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Abstract

Various factors determine the rate at which mutations are generated and fixed in viral genomes. Viral evolutionary rates may
vary over the course of a single persistent infection and can reflect changes in replication rates and selective dynamics.
Dedicated statistical inference approaches are required to understand how the complex interplay of these processes shapes
the genetic diversity and divergence in viral populations. Although evolutionary models accommodating a high degree of
complexity can now be formalized, adequately informing these models by potentially sparse data, and assessing the associa-
tion of the resulting estimates with external predictors, remains a major challenge. In this article, we present a novel Bayesian
evolutionary inference method, which integrates multiple potential predictors and tests their association with variation in the
absolute rates of synonymous and non-synonymous substitutions along the evolutionary history. We consider clinical and
virological measures as predictors, but also changes in population size trajectories that are simultaneously inferred using coa-
lescent modelling. We demonstrate the potential of our method in an application to within-host HIV-1 sequence data sampled
throughout the infection of multiple patients. While analyses of individual patient populations lack statistical power, we de-
tect significant evidence for an abrupt drop in non-synonymous rates in late stage infection and a more gradual increase in
synonymous rates over the course of infection in a joint analysis across all patients. The former is predicted by the immune
relaxation hypothesis while the latter may be in line with increasing replicative fitness during the asymptomatic stage.

Key words: Bayesian phylogenetics; evolutionary rate; pathogen; virus evolution; generalized linear models; codon
substitution models; epoch models.

1. Introduction

Evolutionary and population genetic processes in rapidly evolving
viruses can be highly dynamic even on human observable time-
scales. Quantifying these dynamics and testing how ecology and

host immune responses shape them is a major objective of phy-
lodynamic analyses. Coalescent approaches, for example, allow
inferring changes in population size through time from genealo-
gies (Drummond et al. 2005), and recent modelling advances have
demonstrated the ability to incorporate ecological complexities,
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such as vector dynamics and spatial structure, that can affect the
shape of viral genealogies (Rasmussen, Boni and Koelle 2014). To
assess changes in the tempo or mode of sequence evolution,
most modelling efforts focus on variation among branches, either
by accommodating specific prior hypotheses (e.g. clade-specific
evolutionary rates modelled according to different hosts, see
Worobey, Han and Rambaut 2014) or by adopting flexible
approaches that allow identifying the changes. Both approaches
are available to detect or test variation in molecular clock rates
(Drummond and Suchard 2010; Worobey, Han and Rambaut
2014) and variation in non-synonymous/synonymous substitu-
tion rate ratios (dN/dS, see Yang 1998).

Identifying changes in dN/dS allows uncovering heterogeneity
in selective pressure. In order to examine how such patterns vary
in HIV-1 evolution over the course of a single infection, Goode,
Guindon and Rodrigo (2008) proposed an approach that models
evolutionary shifts in the codon substitution process that cut
across all lineages at a specific time point in a time-calibrated ge-
nealogy. We have recently presented a Bayesian implementation
of such a time-inhomogeneous model that generalizes ‘epoch’
specifications to any discrete substitution process in an unknown
evolutionary history, including, for example, phylogeographic pro-
cesses (Bielejec et al. 2014). The epoch model allows specifying an
arbitrary sequence of continuous-time Markov chain (CTMC) mod-
els through time while appropriately accommodating phyloge-
netic uncertainty. Likelihood computations under an epoch
scenario require matrix convolution which adds to the high com-
putational burden associated with fitting high-state space models
to relatively large data sets. To considerably speed up these calcu-
lations, we have implemented massively parallel likelihood com-
putations on multi-core devices such as graphics processing units.

In order to test prior hypotheses about the viral divergence
stabilization observed in the AIDS stage of HIV-1 infection, we
previously applied epoch modelling to extensively sampled se-
quence data over the time course of infection in several individ-
uals (Bielejec et al. 2014). Specifically, we conditioned on the
progression time for each patient, which represents the time at
which the CD4þT-cell counts drop below 200 cells/ll
(Williamson 2003), to partition the evolutionary history into 2 in-
tervals (the asymptomatic stage and the AIDS stage). By estimat-
ing dN/dS in independent codon substitution models associated
with both epochs, we found a generally lower selective pressure
on the viral population after progression time (in the AIDS stage).
We interpreted this pattern as support for the ‘immune relaxa-
tion hypothesis’, which attributes the lower selective pressure to
a damaged immune stage in the AIDS stage (Williamson 2003).

Although we were able to address this hypothesis using an ep-
och model with prior-determined transition times, disease progres-
sion may not necessarily follow a discrete two-step process. In fact,
CD4þT-cell counts on which the progression times are based gen-
erally decrease continuously throughout infection history, and in-
versely correlated with this, the viral load increases over time. If the
evolutionary process is correlated with disease progression, it may
be hypothesized that evolutionary parameters will follow the evolu-
tion of clinical parameters. In general, this calls for a framework to
test potential predictors of the evolutionary process through time.
For independent realizations of the evolutionary process (e.g. HIV-1
evolution in different patients), we have previously demonstrated
the ability to estimate the support and contribution of explanatory
variables to evolutionary parameters in an integrated Bayesian
framework (Edo-Matas et al. 2011; Streicker et al. 2012).

Although estimating dN/dS has proven useful in an epoch con-
text (Bielejec et al. 2014), this only allows us to detect changes in
selection dynamics. Intrahost viral evolution in persistent

infections may also be influenced by factors that impact the under-
lying mutation rate or generation rate, such as variation in replica-
tion rates which was shown to be associated with differences in
HIV-1 disease progression among patients (Lemey et al. 2007), or
HIV-1 storage in latently infected cells which may explain differ-
ences in evolutionary rate within and between patients (Vrancken
et al. 2014). Disentangling these factors from selection forces re-
quires a separate estimate of synonymous and non-synonymous
substitution rates. In a fixed-tree molecular clock framework this
may be achieved by codon modelling approaches aimed at esti-
mating absolute rates of synonymous and non-synonymous sub-
stitution (Seo, Kishino and Thorne 2004). In Bayesian inference
approaches that accommodate phylogenetic uncertainty, the com-
putational burden associated with codon models has restricted
their application to relatively large datasets. This has motivated
the development of different post-hoc procedures (Lemey et al.
2007) and nucleotide-based counting proxies (Lemey et al. 2012).
While these approximations aim to quantify synonymous and
non-synonymous substitution rates, they do not treat these quan-
tities as model parameters and are therefore less suitable to extend
to formal hypothesis testing procedures. With the current ability to
considerably speed up likelihood calculations (Suchard and
Rambaut 2009), massively parallel computation is now stimulating
further codon model development in the Bayesian framework.

Here, we use an implementation of the Muse & Gaut (MG94)
codon substitution model (Muse and Gaut 1994) in BEAST
(Drummond et al. 2012) to estimate synonymous and non-
synonymous substitution rates. We adopt the approach in an ep-
och setting and further extend it to accommodate potential pre-
dictors of the substitution process using generalized linear
modelling. We employ this framework to identify the support and
contribution of various predictors of synonymous and non-
synonymous substitution rates in intrahost HIV evolution. We do
not find sufficient signal in separate analyses of eight different
patients, but when jointly estimating predictor support and effect
size, we find that progression time remains the best explanatory
variable for non-synonymous rate variation despite the fact that
we also consider CD4þT-cell count and viral load measurements.

2. Methods
2.1 Codon substitution modelling

Our approach builds on the standard MG94 codon substitution
model (Muse and Gaut 1994), which is parameterized in terms
of a synonymous (a) and non-synonymous (b) substitution rate
by defining a CTMC infinitesimal rate matrix Q ¼ fqijg with the
following off-diagonal entries:

qij ¼

ajpj i! j is a one� nucleotide synonymous transition

from codon i to j:

apj i! j is a one� nucleotide synonymous transversion

from codon i to j:

bjpj i! j is a one� nucleotide non� synonymous

transition from codon i to j:

bpj i! j is a one� nucleotide non� synonymous

transversion from codon i to j:

0 otherwise;

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

(1)

where j is the transition–transversion rate and pj j¼1;...;61 de-
notes the frequency of the target codon.
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We fit this codon model in a Bayesian framework and
use Markov chain Monte Carlo (MCMC) integration to obtain
a sample from the posterior distribution of model
parameters (Drummond et al. 2012). Because BEAST infers
trees in time-units (e.g. using tip or node calibrations), substi-
tution model matrices are generally normalized (to one sub-
stitution per site per unit time) and scaled by an estimable
overall evolutionary rate parameter into the time units of the
tree. In order to estimate absolute rates of synonymous and
non-synonymous substitution rates, we perform a normaliza-
tion that gives rise to a þ b expected substitutions per site per
year.

2.2 Epoch and general linear modelling

In order to identify predictors of changes in a and b through
time, we first embed the codon substitution process into an ep-
och setting (Bielejec et al. 2014). This setting posits that the sub-
stitution process is homogeneous within an epoch of time, but
may change across epochs. To construct these epochs, we set,
without loss of generality, the time of the most recent sequence
sample from each patient to 0 and let the remaining M� 1
sampling-times define transition times T1; . . . ;TM�1, where we
assume that time flows backwards, that is from the tips towards
the MRCA. Together with TM ¼ 1, the ordered times T0 < T1

< � � � < TM define the boundaries of M epochs, such that epoch
m begins at time Tm�1 and ends at time Tm. Note that the last ep-
och extends to 1, but with the evolutionary history only ex-
tending to the MRCA.

For each of the M epochs, we associate a conditionally inde-
pendent, infinitesimal rate matrix Qm ¼ Qmðam; bmÞ with m ¼ 1;
. . . ;M that depends on epoch-specific synonymous am and non-
synonymous bm rates. Then, for any two arbitrary times tu � tv

under this time-inhomogeneous process, we can compute the
matrix of finite-time transition probabilities

Pðtu; tvÞ ¼
YM
m¼1

exp fQm½minðtv;TmÞ �maxðtu;Tm�1Þ�þg; (2)

where ½��þ ¼maxð�; 0Þ. While the computational cost of Equation
(2) appears high, it is important to note that when the time-
interval ½tu; tv� does not intersect with a given epoch m0,

½minðtv;Tm0 Þ �maxðtu;Tm0�1Þ�þ ¼ 0; and exp fQm0 � 0g ¼ I; (3)

where I is the identity matrix and, as such, no matrix-
exponentiation nor matrix-multiplication is required for that
epoch. Second, we parameterize am and bm as log-linear func-
tions of potential predictors:

log am ¼ la þ Xmðha � daÞ; and log bm ¼ lb þ Xmðhb � dbÞ; (4)

where lk is the grand-mean rate (on the log-scale) for k 2 fa; bg,
Xm ¼ ðXm1; . . . ;XmPÞ are P predictor values for epoch m, hk ¼
ðhk1; . . . ; hkPÞT quantify the contribution of each predictor to rate
k, dk ¼ ðdk1; . . . ; dkPÞT are binary indicator variables that model
the in-/exclusion of the predictor and � is the component-wise
product operation. To ensure that lk quantifies the average rate
across all epochs, we standardize the predictor values such that
ðX1p; . . . ;XMpÞ has mean 0 and standard deviation 1 for all quan-
tifiable entries across p ¼ 1; . . . ; P. Never quantifiable values may
arise, for example, in the last epoch when predictors are func-
tions of measurements taken at the sampling-time that

demarcates the end of an epoch. For such predictors, we fix
XMp¼ 0 after standardization, so that log aM ¼ la and
log bM ¼ lb.

To complete our prior specification, we assume that:

ðla; lbÞ � MVN 0; 1000� Ið Þ;

hk � MVN 0;
1
7
� I

� �
for all k; and

dkp � BernoulliðqÞ for all k and p;

(5)

where MVNð�; �Þ signifies a multivariate normal distribution
with given mean and variance and p is a prior inclusion proba-
bility. These priors incorporate the belief that most predictors
will only have a modest impact on the evolutionary rate, but we
wish to remain uninformative about its overall size through the
grand-means. We select q such that there exists a 50% prior
probability that no predictor is included in the model.
Augmenting the GLM parameterisation with binary indicator
variables for the predictors and their associated prior specifica-
tion allows for a Bayesian stochastic search variable selection
(Lemey et al. 2009) procedure, which estimates posterior proba-
bilities of inclusion or exclusion of a particular predictor in
Equation (4) and allows us to readily compute Bayes factor sup-
port. In our analyses, we summarize mean and the 95% highest
posterior density interval for the conditional effect size, which
is the size of the effect (on log scale) conditional on the effect
being included in the model (hkpjdkp ¼ 1).

2.3 Sequence data and predictors

We re-analyse extensively serially sampled env C2V5 sequences
from eight patients throughout their infection starting close to
the time of seroconversion (Shankarappa et al. 1999). We do not
consider one particular patient from the original study (patient
11) for which no data were available after progression time. The
sequence data consist of the C2-V5 region of the HIV-1 env gene
sequences collected in a longitudinal manner over a 6–13.7-year
period, with a minimum of 5 and a maximum of 15 measure-
ments per patient. In total, the data constitutes 1,300 sequences
and 106 separate time points.

Most sampling times were associated with CD4þT-cell
counts and viral load (VL) (Supplementary Fig. 1), which we use
as predictors in two different ways upon log transformation: ei-
ther as the mean of the measurements at two boundaries of
each epoch (mean CD4 and mean VL) or as the difference between
the two boundary values (DCD4 and DVL). We also use the pro-
gression time as predictor, which is encoded as a binary indica-
tor (in log space, with the same estimable effect size for each
epoch prior to this time). In this sense, it may be more appropri-
ate to refer to this as infection stage predictor. Furthermore, we
consider several sampling characteristics as predictors such as
the number of sequences sampled (the mean number of se-
quences sampled at both boundaries), the time since serocon-
version (measured from the midpoint of the epoch) and the
time length for each epoch (epoch time).

Finally, we design a way to include effective population size
change (DNe) over the epoch as a predictor for the sequence evo-
lutionary parameters. For this purpose, we employ the recently
developed Bayesian Skygrid model (Gill et al. 2013) and match
the grid intervals to our epoch structure. We incorporate the dif-
ference in log Ne at the boundaries of the closed intervals as a
predictor in our GLM design matrix. We opt to standardize pre-
dictors in our GLM approach and implement a dynamic
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standardization mechanism for the predictors in the design ma-
trix because the log Ne-based predictors are continuously
updated during the MCMC. We note that the use of parameter
estimates of the tree-generative model as predictors for the se-
quence evolutionary process informing the tree may be prob-
lematic. Initial explorations indeed indicated that this leads to
an identifiability problem for the tree prior and sequence evolu-
tionary parameters. To avoid this, we use an empirical set of
trees, estimated by a standard nucleotide sequence analysis in
BEAST, and average over this distribution while estimating pop-
ulation size and sequence evolutionary parameters.

Several observations are missing for the CD4 and VL vari-
ables, specifically for the datasets for patients 3, 7, 8 and 9. We
used a feed-forward neural network with one hidden layer with
ten nodes to impute those values. This graph of interconnected
nodes (neurons) is capable of learning by adjusting the weights
of the paths connecting its inputs to outputs (Bryson and Ho
1969). In the datasets for patients 3 and 9 several observations
are missing for both predictors, and since the neural network is
trained using backward propagation of errors, we recode all the
values to fall between ð�1; 1Þ with missing values coded as 0,
such that the weights for these inputs are also shrunk to 0 dur-
ing back-propagation and effectively no learning is done on
those branches.

2.4 Joint estimation

In addition to fitting the GLM-model to the data from each pa-
tient, we also aim to obtain a joint estimate of predictor support
and effect size across in a hierarchical phylogenetic setting
(Suchard et al. 2003). In this analysis, we specify independent
tree parameters and non-parametric coalescent processes for
each patient. For the sequence evolutionary process, we specify
shared predictor indicators and coefficients in the GLM-
parameterisations and shared codon equilibrium frequencies.
In addition, we specify hierarchical prior distributions (Edo-
Matas et al. 2011) to pool information for the j parameters, the

shape parameters of the gamma distributions for the among-
site rate variation and the skygrid precision parameters. We
further include patient-specific random-effects on the grand-
means la and lb to account for absolute substitution rate differ-
ences across patients.

3. Results

We apply our approach to HIV-1 env C2V3 sequences sampled
throughout the infection of eight patients (Shankarappa et al.
1999) in order to estimate a and b and identify correlates for var-
iation in these rates through time. We adopt an epoch structure
that follows the sampling-times and consider clinical and viro-
logical parameters as well as sampling characteristics and
changes in Ne as predictors for the dynamics of synonymous
and non-synonymous substitution rates.

We summarize independent estimates of predictor inclusion
probability (E½dkp�) for each predictor and each patient as a
stacked barplot in Figure 1. In general, this demonstrates very
little support for any predictor to consistently explain variation
in either a or b. As an indication, the bar plot shows a vertical
line at eight times the individual prior probability of predictor
inclusion. For a, only progression time and time since serocon-
version yield a sum of inclusion probabilities that is somewhat
higher than this value, but for both, about half of this sum is
contributed by a single patient. For b, both progression time and
mean CD4 show some elevation in the probability sum, but not
substantial enough to attribute importance to the estimates.
The only apparent consistency is that the correlated measures
of progression time and mean CD4—as the former is the time at
which the CD4þT-cell counts drop below 200 cells/ll
(Williamson 2003)— are both elevated for b.

To increase the statistical power and inform our model simul-
taneously by all the patient-specific data, we set up a joint analy-
sis with shared predictor indicators and effect sizes (cfr. Section
2). Figure 2 summarizes the posterior inclusion probabilities and
the corresponding contribution of each predictor to the
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Figure 1. Predictor inclusion probabilities for each predictor and each patient. All predictor inclusion probabilities estimated separately from each patient-specific viral

population are summarized into a stacked bar plot. The bar plot on the left and right represents the summed inclusion probabilities for predictors of a and b, respec-

tively. The vertical dashed line represents eight times the prior inclusion probability used in each individual analysis.
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dependent variable (the posterior mean and credible interval for
that coefficient, conditioning on its inclusion in the GLM: that is,
ðhkpjdkp ¼ 1Þ). We find strong support for the time since serocon-
version to predict variation in a (posterior inclusion probability of
0.88, Bayes Factor value of 89.96), with a positive conditional ef-
fect size 0.15 (0.07, 0.22) indicating a general increase in a over the
course of the infection. In addition, the epoch time also yields
non-negligible support (posterior inclusion probability of 0.45,
Bayes Factor value of 10.47), but with a negative effect size �0.08

(�0.14, �0.02), suggesting a negative correlation between a and
epoch length. For b, we find strong support for progression time
(posterior inclusion probability of 0.95, Bayes factor value of
232.2), with a positive effect size 0.15 (0.07, 0.22). Because the pro-
gression time predictor was encoded as a homogeneous estima-
ble effect before this time point, it corresponds to higher b’s
before disease progression. We also note the moderate support
for DNe (posterior inclusion probability of 0.21, Bayes factor value
of 3.4), with a positive effect size 0.1 (0.02, 0.19).
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Figure 2. Joint inclusion probabilities and conditional effect sizes on the log scale for the predictors of a or b. The inclusion probabilities (plots on the left) and condi-

tional effect sizes (hjd ¼ 1, plots on the right) are shared across all patients. The upper and bottom plots represent the estimates for a or b, respectively. Thin and thick

black vertical lines in the barplot present d indicator expectations corresponding to Bayes factor values of 10 and 100, respectively, which following Kass and Raftery

(1995) can be interpreted as ‘substantial’ and ‘very strong’ evidence.
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4. Discussion

In this study, we present a novel approach to test associations
between changes in substitution rates over time with changes
in external predictors. The approach builds on previous devel-
opments that allow changing substitution processes through
time (Goode, Guindon, and Rodrigo 2008; Bielejec et al. 2014),
and also relates to ideas proposed by Rodrigo et al. (2008). To
distinguish between factors that impact neutral rates of evolu-
tion and selective dynamics, we make use of a codon substitu-
tion model parameterized in terms of absolute synonymous
and non-synonymous substitution rates. Our application to
within-host HIV-1 evolution demonstrates the difficulty to ex-
tract signal for changes in these parameters from individual
intrahost viral populations. However, joint inference over all pa-
tients leads to support for correlates for both the synonymous
and non-synonymous substitution rates.

Since the initial observation of a slowdown or stabilization
in divergence accumulation in the late phase of HIV-1 infection
(Shankarappa et al. 1999), evolutionary theories have been put
forward to explain these dynamics in relationship to disease
progression. Williamson et al. (2005) formalized the two prevail-
ing hypotheses as ‘cellular exhaustion’, or the reduced availabil-
ity of target cells late in infection, and ‘immune relaxation’,
which refers to reduced selective pressure because of deterio-
rating immune responses. These authors used measures of syn-
onymous and non-synonymous evolution to test these
hypotheses and found strong support for a cessation of non-
synonymous divergence in line with immune relaxation. By ap-
plying a local codon model to a set of trees sampled from the
posterior distribution of a Bayesian relaxed clock analysis in nu-
cleotide space, Lemey et al. (2007) provided further evidence
that non-synonymous divergence stabilises in some patients.
The method we develop we here represents a coherent integra-
tion of codon substitution models in this Bayesian phylogenetic
framework. We do not model branch-specific rate variation, but
adopt epoch modelling to capture the variation in synonymous
and non-synonymous rates through time. Our results also sup-
port a slowdown in non-synonymous substitution rates after
progression time. Although progression time is defined as a
threshold for the decline in CD4þT-cell counts over time, we do
not find a correlation with the underlying evolution of these
counts. This may indicate that the immune collapse, and the
associated drop in immune responses, is indeed a discrete
event that occurs when the impairment rate of HIV exceeds the
threshold value, as suggested by modelling studies of HIV-1 dis-
ease progression (Iwami et al. 2009; Huang, Takeuchi and
Korobeinikov 2012).

Interestingly, our approach also finds support for a positive
correlation between synonymous substitution rates and time
since seroconversion, suggesting that neutral substitution rate
is gradually increasing over time in HIV-1 infection. This is in
line with an experimental study that found evidence for in-
creasing HIV-1 replication efficiency over the course of the in-
fection (Troyer et al. 2005). Increased replication rates may
reduce the generation time in intrahost HIV-1 populations and
lead to faster rates of neutral evolution. This has also been in-
voked as the explanation for the association between disease
progression and synonymous substitution rates (Lemey et al.
2007). The posterior synonymous substitution rates through
time suggest that the increase may not always be entirely con-
sistent throughout infection (Supplementary Fig. 2), and in
some patients this stabilizes towards the late stage of infection.
This may explain why some have argued that cellular

exhaustion may also sometimes be compatible with the diver-
gence stabilization observed at the AIDS stage (Lee et al. 2008) .
However, we note that synonymous rates stabilize in some pa-
tients, but do not really decrease, and the stabilization does not
necessarily align with progression time (Supplementary Fig. 2).
So, this may equally well reflect a natural cap on fitness in-
crease or even a trade-off between immune escape and replica-
tion rate (Lemey et al. 2007).

It may prove interesting to apply our approach to other per-
sistent infections in the future. Intrahost HCV populations for
example exhibit strong heterogeneity in the rate of molecular
evolution (Gray et al. 2011), perhaps due to variation in replica-
tion rate as suggested supported by mathematical models of
HCV infection kinetics (Neumann et al. 1998). Together with
population structure in the liver, this may induce complex
chronic evolutionary patterns that are difficult to capture by
simple statistics of viral genetic variation (Gray et al. 2012).
Evolutionary rate variation and potential correlates have also
been described in chronic HBV infections, but without making a
distinction between synonymous and non-synonymous substi-
tutions (Harrison et al. 2011). We note that our model is not lim-
ited to analysis of within-host pathogen genetic data and it
readily extends to other problems and predictors. By imple-
menting the method in the publicly available BEAST software
(Drummond et al. 2012), it can be also connected to other mod-
els of sequence and traits evolution.

Future applications may benefit from a more coherent treat-
ment of missing predictor data. We currently impute such pre-
dictors prior to our analysis, but it may be possible to integrate
out the missing predictor values in our Bayesian inference
framework. Furthermore, our model may be extended by intro-
ducing random effects for the evolutionary response variable in
our GLM model. We have not pursued this in this study because
the independent analyses of the patients already lacked statisti-
cal power. However, since the joint model was well informed by
the data from all patients, random-effects may prove useful to
explore in this context. Bayesian mixed-effects modelling has
already been successfully applied in our framework (Edo-Matas
et al. 2011; Streicker et al. 2012).

More generally, incorporating covariates may find various
uses in phylodynamic inference. We consider population size
estimates as covariates for the substitution process in this
study, but it may also prove interesting to model Ne as a func-
tion of potential predictors, such as CD4 counts and viral load in
within-host HIV-1 dynamics. This may also be relevant for mod-
els linking coalescent theory to compartmental models in epi-
demiology (Koelle and Rasmussen 2012; Volz, Koelle and
Bedford 2013), which can also be applied to within-host HIV-1
dynamics.

An important area for future research with Bayesian codon
model implementation lies in accommodating separate among-
site and among-lineage variation in synonymous and non-
synonymous substitution rates. Modelling separate variation in
both quantities among sites has proven crucial in accurate de-
tection of selection pressure (Kosakovsky Pond and Muse 2005),
and this relates to a rich history in the development of site-
specific selection detection methods in the maximum likeli-
hood framework (Kosakovsky Pond, Poon and Frost 2009).
Inferring branch-specific variation in synonymous and non-
synonymous substitution rates can also deliver important evo-
lutionary insights (Seo, Kishino and Thorne 2004), and this
could be accommodated in our framework by connecting the
codon substitution model to the uncorrelated relaxed clock
models (Drummond et al. 2006). However, care will need to be
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taken to keep the computational burden manageable as these
models require an eigen-decomposition of the infinitesimal
generator matrix for each branch when the tree is considered to
be random, which is computationally challenging for high
state-space models. Bayesian non-parametric priors specifically
tailored for evolutionary problems might offer a solution be-
cause they allow identifying a limited number of rate classes, as
has been demonstrated for nucleotide substitution rate
variation among lineages (Huelsenbeck and Nielsen 1999).
Finally, adequately modelling among-site and among-lineage
variation in synonymous and non-synonymous substitution
rates may also improve divergence dating in relatively deep vi-
ral phylogenies because nucleotide-based substitution models
fail to account for complex patterns of spatial and temporal var-
iability in selective pressures (Wertheim and Kosakovsky Pond
2011).

In conclusion, our novel approach to identify correlates syn-
onymous and non-synonymous substitution rates confirms and
refines previous hypotheses about intrahost HIV-1 evolutionary
dynamics and provides the basis for promising extensions in
Bayesian codon substitution modelling.

Supplementary data

Supplementary data are available at Virus Evolution online.
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