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DNA-Methylation and Body 
Composition in Preschool Children: 
Epigenome-Wide-Analysis in 
the European Childhood Obesity 
Project (CHOP)-Study
Peter Rzehak1, Marcela Covic1, Richard Saffery  2, Eva Reischl3, Simone Wahl3, Veit Grote1, 
Martina Weber1, Annick Xhonneux4, Jean-Paul Langhendries4, Natalia Ferre5, Ricardo 
Closa-Monasterolo5, Joaquin Escribano5, Elvira Verduci6, Enrica Riva6, Piotr Socha7, Dariusz 
Gruszfeld7 & Berthold Koletzko1

Adiposity and obesity result from the interaction of genetic variation and environmental factors from 
very early in life, possibly mediated by epigenetic processes. Few Epigenome-Wide-Association-Studies 
have identified DNA-methylation (DNAm) signatures associated with BMI and body composition 
in children. Body composition by Bio-Impedance-Analysis and genome-wide DNAm in whole blood 
were assessed in 374 pre-school children from four European countries. Associations were tested by 
linear regression adjusted for sex, age, centre, education, 6 WBC-proportions according to Houseman 
and 30 principal components derived from control probes. Specific DNAm variants were identified to 
be associated with BMI (212), fat-mass (230), fat-free-mass (120), fat-mass-index (24) and fat-free-
mass-index (15). Probes in genes SNED1(IRE-BP1), KLHL6, WDR51A(POC1A), CYTH4-ELFN2, CFLAR, 
PRDM14, SOS1, ZNF643(ZFP69B), ST6GAL1, C3orf70, CILP2, MLLT4 and ncRNA LOC101929268 
remained significantly associated after Bonferroni-correction of P-values. We provide novel evidence 
linking DNAm with (i) altered lipid and glucose metabolism, (ii) diabetes and (iii) body size and 
composition in children. Both common and specific epigenetic signatures among measures were also 
revealed. The causal direction with phenotypic measures and stability of DNAm variants throughout the 
life course remains unclear and longitudinal analysis in other populations is required. These findings give 
support for potential epigenetic programming of body composition and obesity.

There is mounting evidence that the risk of obesity extends far beyond simple energy imbalance arising from 
a combination of overeating and sedentary lifestyle. This is supported by the variable incidence of associated 
comorbidities in overweight and obese individuals (e.g. cardiovascular disease (CVD), type 2 diabetes (T2D) and 
non-alcoholic fatty liver disease (NAFLD)). A greater understanding of aetiology is imperative for prevention and 
appropriate intervention in both, children and adults1–3.

Conceptualising obesity as a metabolic disease, that is developmentally programmed and thus conditioned on 
developmental pathways and plasticity, substantially broadens the focus beyond the obvious areas of excess food 
intake, lack of physical activity and excess weight gain. This is key to unravelling the functional and programmed 
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aetiologies of metabolic dysregulation that begin early in life in response to genetic and environmental (including 
nutritional) factors and are potentially mediated by epigenetic mechanisms over the life course3–8.

Epigenetic ‘plasticity’ is now widely thought to underpin many developmental processes in humans in 
response to a ‘perceived’ postnatal environment(s), with many observational studies in humans implicating this 
process in the programming of the developmental and metabolic pathways towards obesity5,8–11. Building on the 
key observations of Barker and others, there is now a considerable body of evidence that in utero and early life 
factors are critical in influencing subsequent metabolic risk, although the underlying mechanisms are largely 
unexplored. It is also clear that key metabolic risk factors, including body mass index (BMI), blood pressure 
and cholesterol, track from late childhood into adulthood12,13 (reviewed in14–16). However, the development of 
metabolic risk in the period between infancy and adolescence is poorly understood. Considerable successes have 
been reported in adults through Epigenome-wide Association Studies (EWAS), linking epigenetic variants (par-
ticularly DNAm) to specific metabolic phenotypes including obesity, BMI and T2D17–23. Some candidate gene 
studies have been carried out in children24–27. However, only few comprehensive EWAS analyses in childhood 
cohorts, with high quality body composition and metabolic measures, have been published specifically in early 
childhood28–31.

This study, part of the multicentre European Childhood Obesity Project (CHOP)32–34, aimed at investigating 
the association between measures of body size (absolute and WHO standardised BMI) and body composition 
(absolute and height standardised fat mass and fat free mass measures) with DNAm on a genome-wide scale in 
374 pre-school children. Functional pathway analyses were used to elucidate the likely metabolic and biological 
functions of genes showing altered DNAm to build evidence of a plausible link with obesity and adiposity related 
traits.

Results
DNAm variation, BMI and WHO-Standardised BMI. A total of 212 differentially methylated probes 
(DMPs) located in or near 181 genes were significantly associated with BMI after accounting for multiple test-
ing by FDR (Supplementary Table S1). The top ten are listed below (Table 1). Methylation levels at two probes 
(cg13850887, cg01706498), located in genes SNED1 and KLHL6, remained significantly associated with BMI even 
after Bonferroni correction.

Methylation level at only four sites (located in SNED1, KLHL6, FARP1, or 10kb upstream of ZDHHC17) was 
significantly associated (Table 1, Supplementary Table S2) with WHO standardised BMI (ZBMI) as an outcome. 
The top two (cg13850887, cg01706498) were consistent irrespective of BMI measure (Table 1), while variants in 
FARP1, TBCD, ZNF750 and CILP2 remained among the top ten significant probes in both comparisons.

A summary of P-values (Manhattan plot) for each probe association with BMI and WHO standardised BMI 
is provided in Figs 1 and 2.

DNAm variation, FM and FMI. A total of 230 and 24 DMPs were significantly associated with absolute 
fat mass (FM, kg) and fat mass index (FMI, kg/m²), after FDR correction for multiple testing (Supplementary 
Tables S3, S4). These are associated with 199 and 22 gene regions respectively. Probes in SNED1, WDR51A, 
CYTH4-ELFN2, CFLAR and PRDM14 remained significantly associated with FM, while those in SNED1, SOS1, 
CFLAR, ZNF643 and ST6GAL1 remained associated with FMI following Bonferroni correction (Table 1). The top 
DMP in both comparisons was cg13850887, located just downstream of a CpG island (South Shore) in the gene 
body of SNED1 on chromosome 2.

A summary of P-values (Manhattan plot) for each probe association with FM and FMI is provided in Figs 3 
and 4).

DNAm variation, FFM and FFMI. Absolute fat free mass (FFM, kg) and fat free mass index (FFMI, kg/m²) 
was significantly associated with 120 and 15 methylation variants (Supplementary Tables S5, S6), located in 109 
and 14 gene regions, respectively. After Bonferroni correction for multiple testing, only three variants remained 
significantly associated with FFM, located in the non-coding RNA LOC101929268, upstream of MLLT4 and in 
the uncharacterised C3orf70 gene, while a single probe in gene CILP2 was associated with FFMI (Table 1).

A summary of P-values (Manhattan plot) for each probe association with FFM and FFMI is provided in Figs 5 
and 6).

Overlap of hits. DMPs commonly associated with BMI, FMI and FFMI are presented in Fig. 7a. In total, two 
DMPs, one upstream of gene ZDHHC17 (cg21525627) and another in KLHL6 (cg01706498), were associated with 
all three measures with the same direction of effect. Of 24 DMPs associated with FMI, 19 were also associated 
with BMI. Out of 15 associated with FFMI, 14 were also associated with BMI.

Figure 7b shows the 36 DMPs associated with both absolute FM and FFM among the 230 and 120 hits, respec-
tively. Among these, 24 are annotated to protein-coding gene bodies or their promoters. The remaining 12 are 
situated in gene-poor regions. One probe (cg26995653) is located in a long non-coding RNA LINC01115 and the 
other (cg14795409) close to LINC01565. Despite some overlap in differential methylation, the majority of probes 
significantly associated with FM or FFM are specific for each measure.

Functional Pathway Analysis. The resulting gene ontology (GO) terms for associations of DNAm 
with body size and composition measures are summarised in Supplementary Table S7. BMI-associations were 
over-represented for ‘Ras, MAPK, SHC-mediated signalling cascades by fibroblast growth factor receptors 
(FGFR1 to 4)’, and ‘Neurotrophin signalling pathways’. ‘Regulation of cytoskeleton organization’, ‘cardiac and stri-
ated muscle cell proliferation’ and ‘neuronal system’ were also enriched. Genes showing differential methylation 
in association with FM were over-represented for ‘Ras and Neurotrophin signalling pathways’, ‘spleen develop-
ment’, ‘muscle cell proliferation’ and ‘pro-B cell differentiation’, while those associated with FFM included ‘Hippo 
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Figure 1. Manhattan plot of all HM450K probe P-values for the association of BMI (kg/m2) and methylation 
sites in preschool children. Top 10 sites are annotated. Red line indicates Bonferroni genome-wide significance 
and the blue line FDR significance. Chromosomal location of all HM450K probes is listed on the x-axis.

Rank CpG ID Gene Change (SE) in BMI * Rank CpG ID Gene Change (SE) in ZBMI *
1 cg13850887 SNED1 −0.22 (0.04)†‡ 1 cg13850887 SNED1 −0.12 (0.02)†

2 cg01706498 KLHL6 0.19 (0.03)†‡ 2 cg01706498 KLHL6 0.11 (0.02)†

3 cg26401512 ZNF643 −0.20 (0.04)† 3 cg21126338 FARP1 0.20 (0.04)†

4 cg21525627 (ZDHHC17) 0.24 (0.05)† 4 cg21525627 (ZDHHC17) 0.15 (0.03)†

5 cg26867987 COL11A2 −0.18 (0.04)† 5 cg27285599 TBCD;ZNF750 0.21 (0.04)

6 cg17810765 ANO7 0.14 (0.03)† 6 cg17935297 CILP2 0.24 (0.05)

7 cg14518658 (CYTH4-ELFN2) 0.11 (0.02)† 7 cg24751284 APEX1 0.14 (0.03)

8 cg21126338 FARP1 0.32 (0.06)† 8 cg23416307 GAK 0.39 (0.08)

9 cg27285599 TBCD;ZNF750 0.34 (0.07)† 9 cg06369443 KCNQ4 0.20 (0.04)

10 cg17935297 CILP2 0.39 (0.08)† 10 cg26917480 ADAP2 0.15 (0.03)

Rank CpG ID Gene Change (SE) in FM * Rank CpG ID Gene Change (SE) in FMI *

1 cg13850887 SNED1 −0.20 (0.03)†‡ 1 cg13850887 SNED1 −0.15 (0.02)†‡

2 cg08692210 WDR51A 0.17 (0.03)†‡ 2 cg04010122 SOS1 0.12 (0.02)†‡

3 cg14518658 (CYTH4-ELFN2) 0.10 (0.02)†‡ 3 cg26627956 CFLAR −0.14 (0.02)†‡

4 cg26627956 CFLAR −0.20 (0.04)†‡ 4 cg26401512 ZNF643 −0.12 (0.02)†‡

5 cg00384539 PRDM14 0.27 (0.05)†‡ 5 cg15026574 ST6GAL1 −0.12 (0.02)†‡

6 cg04010122 SOS1 0.16 (0.03)† 6 cg14401837 NPSR1 −0.15 (0.03)†

7 cg04894009 PRKDC 0.32 (0.06)† 7 cg14518658 (CYTH4-ELFN2) 0.07 (0.01)†

8 cg13641993 FBXO10 0.23 (0.04)† 8 cg06594770 TRIOBP 0.24 (0.05)†

9 cg27038634 (LOC101929268) 0.09 (0.02)† 9 cg08692210 WDR51A 0.11 (0.02)†

10 cg15026574 ST6GAL1 −0.17 (0.03)† 10 cg04894009 PRKDC 0.21 (0.04)†

Rank CpG ID Gene Change (SE) in FFM * Rank CpG ID Gene Change (SE) in FFMI *

1 cg27038634 (LOC101929268) 0.14 (0.02)†‡ 1 cg17935297 CILP2 0.23 (0.04)†‡

2 cg08074767 (MLLT4) −0.15 (0.03)†‡ 2 cg06437396 OSTM1 0.12 (0.02)†

3 cg24332767 C3orf70 0.20 (0.04)†‡ 3 cg26995653 LINC01115 (TMEM18) 0.07 (0.01)†

4 cg21126338 FARP1 0.38 (0.07)† 4 cg21525627 (ZDHHC17) 0.13 (0.03)†

5 cg07719679 STEAP4 0.18 (0.03)† 5 cg08074767 (MLLT4) −0.07 (0.01)†

6 cg10135753 BRSK1 0.20 (0.04)† 6 cg25048701 FOLR1 0.26 (0.05)†

7 cg21525627 (ZDHHC17) 0.28 (0.05)† 7 cg13718870 BRD3 −0.07 (0.01)†

8 cg06376715 TP73 0.12 (0.02)† 8 cg15914340 TSSC1 0.30 (0.06)†

9 cg01577646 RPS6KA2 −0.21 (0.04)† 9 cg01706498 KLHL6 0.10 (0.02)†

10 cg25827873 ERICH1 −0.11 (0.02)† 10 cg19864468 CHCHD5 0.17 (0.03)†

Table 1. Change in BMI, ZBMI, FM, FMI, FFM and FFMI for the top ten differentially methylated 
probes per percent change in DNA-methylation. *ß-coefficients from the EWAS regression analysis have 
been divided by 100 to scale these to a change in the respective outcome per percent change in the methylation 
ß-value (see method section). †FDR significant (for uncorrected P-value and FDR q-value see Supplementary 
Tables S1 to S6). ‡Bonferroni significant (for corrected p-value see Supplementary Tables S1 to S6). Genes in 
brackets are those closest to probes of interest using the UCSC genome browser on human GRCh37/hg19 
assembly.
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Figure 2. Manhattan plot of all HM450K probe P-values for the association of WHO-standardised BMI 
(z-score) and methylation sites in preschool children. Top 10 sites are annotated. Red line indicates Bonferroni 
genome-wide significance and the blue line FDR significance. Chromosomal location of all HM450K probes is 
listed on the x-axis.
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Figure 3. Manhattan plot of all HM450K probe P-values for the association of FM (kg) and methylation sites in 
preschool children. Top 10 sites are annotated. Red line indicates Bonferroni genome-wide significance and the 
blue line FDR significance. Chromosomal location of all HM450K probes is listed on the x-axis.

Figure 4. Manhattan plot of all HM450K probe P-values for the association of FMI (kg/m2) and methylation 
sites in preschool children. Top 10 sites are annotated. Red line indicates Bonferroni genome-wide significance 
and the blue line FDR significance. Chromosomal location of all HM450K probes is listed on the x-axis.
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signalling’, ‘negative regulation of growth’, ‘odontogenesis’, ‘cartilage development’ and ‘gliogenesis and neuron 
fate commitment’.

Discussion
In this study of peripheral blood from 374 European pre-school children with highly accurate measures of body 
composition, we identified 212 differentially methylated probes (DMPs) associated with BMI, 230 DMPs with 
FM, 120 DMPs with FFM, 24 DMPs with FMI and 15 DMPs with FFMI. These probes measure DNAm in CpG 
sites that generally reside in protein-coding genes and non-coding RNAs previously linked with inflammation, 
glucose and lipid metabolism, browning of white fat, obesity and diabetes. Thus, many of the associations poten-
tially make sense from a biological perspective; though only limited information is currently available in several 
instances (see below). Our finding that some DMPs are specifically associated with only one of the body size or 
composition measures BMI, FM, FMI, FFM, and FFMI whereas others are common to some or all measures 
e.g. FM and FFM, may be worthwhile investigating in more depth in future longitudinal studies to gain further 
insights into the process of body composition and obesity development and the role such potential epigenetic 
markers may play.

In the following paragraphs we provide some information on the 13 genes in which DNAm variants signifi-
cantly associated after Bonferroni correction are located or are close by to add to the biological meaning and plau-
sibility of our findings. These genes are SNED1(IRE-BP1), KLHL6, WDR51A(POC1A), CYTH4-ELFN2, CFLAR, 
PRDM14, SOS1, ZNF643(ZFP69B), ST6GAL1, C3orf70, MLLT4, CILP2 and the ncRNA LOC101929268.

SNED1 (Sushi, nidogen and EGF like domains), also known as IRE-BP1 (insulin-responsive sequence 
DNA-binding protein 1), activates insulin responsive genes IGF-I, IGFBP-1 and IGFBP-335. In is expressed in 
insulin-responsive tissues such as fat and muscle35 and in hypothalamic regions involved in control of appe-
tite and energy balance36. In animal models, overexpression of SNED1 reduces37, but in some instances also 
increases38, hyperglycaemia and diabetes associated phenotypes. In our study, DMP cg13850887 at SNED1 was 
inversely associated with BMI, FM and FMI after Bonferroni correction.
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Figure 5. Manhattan plot of all HM450K probe P-values for the association of FFM (kg) and methylation sites 
in preschool children. Top 10 sites are annotated. Red line indicates Bonferroni genome-wide significance and 
the blue line FDR significance. Chromosomal location of all HM450K probes is listed on the x-axis.

Figure 6. Manhattan plot of all HM450K probe P-values for the association of FFMI (kg/m2) and methylation 
sites in preschool children. Top 10 sites are annotated. Red line indicates Bonferroni genome-wide significance 
and the blue line FDR significance. Chromosomal location of all HM450K probes is listed on the x-axis.
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KLHL6 (Kelch like family member 6) regulates B cell differentiation and potentially plays a role in diabetes, 
as it appears up-regulated in islet cells of mice with type 1 diabetes (T1D)39, in children with pre-T1D40 and in 
post-mortem pancreatic tissue of adult T1D patients41. In our study, DMP cg01706498 within this gene was pos-
itively associated with BMI after Bonferroni correction and with ZBMI, FM, FMI, FFM and FFMI according to 
FDR.

WDR51A (WD repeat domain 51A), also known as POC1A (centriolar protein A) have been found to show 
mutations in the centrosomal gene for individuals with primordial dwarfism and extreme insulin resistance42. 

Figure 7. Overlap of differentially methylated probes (DMPs) associated with BMI, FMI and FFMI (a) and 
with FM and FFM (b) in preschool children. A full list of DMPs is provided in Supplementary Tables S1 to S6. 
Genes in brackets indicate manual annotation for closest genes using the UCSC genome browser on human 
GRCh37/hg19 assembly.
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We found a positive association between DNAm for DMP cg08692210 at this region with FM after Bonferroni 
correction and with BMI and FMI according to FDR.

CYTH4-ELFN2 gene region (cytohesin 4, extracellular leucine-rich repeat and fibronectin type III domain con-
taining 2) was closest to the DMP cg14518658 associated with FM that we found in our study after Bonferroni 
correction and with BMI and FMI according to FDR. This region overlaps with binding sites of many transcrip-
tion factors including the insulator protein CTCF and is close to a cluster of piwi-interacting RNAs (piRNAs) that 
have been linked to nutritional status and paternal inheritance of obesity43,44. Interestingly, expression of the two 
flanking genes is affected by diet: CYTH4, involved in vesicular secretion becomes upregulated in brown adipose 
tissue upon diet-induced obesity45 whereas ELFN2, a protein phosphatase regulator, becomes upregulated upon 
switch to Nordic diet46.

CFLAR (CASP8 and FADD like apoptosis regulator), a gene involved in regulating the pro-apoptotic protein 
CFLAR, is upregulated in peripheral blood mononuclear cells of obese children and adolescents and normalises 
after BMI reduction47. We found an inverse association of DNAm for DMP cg26627956 within this gene with FM 
and FMI after Bonferroni correction and with BMI according to FDR.

PRDM14 (PR/SET domain 14, previously PR domain containing 14) is a pluripotency gene belonging to the 
PRDM family of transcriptional regulators. This family includes PRDM16, which promotes differentiation of 
adult skeletal muscle stem cells48 and PRDM4, which stimulates browning of white adipose tissue49. We found 
a positive association of DMP cg00384539 in the PRDM14 gene with FM after Bonferroni correction and with 
BMI and FMI according to FDR. Interestingly, we found further associations within the PRDM family: DMP 
cg14282798 in PRDM15 was associated with BMI and FFM and DMP cg01360054 in PRDM6 with BMI accord-
ing to FDR.

SOS1 (SOS Ras/Rac guanine nucleotide exchange factor 1) was recently reported to be transcriptionally upregu-
lated in association with BMI in young adult monozygotic BMI-discordant Finnish twins50. A DMP (cg04010122) 
within this gene was identified in our study, which was associated, according to Bonferroni, with FMI and accord-
ing to FDR with FM.

ZNF643(Zinc finger protein 643 also known as ZFP69B), a putative transcription factor gene, is situated next to 
ZFP69, which has been linked to pathogenesis of human diabetes, as its allelic variation associates with impaired 
lipid storage in white adipose tissue51. We found an inverse association of DNAm at cg26401512 in this gene with 
FMI according to Bonferroni correction and with FM according to FDR.

ST6GAL1 (ST6 beta-galactosamide alpha-2,6-sialyltranferase 1) codes for a membrane-bound glycosyltrans-
ferase and has been found to have a strong linkage with a high impact genetic variant in the adiponectin gene 
ADIPOQ that affects adiponectin plasma levels in Hispanics52. In our study DMP cg15026574 was inversely asso-
ciated with FMI according to Bonferroni correction and with BMI and FM according to FDR.

C3orf70 (Chromosome 3 open reading frame 70). Gene polymorphisms in that gene code for an unknown 
protein and has also been found to have a strong linkage with a high impact genetic variant in adiponectin gene 
ADIPOQ that affects adiponectin plasma levels in Hispanics52. In our study, DMP cg 24332767 was positively 
associated with FFM after Bonferroni correction, and with BMI and FM according to FDR. Interestingly, KLHL6 
gene is also located around 3 Mb upstream of this region on chromosome 3q26-27.

LOC101929268 (uncharacterised noncoding RNA). This ncRNA gene was closest to the DMP cg27038634 that 
we found in our study to be associated with FFM after Bonferroni correction and with BMI and FM according 
to FDR. LOC101929268 is upstream of the EFCAB1 gene for which altered methylation was detected in adipose 
tissue of individuals with type 2 diabetes53.

MLLT4 (myeloid/lymphoid or mixed-lineage leukaemia, translocated to, 4, also known as AFDN = afadin, 
adherens junction formation factor). This gene encodes a multi-domain protein involved in signalling and organ-
isation of cell junctions during embryogenesis according to a pubmed/gene and HGNC search (http://www.
genenames.org/) and was originally detected in relation to mouse development54. In our study, DMP cg08074767 
near this gene was inversely associated with FFM after Bonferroni correction and with BMI, FM and FFMI 
according to FDR.

CILP2 (Cartilage intermediate layer protein 2). Genetic variation in CILP2 antagonizes insulin-like growth 
factor (IGF-I) activity in chondrocytes55 and has been linked with serum lipid levels56 and type 2 diabetes57. 
Methylation at CILP2 (cg17935297) was the top hit association for FFMI in our study after Bonferroni correction 
and was associated with BMI, FM and FFM according to FDR.

Two DNAm variants cg01706498 in ZDHHC17 and cg21525627 in KLHL6 were in our EWAS associated with 
all six (BMI, ZBMI, FM, FMI, FFM and FFMI) body size and composition measures after applying FDR threshold 
were found. ZDHHC17 encodes for a palmitoyltransferase that regulates glucose homeostasis in adipocytes and 
has been proposed as a candidate gene for type 1 diabetes58–60.

It is also of interest that we found in this EWAS of the CHOP study, a methylation variant located in an 
unknown non-coding RNA LINC01115 located approx. 100 kb downstream of the ‘obesity gene’ TMEM18 that is 
expressed in the hypothalamus and has been linked with childhood obesity61, early onset extreme obesity62 and 
adult obesity6.

None of the identified differently methylated positions (DMP) in our study were found in respective EWAS 
in children and adolescence28,29,31. However, DMP in the same genes often just in some 1000 bp distance of each 
other were found in an EWAS conducted in West Australian obese 12 year old boys28. Associations with phe-
notypes at DMP in common genes include the genes ANKRD11 (BMI, FM), BAT2 (BMI, FM), BCL11A (FM), 
C2orf85 (BMI), C4orf22 (BMI), CCNL2 (BMI), CCR6 (BMI, FM, FFM), CDH13 (BMI), CNGA3 (BMI, FM), 
CYFIP1 (FM, FMI), DIABLO (BMI), DUSP5 (FMI), FAM188B (BMI), FGFR2 (BMI), FOXK2 (BMI, FM, FFM), 
GNA12 (BMI), HIPK2 (BMI), IGF2R (BMI), INPP5A (BMI, FFM), JARID2 (FM), MACROD1 (BMI), MAD1L1 
(FFM), MCF2L (FM), MEGF11 (BMI, FM), MLLT4 (FM, FFM, FFMI), MXD3 (FFM), NPSR1 (BMI, FM, FMI), 
PRKDC (FM, FMI), PTPRN2 (FFM), RAB5C (BMI, FM), RERE (FM), RPS6KA2 (FM, FFM), SFMBT2 (BMI, FM, 

http://www.genenames.org/
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FMI), TBCD (BMI, FM), TNXB (FM, FFM), TRAPPC9 (FM), and TRIM39 (BMI, FM). Supplementary Tables 8 
to 12 list all FDR-significant DMPs of the CHOP study for the phenotypes separately and those DMPs of the 
Australian study that have at least a 5% difference in methylation among obese boys and an age-matched control 
group located within the above mentioned common genes28.

Several genes in our study have also been found differentially methylated in relation to BMI and obesity in 
previous EWAS in adults18,21,63.

An EWAS in an Arab population found a genome-wide significant inverse association of BMI with a DMP 
(cg17501210) in gene RPS6KA2 (Chr6:166970252) in whole blood of adults18. We found in the same gene at DMP 
(cg01577646, Chr6:166911121) an inverse association with FM and FFM according to FDR criteria.

In an EWAS in African American adults, a genome-wide significant positive association with BMI was found 
at DMP (cg09664445, Chr17: 2612406) in gene KIAA066421. We also found a positive association with BMI in the 
same gene at DMP (cg09927637, Chr17: 2606848) according to FDR criteria.

In a very recent EWAS conducted in adult European and Indian Asian populations, a large number (187 
markers) of associations of DNAm and BMI were identified and replicated in several populations and some in 
adipose tissue63. In our study, we found several DMP located in the same genes associated with BMI or other phe-
notypes. Associations with phenotypes at DMP in common genes include ANKRD11(BMI, FM), JARID2 (FM), 
MAD1L1 (FFM), USP22 (BMI), RPS6KA2 (FM, FFM), SLC41A1 (FM), SMC3 (FMI) and ZC3H3 (BMI, FM, 
FFM). Supplementary Tables S13 to S16 list all overlaps in methylated genes of our study in European children 
and the EWAS in European or Indian Asian adults for the phenotypes separately63.

However, in contrast to several previous studies21,22,26,29, we did not detect differential methylation at HIF3A 
gene locus that has been detected in obese adults and children. In fact in our study, the smallest uncorrected 
P-value for an association of phenotype BMI, ZBMI, FM, FMI, FFM and FFMI with a methylation-site in gene 
HIF3A was P > 0.037, P > 0.048, P > 0.022, P > 0.018, P > 0.181 and P > 0.051 respectively for cg26749414 
(cg02879662 for FFM). For all other methylation sites in HIF3A associations showed uncorrected P-values well 
above P > 0.11 (see Supplementary Tables S17 and S18). Nevertheless, we cannot rule out that this finding is due 
to a lack in power resulting from our sample size of 374 children, as some of the EWAS in adults are based on 
substantially larger samples.

This EWAS study has several strengths. It is one of the first to compare genome-wide DNAm among several 
body size and body composition measures in pre-school children with a reasonably large sample size. With the 
exception of one EWAS study29 in children that focused in their publication mainly on BMI - no EWAS in chil-
dren investigated methylation in more than one body composition measure and in fat-mass or fat-free mass 
measured by bio-impedance analysis as in our study. This EWAS study provides novel evidence to the relatively 
less investigated field of epigenetics of childhood body composition. As demonstrated above, our findings are 
plausible from a biological point of view despite the necessarily explorative character intrinsic in EWAS analyses 
with a cross-sectional design. Our finding of specific and common methylation of body composition measures 
- if replicable in other populations – implies a promising potential for future research into the ways of epigenetic 
programming of obesity.

This EWAS study also has some limitations. First and foremost, a replication of our findings in further 
pre-school populations is required, despite the fact that some results were in line with previous studies in older 
children28 and in adult populations18,21,63. Although our sample size is larger than most of the few EWAS on body 
size or composition in children and adolescents28,29,31 a much larger sample size would be required to be sure that 
our null–association of DNAm variants within the HIF3A gene and BMI – shown previously in adults21,22 and 
children26 is not just a power problem. Moreover, we cannot rule out that other associated methylation sites, due 
to sample size, were missed.

A further limitation of our EWAS study is the cross-sectional design. Therefore we cannot determine the 
causal nature of our findings. In particular we cannot rule out that the found methylation levels are a consequence 
rather than a cause of our body composition phenotypes63. Moreover, the causal pathways may be even more 
complicated by genetic and other environmental influences, epigenetic mediation, modification and mechanisms 
for gene-environment interactions64–66. The list of corresponding methylation trait loci (mQTL) of our findings 
with those of the ARIES study, listed in Supplementary Tables S19 to S22, points in that direction66.

The issue of tissue specific methylation is a further limitation of our study – evaluating DNA-methylation in 
children’s blood and not in adipose tissue (for practical and ethical reasons) may have missed the true methylation 
markers associated with body composition67,68. In EWAS in adults it has been shown that DNAm assessed from 
subcutaneous adipose tissue was associated with BMI, DXA-measured centrally located fat and body fat distri-
bution, whereas DNAm derived from blood was not17. Moreover, in a small EWAS of adult monozygotic twins 
discordant for obesity, it was shown that genome-wide DNAm variants determined from blood were not different 
among the twin-pairs. However, when stratifying the twin-pairs by level of liver fat accumulation, epigenetically 
different signatures were observed if the heavier co-twins had excessive liver fat23. On the other hand, this meth-
ods study reveals that if the metabolic status can be accounted for by metabolic measurements often associated 
with excess adipose tissue (higher levels of fasting glucose and insulin, higher-low-density lipoprotein, C-reactive 
protein, or higher diastolic blood pressure) differences in epigenetic profile relevant to the phenotype and tissue 
of interest may be detected from blood23.

A further issue is the high inflation according to genomic control lambda69 ranging from 1.24 to 146 for the 6 
body size and composition measure models. High lambda values may be considered as casting some doubt on the 
number of methylation associations found. However, a recent methods study demonstrated that the usual infla-
tion measure lambda is often an overestimate of the true inflation, as lambda is substantially increased dependent 
on the number of significant EWAS associations70. According to this recent method of “bacon” inflation, values in 
our study were substantially smaller, ranging from 1.10 to 1.17.
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Using estimates of the 6 white blood cell types derived from adult blood according to the Houseman method71 
and adjusting by this reference based approach for cell mix heterogeneity in pre-school children, could potentially 
be seen as a limitation of our analysis as blood cell mix levels from younger children differ somehow from those of 
adults. In fact, there is a vivid discussion on how to account for cell heterogeneity in EWAS71–77. However, adjust-
ment with other reference based methods like Bakulski’s cord blood reference72 did not improve the genomic 
inflation lambda values in our study and most of the top 10 associations of the original analysis showed up as 
well. Using a reference based model to account for cell heterogeneity may be considered as a limitation in any 
case, as references derived from blood may not reflect the tissue-specificity of methylation of adipose tissue as 
discussed already above. However, using Houseman’s new reference free model “RefFreeEWAS”74,75 with K = 9 
latent dimensions to account for potential collinearity of the phenotype and or covariates within the methylation 
value matrix, resulted in our study in an over-adjustment indicated by very low genomic inflation values (0.74 to 
0.84) and extremely low “bacon”-inflation (0.10–0.21).

An implicit related limitation of our EWAS approach is that we cannot rule out that methylation values in 
our dataset are confounded due to collinearity with the body composition phenotypes. The reference free model 
potentially accounts for such collinearity. However, as mentioned above, applying the reference free method with 
the determined number of K = 9 estimated latent factors resulted in over-adjustment. Moreover, using just K = 8 
or K = 7 latent adjustment factors resulted in quite different top 10 associations among the 3 models, despite the 
fact that genomic inflation lambdas were still below 1 even for K = 7. According to our knowledge it is still an 
open methodological research question to determine, which approach is best to use to account for cell heteroge-
neity in children’s EWAS – reference-based or reference-free methods. Therefore we have placed the results from 
the reference free approach in Supplementary Tables S23 to S28.

In the reported reference-based EWAS analyses maternal smoking during pregnancy was not adjusted for. 
This could be seen as a potential biasing factor. However, a repetition of the main EWAS analyses with this addi-
tional adjustment show that such a bias is limited. For all six body-size and composition measures almost all of 
the originally found top 10 associations with DNAm variants were also found within the top 10 in these addi-
tional adjusted analyses or were at least under the top 17. Moreover, these estimates did not differ substantially 
from those not adjusted for maternal smoking as documented in Supplementary Tables S29 to S34.

A further limitation of this EWAS is that no RNA data is available to study the associations of differential 
methylation at the found loci with gene expression. However, this may be worthwhile to investigate in further and 
larger EWAS studies.

In summary, we provide novel evidence linking DNAm at SNED1(IRE-BP1), KLHL6, WDR51A(POC1A), 
intergenic CYTH4-ELFN2, CFLAR, PRDM14, SOS1, ZNF643(ZFP69B), ST6GAL1, C3orf70, MLLT4, CILP2 genes 
and noncoding RNA LOC101929268 with altered lipid and glucose metabolism and differential body size and 
body composition measures in children. We also found methylation variation related to body composition in 39 
genes previously found mostly in severely obese children but some also in adults. We also provide novel evidence 
about common and different epigenetic signatures between fat mass and fat free mass. The causal direction with 
phenotypic measures and stability of the DNAm variants throughout the life course remains unclear and longitu-
dinal analysis in other populations is required. These findings give support for potential epigenetic programming 
of body composition and obesity and contribute to an emerging body of work linking specific exposures to vari-
ation in epigenetic profile and metabolic phenotypes in humans.

Methods
Study design and participants. This study is based on a subset of 374 children out of 543 children aged 
5.5 years from study centres in Germany, Belgium, Italy and Spain of the European Childhood Obesity Trial 
Study (CHOP) registered at clinicaltrials.gov as NCT00338689 and URL: http://clinicaltrials.gov/ct2/show/
NCT00338689?term=NCT00338689&rank=1. Details on the study have been published previously32–34. 
Inclusion criteria for this analysis were availability of blood buffy coats, valid exposure data on measured weight, 
height and Bio-Impedance Analysis (BIA) derived measurements of body composition (fat mass, fat free mass); 
all collected at 5.5 years of age in the children and information on basic characteristics of the offspring (sex, age 
of blood draw, country of study centre). Characteristics of the analysed study population are listed in Table 2.

Ethics statement. The CHOP study was conducted according to the principles expressed in the Declaration 
of Helsinki. The local ethics committees of each study centre approved all study procedures: Belgium (Comitè 
d’Ethique de L’Hopital Universitaire des Enfants Reine Fabiola; no. CEH 14/02), Germany (Bayerische 
Landesärztekammer Ethik-Kommission; no. 02070), Italy (Azienda Ospedaliera San Paolo Comitato Etico; no. 
14/2002), Poland (Instytut Pomnik–Centrum Zdrowia Dziecka Komitet Etyczny; no 243/KE/2001), and Spain 
(Comité ético de investigación clinica del Hospital Universitario de Tarragona Joan XXIII). Written informed 
parental consent was obtained for each infant.

Procedures. Weight and height was measured to the nearest 100 g and 0.1 cm during physical exam at age 5.5 
years by a trained study personal according to strict SOPs using SECA 702 electronic scales (SECA, Hamburg; 
Germany) and SECA 242 stadiometer (SECA, Hamburg; Germany). BMI was calculated from these anthropo-
metric measurements as child’s weight in kg divided by height in metres squared (BMI = (weight (kg)/height 
(m²)). BMI was also standardised according to WHO age- and sex–specific child growth standards (ZBMI) using 
a macro downloaded from http://www.who.int/childgrowth/en. Fat Mass in kg (FM) and Fat Free Mass in kg 
(FFM) were determined by the built-in equation of the Bio-Impedance-Analysis device (Tanita BC-418MA, 
Segmental Body Composition Analyser, Tanita Europe, Sindelfingen Germany). Fat mass index and fat free mass 
index were derived from these measures: FMI = FM (kg)/Height (m2) and FFMI = FFM (kg)/Height (m2).

http://S23
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During the child’s physical examination at age 5.5 years, blood was drawn to collect peripheral blood cells 
from buffy coats. These were used to determine DNA methylation (DNAm) status at a genome-wide level by 
using the Infinium HumanMethylation450 BeadChip (HM450K). DNA extraction, bisulfite conversion and 
methylation analysis were performed at the Genome Analysis Center of Helmholtz Zentrum Muenchen, Munich, 
Germany. Details were described previously34. In brief, genomic DNA was extracted using a standard precipi-
tation procedure. Bisulfite conversion was performed using the EZ-96 DNA Methylation Kit (Zymo Research, 
Irvine, Ca; USA) and converted DNA samples were hybridised on the Infinium HumanMethylation450 BeadChip 
(HM450K) according to the manufactures instructions (Illumina Inc., San Diego, USA). Data pre-processing 
and normalisation were performed by the first author according to the approach of Touleimat and Tost78 with 
some adaptions e.g. the beta-mixture quantile normalization (BMIQ) step of the ß-values79 and exclusion of 
cross-reactive probes80 as described in detail previously34.

The final data set comprised DNA-methylation values (DNAm) at 431313 CpG sites in each of the 374 chil-
dren for EWAS analysis.

Statistical Analysis (EWAS). Potential associations between each of the measures of body size (BMI, 
ZBMI) or body composition (FM, FMI, FFM, FFMI) and quality controlled but untransformed methylation val-
ues at each of 431313 CpG sites were determined by standard linear regression models with adjustment for child’s 
sex, age at blood draw (months), study centre (Germany (DE), Italy (IT), Spain(ES), reference Belgium (BE)), 
parental education (High = both parents 12 + yrs. of schooling, reference Middle = both parents 10 − <12 yrs. of 
schooling or only one parent 12 + years of schooling and Low = both parents achieved basic schooling only), the 
estimated proportions of six major white blood cell types (WBC), CD4 + T cells, CD8 + T cells, B cells, NK cells, 
monocytes and granulocytes according to Houseman’s method and the top 30 principal components (PC) derived 
from control probes on the HM450K platform71,81. All statistical analyses were performed with R-software version 
R3.3.2 of the R-project (https://www.r-project.org/) at the mainframe of the Leibniz-Rechenzentrum (LRZ) in 
Garching/Munich.

An association of a differently methylated CpG site (beta-values) with the respective body size or com-
position measure was considered significant at the epigenome-wide level, if the false discovery rate (FDR) 
was q < 0.0582. The estimates listed in tables in the result section or the appendix are the adjusted regression 
coefficient of the model described above where a CpG site enters the equation as methylation fraction (range 0 
to 1) and is scaled to percent methylation by dividing the CpG related regression coefficient by 100. Therefore 
the shown estimates can be interpreted as the respective change in the analysed outcome for a one percent 
change in methylation of the respective CpG (predictor). Inflation of P-values for the assessed associations in 
this EWAS were computed according to both the usual genomic control inflation factor lambda69 and accord-
ing to the recent “bacon” method that account for the number of significant associations70. Both inflation 
estimates are depicted in Q-Q-plots for each of the models of the body size and composition measures (see 
Supplementary Fig. S1).

Boys Girls Total P-value

(n = 181) (n = 193) (n = 374) Girls vs. Boys

Child’s birth weight (kg) 3.3 (0.3) 3.2 (0.3) 3.3 (0.3) 0.01

Length of gestation (weeks) 39.9 (1.2) 39.8 (1.2) 39.8 (1.2) 0.77

Child formula vs. Breastfed (n(%)) 125 (69.1%) 121 (62.7%) 246 (65.8%) 0.20

Maternal age at delivery (years) 32.5 (4.2) 31.6 (4.1) 32.1 (4.1) 0.05

Maternal pre-pregnancy BMI (kg/m²) 23.9 (4.1) 23.2 (4.0) 23.5 (4.1) 0.15

Maternal smoking during pregnancy (n(%)) 38 (21.0%) 37 (19.2%) 75 (20.1%) 0.66

Low parental education (n(%)) 25 (13.8%) 12 (6.2%) 37 (9.9%) 0.02

Medium parental education (n(%)) 95 (52.5%) 105 (54.4%) 200 (53.5%) 0.75

High parental education (n(%)) 61 (33.7%) 76 (39.4%) 137 (36.6%) 0.24

Belgium (n(%)) 23 (12.7%) 42 (21.8%) 65 (17.4%) 0.02

Germany (n(%)) 12 (6.6%) 18 (9.3%) 30 (8.0%) 0.34

Italy (n(%)) 79 (43.6%) 64 (33.2%) 143 (38.2%) 0.04

Spain (n(%)) 67 (37.0%) 69 (35.8%) 136 (36.4%) 0.80

Child’s age at blood draw (months) 66.3 (0.9) 66.5 (0.8) 66.4 (0.8) 0.05

BMI (Kg/m²) 16.0 (2.1) 15.9 (1.6) 15.9 (1.9) 0.42

BMI (WHO-zscore) 0.4 (1.3) 0.3 (0.9) 0.3 (1.1) 0.33

Fat mass (kg) 4.3 (1.7) 4.6 (1.3) 4.5 (1.5) 0.02

Fat mass index (kg/m²) 3.3 (1.2) 3.6 (0.9) 3.4 (1.0) 0.01

Fat free mass (kg) 16.5 (2.0) 15.9 (2.0) 16.2 (2.1) 0.01

Fat free mass index (kg/m²) 12.7 (1.1) 12.3 (0.9) 12.5 (1.0) <0.01

Table 2. Characteristics of analysed study population. Data in table are mean (SD), n (%).
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Functional characterization of differentially methylated CpGs. The identified CpG sites were 
annotated according to Illumina (www.illumina.com, HumanMethylation450_15017482_v1.csv) or manually 
using the UCSC genome browser, GRCh37/h19 assembly for non-annotated CpGs (https://genome.ucsc.edu). 
Ontology analyses were conducted using a fixed set gene enrichment analysis approach performed with g:Profiler 
(http://biit.cs.ut.ee/gprofiler/index.cgi)83. Pathway analysis included Gene Ontology (Biological Process, Cellular 
Component and Molecular Function), KEGG and Reactome gene-set databases. The analysis was performed 
on ranked gene lists (ranked according to P-value from EWAS regression analysis) with advanced options ‘Size 
of functional category’: 3 (min) to 500 (max) and ‘Size of Q&T’: min of 2 using the gSCS threshold that is more 
stringent than FDR.

Data availability. Results are extensively documented in the supplement. To protect patient confidentiality, 
data is available upon request. Future interested researchers can make requests to Prof Dr Berthold Koletzko, 
email: office.koletzko@med.lmu.de
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