes. a The number of differential ASE that are preferentially included or skipped in
pHGG from each ASE category. SE skipped exon, MXE mutually exclusive exon, A5SS alternative 5' splice site, A3SS alternative 3’ splice site, Rl retained
intron (see Supplementary Fig. S2a for schematic). b Reactome pathways enriched among genes differentially spliced in pHGG at false discovery rate
(FDR) < 0.05. ¢ Percentage of COSMIC cancer-driver genes with differential ASE predicted to affect structural domains or intrinsically disordered domains
(IDR) mapped in UniProt. d Percentage of COSMIC cancer-driver genes with differential ASE predicted to affect post-translational modification (PTM)
sites mapped in UniProt. e Burden of splicing and mutations among COSMIC cancer-driver genes in pHGG (n=51). The left group (Gene) shows the
fraction of samples with an alteration per driver gene. The right group (Sample) shows the fraction of driver genes that are altered per sample. The box
marks the interquartile range (IQR) and shows the median value. The whiskers extend to 1.5x IQR and outliers outside this are plotted separately. f Pan-
cancer burden of splicing and mutations in COSMIC cancer-driver genes, showing the fraction of driver genes that are altered per sample. The box
marks the interquartile range (IQR) and shows the median value. The whiskers extend to 1.5% IQR and outliers outside this are plotted separately. See
Supplementary Data 4 for n and P values. g Data in (f) are summarized to show the mean fraction of altered genes per sample across each tumor type.
h Kaplan-Meier survival plot of IDH-wt GBM patients that are in the top (Q4, n=55) or bottom (Q1, n=57) quartile of splicing burden of cancer-driver
genes. i Kaplan-Meier survival plot of IDH-wt GBM patients that are in the top (Q4, n = 55) or bottom (Q1, n = 56) quartile of mutation burden of cancer-
driver genes. j Cell lines were treated with increasing concentration of pladienolide B for 5 days and viability was measured with alamarBlue (n = 6). Bars
show mean * standard error. Statistical tests: t (e) with Benjamini-Hochberg multiple hypothesis testing correction (f), log-rank (h, i). ****P <0.0001. NS
not significant. Source data are provided as a Source Data file.
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the spliceosome inhibitor pladienolide B. All lines including
normal human astrocyte controls were exquisitely sensitive to this
drug (IC50 0.76-4.30 nM; Fig. 2j). Similar results were obtained
with a second inhibitor, madrasin (Supplementary Fig. S4j),
demonstrating that, although unlikely to be directly targetable,
HGG cells have a fundamental requirement for spliceosome
activity to remain viable.

Functional consequences of chromatin regulator disruption by
alternative splicing. While the frequency of AS in cancer genes
and its association with more aggressive tumor behavior are
intriguing, an important question is the potential for functional
effects of these splicing events. We therefore looked more closely
at the functional implications of the chromatin modifier and
RAS/MAPK pathway ASEs we found in HGG.

Chromatin disruption through recurrent H3K27M mutations
and DNA hypomethylation have been characterized in
pHGGL221, Our data suggest AS may also affect epigenetic
regulation of pHGG, with chromatin modifiers more affected by
splicing than expression changes (Figs. 2b and 3a). Strikingly,
among the 48 differentially spliced chromatin regulators, several
protein complexes had multiple affected members, in particular
mammalian switch/sucrose-nonfermentable (SWI/SNF), nucleo-
some remodeling and deacetylase (NuRD), and polycomb-
repressive complex 1.1 (PRC1.1; Fig. 3b, c¢). We validated two,
MBD1 and SMARCCI, by RT-PCR (Supplementary Fig. S2d).
Interestingly, the SWI/SNF complex has previously been
implicated in alternative splicing of its target genes?2, which
were also enriched in pHGG differential ASE, with high
proportions correlating significantly with the splicing of indivi-
dual complex members (Fig. 3d, e). These data implicate AS in
epigenetic regulation at the level of chromatin regulators and
their downstream target genes.

To further investigate this, we analyzed the predicted effects of
differential ASE in chromatin regulators. Most (95%) of the AS
involved protein domains (49%), intrinsically disordered regions
(67%) and/or PTMs (44%), suggesting that AS in chromatin
regulators will affect their function (Fig. 3f, g).

Activation of RAS/MAPK signaling by an NFI isoform switch
in HGG. RTK/RAS/MAPK pathway ASEs were also strikingly
enriched in HGG. FGFRI, NTRK3, NF1, and BRAF all had highly
ranked ASEs involving key structural features which would be
predicted to affect RAS/MAPK activation (Fig. 4a-d and Sup-
plementary Fig. S5). We validated the FGFRI and NFI ASEs in
RNA-Seq from a small independent pHGG cohort (pHGG
(n=09), normal brain (n=3); Supplementary Fig. S5g, h)?3 as
well as by RT-PCR (Supplementary Fig. S2d).

BRAF splicing in the RAS-binding domain (Supplementary
Fig. S5a, b) was predicted to remove BRAF-S151, which is subject
to feedback through phosphorylation by ERK to limit RAS/
MAPK activation?*, NTRK3 splicing is predicted to remove the
Y516 autophosphorylation site that is important for RAS
activation (Supplementary Fig. S5c, d)?°. Thus, BRAF and
NTRK3 splicing would be expected to increase and decrease
MAPK activation, respectively; however, their differential expres-
sion in pHGG would oppose this, making interpretation of their
functional relevance more challenging (Supplementary Fig. S5b,
d). FGFRI is expressed in two isoforms. FGFR1-p skips the
N-terminal Ig-like domain, has a higher affinity for FGF than
FGFRI1-a leading to increased downstream signaling and can be
skipped in GBM?26:27, It was also skipped in pHGG, accompanied
by FGFRI upregulation (Supplementary Fig. S5e, f).

NFI exon23a was among the most significant ASE in pHGG
(mean y increase 46%, P < 10~1%; Fig. 4b-d). This exon is skipped

in NFI-1, while its inclusion in NFI-II inserts a 21-aa loop into
the RAS-GTP-binding site, reducing the affinity of NF1 for RAS-
GTP2829 NFI-II is the predominant non-brain isoform, while
NFI-I is expressed in the brain (P<107!% Supplementary
Fig. S5i). Importantly, bulk expression of NFI is unchanged in
PHGG and does not correlate with exon23a inclusion (Supple-
mentary Fig. S5j, k). Finally, we further confirmed the differential
splicing of NFI exon23a using qRT-PCR in three matched
pHGG-normal pairs using isoform-specific primers (Supplemen-
tary Fig. S5l). Interestingly, we also observed the same isoform
switch in three mouse pHGG models?>3%31 indicating this is a
conserved feature between species (Supplementary Fig. S5m).

The NFI-II isoform switch was also evident in adult GBM and
IDH-mutant diffuse gliomas (mean v increase 50-62%; P = 0.01
[junction], P<0.05 [isoform] Fig. 4e and Supplementary Fig.
S6a). The isoform switch did not correlate strongly with NFI
expression, although NFI was modestly down- and upregulated
in IDH-wt and IDH-mut/codel diffuse glioma, respectively
(Supplementary Fig. S6b-e).

NF1-1I has been reported to decrease RAS-GTP turnover,
boosting downstream MAPK activity3>33. To test the functional
consequence of this switch in pHGG and GBM, we blocked NFI
exon23a inclusion with morpholinos targeting the 3’ and 5
intron-exon junctions to interfere with spliceosome access. These
NF1 exon23a-specific morpholinos promoted exon23a skipping
and increased MAPK signaling in both pediatric and adult HGG
cells (Fig. 5a and Supplementary Fig. S7a). Accordingly, increased
NFI exon23a-high adult diffuse glioma patients (Q4) have
significantly increased phospho-ERK (P < 0.02; Fig. 5b). Further-
more, gene sets transcriptionally regulated by RAS or MAPK,
which are overall highly upregulated in both pHGG and adult
diffuse glioma (Fig. S7b-d), are significantly upregulated in
tumors with increased NFI exon23a inclusion in a manner not
related to bulk NFI expression (Fig. 5¢, d and Supplementary Fig.
S7e-g). In contrast, there was no increased RAS/MAPK activation
associated with RAS/MAPK mutant pHGG or adult diffuse
glioma (Fig. 5e, f, Supplementary Fig. S7h, and Supplementary
Data 2).

The functional RAS/MAPK activation by NFI isoform switch-
ing prompted us to ask whether it was associated with OS. After
excluding NFI-mutant patients, increased NFI exon23a inclusion
was associated with worse OS in adult diffuse glioma
(P=2x107> Supplementary Fig. S7i). This was specific to
IDH-wt GBM (P=0.028) and was independent of NFI
expression and RAS/MAPK pathway gene mutation on multi-
variate analysis (P =0.039) (Fig. 5g, h and Supplementary Fig.
S7j, k).

Recent work has shown that NFI exon23a splicing is regulated
by neuronal differentiation and that altering the inclusion rate
affects differentiation kinetics>4, raising the prospect that NFI
exon23a splicing may also play a role in the differentiation state
of HGG. We used an established model of neuronal differentia-
tion of GBM3?, in which culturing cells in the presence of sodium
butyrate in the absence of serum induces differentiation
(Supplementary Fig. S8a). We transfected cells with control or
NF1-specific morpholinos for 24 h to establish a specific splicing
pattern, followed by 48 h of differentiation. In this system, U87
GBM cells exhibited robust induction of differentiation markers
compared to untreated cells (Supplementary Fig. S8b). In contrast
to neuronal differentiation of PCI12 cells where NFI exon23a
inclusion decreases3, NFI exon23a inclusion did not change in
differentiated U87 cells (Supplementary Fig. S8c).

In differentiating PC12 cells, modulating NFI exon23a
inclusion affected the dynamics of neuronal differentiation34.
U87 cells transfected with NFI-specific morpholinos to block the
inclusion of exon23a did not change the expression of neuronal
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Fig. 3 Chromatin regulators are disrupted by alternative splicing in pHGG. a Gene set enrichment analysis of chromatin-modifying enzymes among
genes differentially spliced (left) or differentially expressed (right) in pHGG. NES normalized enrichment score, FDR false discovery rate. b Protein-protein
interactions between chromatin-related proteins that are differentially spliced in pHGG were retrieved from STRING. Edge thickness represents interaction
confidence. SWI/SNF mammalian switch/sucrose-nonfermentable, NuRD nucleosome remodeling and deacetylase, PRC1.1 polycomb-repressive complex
1.1, CERF CECR2-containing remodeling factor complex. € Heatmap of percent inclusion (y) of differential splicing events (|Ay| >0.15, FDR < 0.05)
identified between pHGG (n = 64) and normal brain (n =20) in SWI/SNF complex members. d Gene set enrichment analysis (GSEA) of SWI/SNF target
gene enrichment among genes differentially spliced in pHGG. NES normalized enrichment score, FDR false discovery rate. e Proportion of SWI/SNF target
genes whose y correlates significantly (Benjamini-Hochberg corrected P < 0.05) with y of each SWI/SNF complex member across pHGG samples
(n=64), or with the maximally variant complex member (“All") in each sample. f Percentage of chromatin regulators with differential ASE predicted to
affect structural domains and intrinsically disordered domains (IDR) mapped in UniProt. g Percentage of chromatin regulators with differential ASE
predicted to affect post-translational modification (PTM) sites mapped in UniProt. Statistical tests: t test with Benjamini-Hochberg multiple hypothesis
testing correction (e). Source data are provided as a Source Data file.

marker genes in either media condition compared to cells
transfected with control morpholino, suggesting that NFI
exon23a inclusion does not affect HGG cell differentiation in
this system and conditions (Supplementary Fig. S8b).
Collectively, these data show that oncogenic pathways can be
functionally activated through non-mutagenic processes, such as

AS, in HGG, and suggest that mutation profiling alone may be
insufficient to identify patients for targeted therapies.

Alternative splicing of NFI exon23a in pHGG is regulated
downstream from REST. As a family, splicing factors are widely
differentially expressed in pHGG (Fig. 1b). We compared the
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differential expression of RNA-binding proteins including splice
factors with enrichment of their binding motifs in the introns up-
and downstream from differentially spliced exons, finding that
members of the CELF and ELAVL families are the most down-
regulated genes with enriched motifs (Fig. 6a). IGF2BP2/3, which
is known to promote tumorigenic behavior through stabilization
of HMGA mRNA and is widely overexpressed in cancer3®, is
strongly upregulated in pHGG with accompanying enrichment of
its binding motif (Fig. 6a).

The CELF/ELAVL enrichment was intriguing given that the
CELF/ELAVL families have been reported to repress NFI
exon23a inclusion while the MBNL and TIA1/TIAL1 families
promote it3738 (Supplementary Fig. S9a). Consistent with
intronic CELF/ELAVL binding sites surrounding exon23a, their
motifs are enriched both up- and downstream of differentially
spliced exons in pHGG, respectively (Fig. 6b and Supplementary
Fig. S9a). Furthermore, the CELF/ELAVL families, in particular
CELF3-5 and ELAVL2-4, are downregulated in pHGG while TIA/
TIALl and MBNL3 are modestly upregulated (Fig. 6¢ and
Supplementary Fig. S9b). The same pattern was found in adult
diffuse glioma, albeit less pronounced in IDH-mut/codel
oligodendroglioma (Supplementary Fig. S9c-e).

We hypothesized that family-wide CELF/ELAVL downregula-
tion could explain the increased NFI exon23a inclusion we
observed in HGG. By expressing CELF4 and ELAVL3 in U343
GBM and HEK293T cells, we confirmed by RT-PCR that they
suppress inclusion of NFI1 exon23a (Fig. 6d and Supplementary

Fig. S6f). The enrichment of CELF/ELAVL motifs surrounding
differentially spliced exons imply they regulate many more
differential ASE in pHGG. To assess this possibility, we identified
genes with binding sites surrounding differential exons. By RT-
PCR we could validate select additional targets beyond NFI,
including the FGFR1 ASE (Fig. 6d). Importantly, for each event
we tested, the expression of CELF4/ELAVL3 modulated its
splicing in the opposite direction to that induced in pHGG,
supporting the idea that these families regulate the pHGG AS
landscape.

Increased inclusion of NFI exon23a in HGG leads to increased
RAS/MAPK activation (Fig. 5 and Supplementary Fig. S7). We
therefore next compared the expression of CELF/ELAVL genes in
pHGG with RAS activity as well as NFI exon23a inclusion,
finding that these families (especially CELF3-6 and ELAVL2-4)
are significantly negatively correlated with both NFI exon23a
inclusion and RAS activity (Fig. 6e).

In all, 14% (n = 13/90) of pHGG had an SNV (n=9) or CNV
(n=4) in a CELF/ELAVL family gene, suggesting that both
mutagenic and non-mutagenic processes are responsible for this
mechanism. To identify potential regulators of these genes, we
profiled ENCODE ChIP-Seq data to find transcription factors
binding their promoters. The significant hits across all cell lines
were near-exclusively the RE1 silencing transcription factor
(REST; Fig. 7a), which has recently been shown to be important
for pHGG and GBM cell growth amongst other cancers3¥-42,
Strong REST peaks* were observed in GBM cells associated with
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Fig. 6 NF1 exon23a splicing in HGG is controlled by differential expression of the CELF/ELAVL gene families. a Scatter plot comparing log2 fold change
in expression between pHGG and normal brain of splice factors and RNA-binding proteins, with the enrichment of the RNA motifs they bind in introns
surrounding differentially spliced exons in pHGG. b Motifs and enrichment in up- and downstream introns surrounding differentially spliced exons for the
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and is negatively associated with their repression (Fig. 7€), suggesting
that it binds and represses their expression in pHGG. To test this
hypothesis, we depleted REST from primary pHGG cells, finding
significant increases in CELF3, CELF4, and ELAVL3 expression
(Fig. 7f and Supplementary Fig. SOh). In turn, REST depletion caused
a significant increase in NFI-I expression with an accompanying
decrease in NFI-II (Fig. 7g). Consistent with this, increased REST

NF1I exon23a splice regulators, which we confirmed for the same
sites in CELF3, CELF4, and ELAVL3 in three primary pHGG cell
lines by ChIP-qPCR (Fig. 7b and Supplementary Fig. S9g).
REST was significantly upregulated in pHGG (P <0.0001) and, as
expected for a repressive transcription factor, expression of RE1
motif-containing, REST-bound genes was highly downregulated
(Fig. 7c, d)**. In particular, REST directly binds most CELF/ELAV
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Fig. 7 NF1 exon23a splicing in pHGG is regulated downstream from REST. a Enrichment of transcription factor binding sites in NFT exon23a splice

regulators were calculated by Enrichr using ENCODE ChIP-Seq data. All significant results (FDR < 0.05, red) are highlighted red and the dataset labeled.
b ChIP was carried out using REST or IgG antibodies with chromatin from primary DIPG cell lines and analyzed as percent input at the indicated loci (n = 3).
Bars show mean # standard deviation. € REST expression in pHGG (n = 64) and normal brain (n = 20). Bars show mean * standard deviation. d Gene set

enrichment analysis of REST signature genes with a REST-bound RE1 motif.
correlation of REST expression and expression of NF1 exon23a splice regula

NES normalized enrichment score, FDR false discovery rate. e Pearson
tors (CELF1, P=0.01; CELF3; P=10"5, CELF4, P=10"%, CELF5, P=10"6,

CELF6, P=0.0T; ELAVL2, P=0.01; ELAVL3, P=10"5, ELAVL4, P=0.04). Genes bound by REST across ENCODE ChIP-Seq datasets are shaded in solid
color, genes not bound by REST are empty. f gRT-PCR in SU-DIPG-VII and SU-DIPG-XIII cell lines transfected with control or REST-specific siRNA. Bars
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DIPG-XIII cell lines transfected with control or REST-specific siRNA. Bars show mean + standard deviation (n = 3) relative to 185 housekeeping, normalized

to siCTR expression for each gene. h Scatter plot of REST expression and N

F1 exon23a inclusion in pHGG. r: Pearson correlation. i Scatter plot of REST

expression and RAS pathway activity (ssGSEA ES) in pHGG. r: Pearson correlation. Statistical tests: t (all; multiple t tests with two-stage linear step-up
procedure of Benjamini, Krieger, and Yekutieli (f, g)). *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. Source data are provided as a Source Data file.

expression was significantly associated with NFI exon23a splicing
and RAS/MAPK activation (P<0.01; Fig. 7h, i and Supplementary
Fig. S9i). Together, this supports a mechanism by which REST
upregulation in pHGG drives increased RAS/MAPK signaling by
promoting NFI exon23a inclusion (Supplementary Fig. S9j).
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Discussion

Here, we found that pHGG has increased alternative splicing (AS)
burden compared with the normal brain. In some tumors, this is
associated with spliceosome mutations. Previous work identified
sporadic AS alterations in adult cancers, as well as mutations or
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expression changes in splicing factors and direct mutations to
splice sites within genes!0#>4%, We found the earliest assembly
(complex E) and assembled catalytic (Bact) stages of the spli-
ceosome to be particularly affected, suggesting that target site
recognition and initiation of catalysis are the key determinants
driving this pattern. Given the lethality of spliceosome inhibitors
towards pHGG/GBM lines it is likely that the spliceosome
mutations acquired in pHGG do not render the spliceosome
completely inactive but rather alter the activity of the spliceo-
some. In addition to mutations in the spliceosome itself affecting
AS in pHGG, not every case had mutations in the spliceosome
suggesting other mechanisms are also at play, including differ-
ential expression of spliceosome components/splicing factors that
could be regulated by transcriptional or epigenetic rewiring.
Furthermore, the widespread epigenome remodeling that takes
place in HGG suggests that this could also have an impact on AS
given the known effects of histone and DNA methylation on
splicing®’.

Tumors each acquire mutations in a small subset of cancer
drivers»?20, We found their burden of AS changes to be sig-
nificantly higher, not only in pHGG but also in a broad range of
adult cancers, implying that AS is an under-appreciated
mechanism of oncogenic pathway activation. In adult diffuse
glioma, which exhibited the biggest differences between cancer-
driver mutation and AS burden, the latter also conferred a worse
prognosis.

Differential ASEs in pHGG converged on cancer-driver genes,
particularly the RAS/MAPK and chromatin modification path-
ways, and were predicted to have functional consequences. We
showed that the NFI isoform switch, which has previously been
identified in RT-PCR analyses of adult GBM*3%, is driven by
REST-mediated suppression of exon23a splice regulators and
leads to activation of the RAS/MAPK pathway. Significantly, the
NF1 isoform switch was more closely associated with signatures
of RAS/MAPK activation than mutations in RAS/MAPK pathway
member genes. Additional ASE such as that found in FGFRI
would also be expected to lead to elevated RAS/MAPK signaling.

Germline alterations in NFI drive neurofibromatosis type I,
which predisposes patients to develop a range of nervous system
tumors including neurofibroma and glioma®. Although NFI is
mutated in around 10% of both pediatric and adult HGG, our
findings demonstrate a near-universal mechanism of RAS/MAPK
activation through AS-mediated NFI inactivation. Signaling
downstream from activated growth-factor receptors can be atte-
nuated through a variety of feedback mechanisms, including
activation of NF1 by the ribosomal S6 kinase (RSK)?!. Receptors
are the main RAS/MAPK pathway mutation targets in HGG>.
As well as reducing activity toward RAS, switching isoforms to
NFI-II in HGG will therefore reduce the ability of tumor cells to
dampen their response to constitutive pathway activation as well
as ligand-mediated signaling through other receptors.

In summary, our data demonstrate that tumors exploit non-
mutagenic methods to activate oncogenic processes and, more
broadly, that the absence of a mutation does not mean that
oncogenic pathways will be inactive, just as the presence of a
mutation in a pathway does not guarantee its activity. The
decision to treat a patient with a particular targeted agent should
not necessarily be based solely on mutational profiling but should
also incorporate other molecular information such as splicing
alterations and measures of pathway activation.

Methods

Ethical approval and patient samples. Work involving patient material was
approved by the Hospital for Sick Children Research Ethics Board (#1000055059).
Written consent from a legally authorized representative (all patients in this study
were under 18) was obtained to collect tissue for research in all autopsy cases and

in all surgical cases collected since 2010, with explicit consent for use for next-
generation sequencing since 2016. For surgical cases prior to 2010 or where the
consent did not explicitly state the tissue would be used for next-generation
sequencing, for deceased patients, waiver of consent to use the tissue for this
purpose was granted by the Hospital for Sick Children Research Ethics Board.

Reagents and plasmids. Morpholinos were from GeneTools (Oregon, USA),
targeted against the NFI intron30/exon31(exon23a) and exon31(exon23a)/
intron31 junctions or a pre-designed non-targeting control. Sequences were ana-
lyzed by BLAST to confirm there were no high-specificity off-target predicted
binding sites. Sequences are listed in Supplementary Table 1.

CELF4 and ELAVL3 were amplified from cDNA generated from 293T cells and
cloned between the Xbal/BamHI sites of a pCDH-CMV-MCS-EF1a-copGFP
(SystemBioscience) modified to encode a FLAG/HA tag between the BamHI/NotI
sites. Primer sequences are listed in Supplementary Table 2. All plasmids were
sequenced before use.

Cell culture and lentivirus generation. SF188, U87, U343, fetal NHA, and
HEK293T cell lines were maintained in DMEM (VWR) supplemented with 10%
FBS (Wisent) and 1% PenStrep (Invitrogen). SF188 cells (RRID CVCL_6948) were
a kind gift from Chris Jones (Institute for Cancer Research, London). U87 (RRID
CVCL_0022), U343 (RRID CVCL_4773), and HEK293T (RRID CVCL_0045) cells
were from ATCC. Fetal NHA cells (T0281) were from ABM. SU-DIPG-IV (RRID
CVCL_IT39), SU-DIPG-VI (RRID CVCL_IT40), SU-DIPG-VII, SU-DIPG-XIII
(RRID CVCL_IT41), SU-DIPG-XVII, and SU-DIPG-XXXVI were a kind gift from
Michele Monje (Stanford University)>? and maintained in Neurobasal(—A) media
(Invitrogen) supplemented with B27(-A; Fisher-Gibco), growth factors (human-
bFGF [20 ng/ml], human-EGF (20 ng/ml), human PDGF-AA (20 ng/ml), human
PDGF-BB (20 ng/ml); Gemini Bio-products) and heparin (10 ng/ml; Fisher/Stem
Cell Technologies), as previously described>2.

Plasmids were packaged into lentivirus by cotransfection into HEK293T cells
with psPAX2 (Addgene#12260) and pMD2.G (Addgene#12259) using
Lipofectamine 2000 (Invitrogen). The media was changed the following day and
the supernatant was collected after 30 h and precipitated overnight with Lenti-X
concentrator (Clontech) before being resuspended in Optimem (Invitrogen). Cells
were transduced for 24 h in the presence of 10 pl/ml polybrene (Santa Cruz).

Cell viability assays were carried out by seeding cells in 96-well or six-well
plates. The next day pladienolide B, madrasin (Cayman chemicals) or DMSO
control was added and cells were incubated for 4 days. alamarBlue (Invitrogen) was
added for 4 h and measured in a fluorescence plate reader (Molecular Devices) by
exciting at 560 nm and measuring emission at 590 nm, or cells were stained with
trypan blue and counted. Viability was determined relative to DMSO control.

Morpholino transfections were carried out using Endo-Porter reagent
(GeneTools) according to the manufacturers’ instructions. Both NF1 morpholinos
were simultaneously transfected each at a final concentration of 1 uM (control
morpholino was used at 2 uM), which allowed specific modulation of exon23a
splicing without affecting NFI expression. Cells were harvested after 48 h or, for
differentiation experiments, 72 h.

Differentiation assays were carried out as described?. In all, 200,000 U87 cells
were seeded in six-well plates in standard media and transfected the next day with
control or NFI-specific morpholinos. After 24 h, media was changed either with
standard media (control) or differentiation media (DMEM without serum,
supplemented with 4 mM sodium butyrate).

For siRNA transfections, 50,000 SU-DIPG-IV or SU-DIPG-VII cells were
seeded in 24-well plates supplemented as above and transfected with either human
REST smartpool or Non-targeting plus control siRNA (Dharmacon) at a final
concentration of 20 nM with DharmaFECT 1 reagent (Dharmacon) according to
the manufacturers’ instructions. Cells were harvested after 48 h.

RNA extraction and analysis. Total RNA was extracted from cells or fresh-frozen
tissue samples using the RNeasy kit (QITAGEN). Total RNA was reverse transcribed
with 5x All-In-One RT MasterMix (Applied Biological Materials). Samples were
analyzed either by reverse transcriptase PCR (RT-PCR) followed by visualization
on a 2% agarose gel, or quantitative RT-PCR (qRT-PCR) with iTaq Universal
SYBR green supermix (Bio-Rad) using a StepOnePlus machine (Applied Biosys-
tems). Alternately, RNA was extracted from cells the the Quick-RNA MiniPrep Kit
(Zymo Research) and cDNA synthesized with the iScript cDNA Synthesis Kit (Bio-
Rad). Samples were analyzed by qRT-PCR with a 2x SensiMix SYBR & Fluorescein
Kit (Bioline) on a Lightcycler 96 machine (Roche).

Expression from qRT-PCR was normalized using the delta-delta Ct using either
beta-actin or 18S housekeeping genes. Primers sequences are listed in
Supplementary Table 1.

Western blotting. Extracts from cells lysed in 2x SDS lysis buffer (20 mM Tris (pH
7.4), 20 mM EDTA, 2% SDS, 20% glycerol) were resolved using 10-20% SDS-PAGE
gels (Invitrogen) and transferred to PVDF membranes (Amersham). Membranes
were blocked and incubated overnight with primary antibody diluted in 3% BSA in
TBS with 0.1% Tween-20. After incubation with HRP-conjugated secondary
antibodies (Jackson), the signal was detected with enhanced chemiluminescence
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(Pierce). Primary antibodies used were from Cell Signaling: ERK1/2 (9102, 1:1000),
phospho-ERK1/2 (Thr202/204; 9101, 1:1000), COX-IV (clone 3E11; 4850, 1:1000).

Chromatin immunoprecipitation. Actively dividing SU-DIPG (IV, VII, and XIII)
cells were fixed with 1% formaldehyde. Cell pellets (5 million per reaction) were
suspended in lysis buffer (50 mM Tris-HCI (pH 8.0), 10 mM EDTA (pH 8.0), 1%
SDS, protease inhibitors (Sigma) and chromatin sonicated with a Bioruptor Pico
(Diagenode). 1% of the recovered material was saved as input and the remainder
diluted fivefold in ChIP dilution buffer (16.7 mM Tris-HCl (pH 8.0), 167 mM
NaCl, 1.2 mM EDTA (pH 8.0), 1.1% Triton X-100, protease inhibitors) and pre-
cleared. REST (Millipore, 07-579) or IgG (Santa Cruz, sc2027) antibodies were
added overnight before incubation with protein-A beads (Millipore) and washing
once each with low-salt, high-salt, and lithium chloride immune complex buffers,
and twice with TE buffer. DNA was eluted with 1% SDS and 0.1 M NaHCO; and
cross-links reversed by incubation with NaCl for 4 h at 65°. DNA was purified with
PCR purification kit (Zymo Research) and analyzed by qPCR with a 2x SensiMix
SYBR & Fluorescein Kit (Bioline) on a Lightcycler 96 machine (Roche).

Whole-exome/genome sequencing analysis. DNA was extracted from fresh-
frozen tissue samples with DNeasy kit (QIAGEN). Exome libraries were generated
and sequenced at The Centre for Applied Genomics, Hospital for Sick Children.
Libraries were either Ion TargetSeq Exome 50 Mb (ThermoFisher, sequenced on
Ion Proton machines and aligned to human genome hgl9 with Torrent Suite
Software) or TruSeq Exome (Illumina, sequenced on HiSeq 2500 machines).
TruSeq exome reads were trimmed with Trimmomatic-v0.32%3, aligned with bwa-
mem-v0.7.8%4, processed with the GATK suite>® and duplicate reads were marked
with Picard-v2.5.0 (http://broadinstitute.github.io/picard). Variants were called
with VarScan-v2.3.6° and annotated with SnpEff-v4.3k%7. To verify variants, a
second algorithm was used, either GATK HaplotypeCaller for Illumina sequencing
or Torrent Unified Variant Caller (ThermoFisher) for Ion Proton sequencing and
key variants were further manually verified using the IGV browser. Copy number
alterations were called with CN'Vkit-v0.8.6%.

Samples were categorized into mutant groups according to the presence or
absence of an alteration in a core gene of the RAS/MAPK pathway (Supplementary
Data 2), the major spliceosome (HUGO group 1518; Supplementary Data 2), or the
COSMIC cancer census. To be counted as mutant, either an SNV/indel with
medium/high impact (missense, frameshift, nonsense, and splice site mutations) at
variant-allele frequency >0.2 and depth >20, a copy number gain with 5+ copies, or
a homozygous deletion had to be present in the sample for any pathway gene. To
be counted as wild-type, all genes in the pathway were required to be free of both
SNV/indels and copy number changes. The same criteria were used for
spliceosome mutations.

Where we had previously analyzed samples by WGS, WES, and SNP6.0 array to
identify mutations and copy number alterations (Supplementary Data 1)2, we used
these data to infer the mutation status of the RAS pathway and spliceosome.

Mutation data for TCGA7-% and CBTTC!12 datasets were downloaded from
cBioPortal and PedcBioPortal, respectively. TCGA SNV calls were generated with
Mutect and IndelLocator47->%, and CBTTC SNV calls come from Strelka!l-12.

RNA sequencing analysis. The quality of total RNA isolated from fresh-frozen
tissue was confirmed with a Bioanalyzer 2100 (Agilent). Libraries were prepared
with TruSeq Stranded Total RNA Library Prep with Ribo-Zero Gold kits (Illumina,
CA, USA) and sequenced at The Hospital for Sick Children with 100 bp or 125 bp
paired-end reads on Illumina HiSeq 2500 instruments. Data were processed with
the GenPipes framework®. Reads were quality trimmed with a maximum length of
100 bp with Trimmomatic-v0.32°3 and aligned to human genome build version
GRCh37-v75 using STAR-v2.5.0 in 2-pass mode®!. Duplicate reads were marked
with Picard-v2.5.0.

Differential expression analysis was carried out by counting expression with
HTSeq®? and testing with edgeR and DESeq®>%4; only those genes with absolute
fold change >2 and a Benjamini-Hochberg adjusted P value <0.05 called by both
edgeR and DESeq were considered to be differentially expressed. Pre-ranked gene
set enrichment analysis (GSEA)®° was carried out by ranking genes with the
product of their fold-change sign and the -logl0(adjusted P value). t-SNE analyses
were carried out with the Rtsne package in R. The RAS expression signature is from
the MSigDB Hallmarks signature set and the MAPK signature from
PROGENy®6:67,

Transcript quantification and single-sample GSEA (ssGSEA) was carried out by
aligning the trimmed reads to the transcriptome using RSEM-v1.298. ssGSEA was
carried out using the GenePattern server after discarding genes with mean
FPKM < 1.

Splicing patterns across samples were quantified using rMATS-v4.0.11¢ and
SUPPA2!8, Sashimi plots were drawn with rmats2sashimiplot (https://github.com/
Xinglab/rmats2sashimiplot). Events with inclusion change >15% and FDR < 0.05
were considered to be significant. Motif enrichment was determined with the AME
tool from MEME Suite-v5.4.1 using CIS-BP RNA motifs®>70. Enriched Reactome
pathways were determined in Cytoscape-v3.8.27! using ClueGO-v2.5.772 with
Bonferroni-adjusted P < 0.05 and clustered according to similarity. Protein-protein
interactions with experimental or database evidence were retrieved from the

STRING database’? and visualized in Cytoscape. Pre-ranked GSEA for splicing
events was carried out by ranking genes based on the -logl0(adjusted P value) for
the most significant event for each gene.

The amount of splicing was calculated using RSEM transcript quantification for
genes with multiple transcripts. Using the R ‘entropy’ package, Shannon entropy H
for a gene G with g isoforms was calculated as:

H(g) = - ¥ P, log(P,) W

where P; is the probability of each transcript being expressed based on transcript
ratios. The median of H for groups of samples was analyzed. The variability of ASE
inclusion in pHGG and normal brain was assessed by plotting cumulative
distribution functions of the standard deviation of ASE.

Splicing burden in COSMIC driver genes for pHGG and TCGA data were
determined by identifying samples with maximal ASE inclusion change >30%
compared with normal tissue for each gene in the census.

Mouse RNA-Seq data were processed as above, except that mouse genome build
version GRCm38-v83 was used.

Statistical analysis. Kaplan-Meier curves were drawn and Gehan-Breslow—
Wilcoxon tests were carried out using GraphPad Prism 8. Unless otherwise stated,
all tests are two-tailed Student’s ¢ test, not assuming equal variance between
samples, and were carried out in GraphPad Prism 8 or R-3.6.1.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The publicly available total RNA-Seq data from 9 pHGG and 3 normal brains are
available from Gene Expression Omnibus (GEO) under accession number GSE9516923,
The publicly available mouse pHGG model RNA-Seq data are available from GEO under
accession numbers GSE12088430, GSE9516923, and GSE1083643!. The publicly available
REST ChIP-Seq data are available from GEO under accession number GSE32465%3, TF-
binding sites in CELF/ELAVL gene promoters were identified with Enrichr (https:/
maayanlab.cloud/Enrichr/)74. RE1 motif-containing, REST-bound genes were identified
from REST ChIP-Seq analysis*4. Level 3 processed adult diffuse glioma RNA-Seq (RSEM
quantifications of genes and isoforms), RPPA and clinical data were downloaded from
The Cancer Genome Atlas/Broad Firehose (https://gdac.broadinstitute.org/), and
mutations and copy number variations in the same samples were assessed with
cBioPortal (https://www.cbioportal.org/). Only primary tumors were considered®7->%.
TCGA RNA-Seq splicing data was retrieved from TCGASpliceSeq (https://
bioinformatics.mdanderson.org/TCGASpliceSeq/singlegene.jsp)”>. CBTTC!12 data
were retrieved from PedcBioPortal (https://pedcbioportal.org/). DNA methylation data
are available in GEO under accession numbers GSE49822 and GSE557122176, Probes
associated with genes contained in either the KEGG spliceosome or Reactome mRNA
splicing pathway ontologies (Fig. 1b) were analyzed. Previously published data on our
cohort?30 are deposited in GEO or the European Genomics Archive (EGA); SNP6.0 data
are available in GEO under accession number GSE50024; WGS data are available in EGA
under accession number EGAS00001000575; WES data are available in EGA under
accession numbers EGAS00001000575 and EGAD00001006450; RNA-Seq data are
available in EGA under accession number EGAD00001006450. The data newly generated
on our cohort is deposited with EGA; WES data are available under accession number
EGADO00001008278; RNA-Seq data are available under accession EGAD00001008279.
The data are available under controlled access to comply with data protection
regulations, and can be accessed by application to the data access committee via C.H.
(cynthia.hawkins@sickkids.ca). The remaining data are available within the Article,
Supplementary Information, or Source Data file. Source data are provided with

this paper.

Code availability

Custom code was not used in this study. Parameters used for data processing can be found
at https://github.com/rsiddaway/NF1_paper_scripts or https://zenodo.org/record/5735134
and the corresponding DOI is as follows: https://doi.org/10.5281/zenodo.5735134.
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