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Abstract

Purpose: The objective of this study was to evaluate the impact of the magnetic

field regulation in conjunction with the volumetric repainting technique on the spot

positions and range in pencil beam scanning proton therapy.

Methods: “Field regulation” — a feature to reduce the switching time between lay-

ers by applying a magnetic field setpoint (instead of a current setpoint) has been

implemented on the proton beam delivery system at the Miami Cancer Institute. To

investigate the impact of field regulation for the volumetric repainting technique,

several spot maps were generated with beam delivery sequence in both directions,

that is, irradiating from the deepest layer to the most proximal layer (“down” direc-

tion) as well as irradiating from the most proximal layer to the deepest layer (“up”

direction). Range measurements were performed using a multi‐layer ionization

chamber array. Spot positions were measured using two‐dimensional and three‐di-
mensional scintillation detectors. For range and central‐axis spot position, spot maps

were delivered for energies ranging from 70–225 MeV. For off‐axis spot positions,

the maps were delivered for high‐, medium, and low‐energies at eight different gan-

try angles. The results were then compared between the “up” and “down” direc-

tions.

Results: The average difference in range for given energy between “up” and “down”

directions was 0.0 ± 0.1 mm. The off‐axis spot position results showed that 846/

864 of the spots were within ±1 mm, and all off‐axis spot positions were within

±1.2 mm. For spots (n = 126) at the isocenter, the evaluation between “up” and

“down” directions for given energy showed the spot position difference within

±0.25 mm. At the nozzle entrance, the average differences in X and Y positions for

given energy were 0.0 ± 0.2 mm and −0.0 ± 0.4 mm, respectively. At the nozzle

exit, the average differences in X and Y positions for given energy were

0.0 ± 0.1 mm and −0.1 ± 0.1 mm, respectively.

Conclusion: The volumetric repainting technique in magnetic field regulation mode

resulted in acceptable spot position and range differences for our beam delivery

system. The range differences were found to be within ±1 mm (TG224). For the

spot positions (TG224: ±1 mm), the central axis measurements were within ±1 mm,
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whereas for the off‐axis measurements, 97.9% of the spots were within ±1 mm, and

all spots were within ±1.2 mm.
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1 | INTRODUCTION

Pencil beam scanning (PBS) delivery technique has become a pre-

ferred method relative to passive scattering methods in proton ther-

apy.1,2 Pencil beam scanning technique delivers a single pristine

beam at a time. Several studies have pointed out the interplay effect

between mobile tumor and the delivery of pencil proton beam ther-

apy3–7 and carbon ion therapy.8–10 A volumetric repainting technique

has been proposed as one of the motion management techniques to

mitigate the interplay in PBS proton therapy.6,10–12 Volumetric

repainting implies repetitive scanning through the whole target vol-

ume.12,13 During volumetric repainting, repeated scans are delivered

in depth, not in the plane transverse to the beam.12,13 The beam

delivery sequence for volumetric repainting can take several

approaches. For example, the whole target volume is irradiated by

delivering the proton beam either from the deepest layer to the

most proximal layer (“down” direction) or from the most proximal

layer to the deepest layer (“up” direction), or a combination of both.

The repeated scans of the entire volume allow the delivery of

planned dose to the tumor volume repeatedly, thus providing the

statistical averaging of dose heterogeneity.14

The volumetric repainting technique can be an attractive option

to mitigate the interplay effect, mainly because it is independent of

any external hardware that may require cooperation from the

patient.3 Zhang et al.3 highlighted the fact that the performance of

repainting technique is highly machine‐specific, since spot positions,

dose rate, energy switching time, etc. can have an impact on the

delivered dose distributions and interplay effect. As pointed out by

Zenklusen et al.,12 the repainting technique requires a fast energy

switching time. Volumetric repainting can be delivered by repetitive

scans in depth with beam delivery sequence in “down” direction

only. In this case, for multiple repainting, it will require the beamline

to switch from the lowest energy to the highest energy of the treat-

ment plan. Such a big energy step may cause the destabilization of

the magnets. Pedroni et al.15 observed beam positioning displace-

ments of 1 to 3 mm with big energy steps (of the order of the full

energy range). An alternative way of delivering the volumetric plan

would be to set the beam delivery sequence in “down” direction fol-

lowed by “up” direction. This would eliminate the need of switching

the beamline from the lowest energy to the highest energy of the

treatment plan. Instead, after completing the beam delivery in

“down” direction, smaller energy steps can be used for the “up”

direction, thus minimizing the risks associated with the destabiliza-

tion of the magnets in the beamline. This requires a strategy to regu-

late the current to various magnets in the beamline while

overcoming the hysteresis of the magnets.

At Miami Cancer Institute, PBS proton therapy is delivered using

a ProteusPLUS proton therapy system with a PBS dedicated nozzle

(Ion Beam Applications, Louvain‐la‐Neuve, Belgium). The clinical

commissioning of our proton system was based on the beam deliv-

ery sequence such that irradiation begins from the deepest layer to

the most proximal layer. In this case (“down” direction), beam optics

was performed with all the magnets in the beamline regulated in the

current (CR) mode. Furthermore, the layer switching time for the

“down” direction is about 1 s, but it can be up to 6 s for the “up”

direction when operated in CR mode. Hence, due to slower layer

switching time for the “up” direction in CR mode, the total beam‐on
time will increase if the user wants to deliver a volumetric repainting

treatment plan that includes the beam delivery sequences in both

the “down” and “up” directions.

Recently, our proton therapy vendor has come up with a mag-

netic field regulation (FR) — a feature to reduce the layer switching

time by introducing the Hall probes, which allow measuring the mag-

netic field in real‐time. Specifically, Hall probes are mounted inside

specific groups of magnets in the beamline (Fig. 1). By applying a

magnetic field setpoint (instead of a current setpoint) to the specific

groups of magnets, there is no requirement of cycling the magnets,

except for the first layer of the map, thus reducing the beam stabi-

lization delays and layer switching time in both the “down” and “up”

directions. This has decreased the layer switching time for the “up”

direction from about 6 s in CR mode to about 1.2–1.3 s in FR mode.

The authors believe that the decreased layer switching time for the

“up” direction is an important step towards the clinical implementa-

tion of the volumetric repainting. However, the use of FR still

requires a comprehensive clinical validation.

The proton beam model in our treatment planning system (TPS)

is based on the measurements performed in CR instead of FR. In FR

mode, all range steps use magnetic field setpoints, which are then

linked to the current setpoints by a look up table. Furthermore, FR

mode has a Hall probe in the energy selection system (ESS). This

brings up the questions — does FR impact the proton beam energy/

ranges? Is it necessary to have a new beam model based on range
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measurements acquired in FR mode? Another critical parameter that

could be impacted due to use of FR is the spot position. Psoroulas

et al.11 investigated that the incorrect magnetic field from the mag-

nets on the gantry can result in spot position errors. The work of

Psoroulas et al.11 was primarily focused on the CR mode in PSI gan-

try 2. The addition of Hall probes to the bending magnets in the

gantry beam line to measure the magnetic field in real‐time further

increases the uncertainty of the spot position errors. If the spots are

not delivered at their intended locations during the patient treat-

ment, it will affect the quality of the treatment delivery. Since FR is

now available for the clinical use, it brings up additional questions —
how does beam delivery direction (“down” vs “up”) impact the spot

position errors in FR mode? Should there be a change in the quality

assurance (QA) protocol to accommodate the FR and volumetric

repainting technique? To the best of our knowledge, these critical

questions have not been answered in the literature by providing the

experimental data.

In this study, the authors sought to investigate how the combi-

nation of FR and volumetric repainting technique impacts the spot

positions and range on the PBS beam delivery system. The authors

believe that the methodology/technique and results presented herein

will serve as the reference for the clinical physicists who are looking

to implement FR and volumetric repainting at their proton centers.

2 | MATERIALS AND METHODS

For our proton therapy system, the clinically available energies range

from 70 to 226.5 MeV. Readers are recommended to refer to the

published literature16,17 for more information on the ProteusPLUS

PBS beam delivery system. Figure 1 shows the beam delivery design

in FR, which includes a Hall Probe positioned at the entrance/exit of

one magnet of the B1234E quadruplet, B1Gx, and B2Gx. B1234E are

four 30° bending magnets connected in series. Those are part of the

energy selection system (ESS) and contribute to the selection of the

correct beam energy. The B1Gx is the bending magnet of the gantry

(45°) and the B2Gx is the last bending magnet of the gantry (135°).

2.A | Range measurements

Range measurements were performed using Giraffe (IBA Dosimetry,

Schwarzenbruck, Germany) — a commercial multilayer ionization

chamber array. A Giraffe can be used to measure the longitudinal

depth‐dose distribution of central‐axis pencil beams. It consists of 180

independent air‐vented, plane‐parallel ionization chambers with a

radius of 6.0 cm. More details on Giraffe can be found in the publica-

tion by Vai et al.18 For range measurements in FR mode, a spot map

was generated representing “down” direction followed by “up” direc-

tion. Specifically, “down” direction consisted of 32 layers for energies

ranging from 225 to 70 MeV at decrements of 5 MeV, whereas the

“up” direction consisted of the same number of layers, but the ener-

gies ranged from 70 to 225 MeV at increments of 5 MeV. For a com-

parative purpose, a separate spot map for the “down” direction in CR

mode was generated. It included 32 layers for energies ranging from

225 to 70 MeV at decrements of 5 MeV. For both the FR and CR

modes, each layer consisted of a single spot at the isocenter. Proton

beam was delivered without pausing in between the layers. All mea-

surements were carried out in a movie mode using OmniPro Incline

software (IBA Dosimetry, Schwarzenbruck, Germany).

2.B | Off‐axis spot position measurements

Off‐axis spot positions measurements were done utilizing the Lynx

2D (IBA Dosimetry, Schwarzenbruck, Germany) — a gadolinium‐
based scintillation detector (resolution = 0.5 mm; active surface

area = 300 mm × 300 mm).19 The Lynx detector was placed at the

isocentric plane using the Lynx holder such that the beam is perpen-

dicular to the detector. Three spot maps representing high‐, medium,

and low‐energies (Table 1) were generated. Specifically, the first

layer of each map included 226.5 MeV at the iscoenter for the refer-

ence purpose, whereas the delivery sequence of remaining 36 layers

is shown in Figure 2 such that the energy of the spot is in decreas-

ing order from row 1 (R1) to row 6 (R6). For a given row, the energy

of all six spots remained the same. All three maps were delivered at

eight gantry angles (0°, 45°, 90°, 135°, 180°, 225°, 270°, and 315°)

F I G . 1 . Hall probes mounted inside the
30° bending magnet (B2E) of the energy
selection system (ESS) and bending
magnets (B1Gx at 45° and B2Gx at 135°)
of the gantry.
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for three groups of energies, as listed in Table 1. Data acquisition

was made in a movie mode utilizing myQA software (IBA Dosimetry,

Schwarzenbruck, Germany).

2.C | Central‐axis spot position measurements

Central‐axis spot position measurements were done at gantry angle

0° using XRV‐124 (Logos Systems Int'l, Scotts Valley, CA) — a cone‐
shaped scintillator detector. The resolution of the CCD camera using

BeamWorksPlus software (Logos Systems Int'l, Scotts Valley, CA) is

1280 × 960 pixels, whereas the BeamWorksPlus software runs at

640 x 480 pixels (binned from 1280 × 960 pixels). The cone has a

140 mm long field of view over 360°, whereas width of the cone

varies from 30 to 60 mm.20,21 Details on the XRV‐124 can be found

in previous publications.20,21

For FR measurements, a spot map was generated for the ener-

gies ranging from 225 to 70 MeV (“down” direction) followed by 70

to 225 MeV (“up” direction). Each energy layer consisted of a single

spot at the isocenter (0, 0), and the energy spacing was 2.5 MeV.

For a comparative purpose (FR vs CR), a similar spot map was gener-

ated but for beam delivery sequence in the “down” direction for the

energies ranging from 225 to 70 MeV at the decrements of

2.5 MeV. Prior to beam delivery, the XRV‐124 detector was aligned

to the imaging isocenter by following the procedure described in the

literature.20,21 Data acquisition was made in a movie mode using

BeamWorksPlus software. The beam was delivered without pausing

between the layers. The software provides the centricity of the spot

in lateral, longitudinal, and vertical directions.20,21

Additionally, the beam delivery log files were retrieved to analyze

the spot positions at the entrance and exit of the nozzle. Specifically,

the first ionization chamber (IC1) provided the X and Y positions at

the nozzle entrance, whereas the second ionization chamber (IC2)

and third ionization chamber (IC3) provided the Y and X positions,

respectively, at the nozzle exit.

3 | RESULTS

3.A | Measurements in FR mode

3.A.1 | Range measurements

Figure 3a illustrates the difference in range between the “up” and

“down” directions in FR mode. In the current study, the range is

defined as the R90 [measured as the penetration depth of the pro-

ton beam at 90% point of the normalized percent depth dose

(PDD)]. The average difference in R90 for given energy between

“up” and “down” directions was 0.0 ± 0.1 mm.

3.A.2 | Central‐axis spot position measurements

Figure 3b shows the difference in the position of the central‐axis
spots that were delivered to the XRV‐124 scintillation detector at

the isocenter. In both the “up” and “down” directions, the positions

of the delivered spots (n = 126) were within ±0.5 mm. The spot

position evaluation between “up” and “down” directions for given

energy also showed the minimal difference (within ±0.25 mm).

Figures 3(c) and 3(d) show the IC1, IC2, and IC3 results, which

were retrieved from the log files of the central axis spot position

measurements (XRV‐124) as described in Section 2.C. At the nozzle

entrance, the average difference in X and Y positions for given

TAB L E 1 A spot map shown in Fig. 2 is delivered for three groups
of energies: high, medium, and low. A spot of 226.5 MeV at the
isocenter (0,0) is used as the reference spot.

High energy
(MeV) group

Medium energy
(MeV) group

Low energy
(MeV) group

Row 1 225 Row 1 160 Row 1 95

Row 2 220 Row 2 155 Row 2 90

Row 3 215 Row 3 150 Row 3 85

Row 4 210 Row 4 145 Row 4 80

Row 5 205 Row 5 140 Row 5 75

Row 6 200 Row 6 135 Row 6 70

F I G . 2 . (left) An example of spot map representing beam delivery sequences in “down” and “up” directions; (right) Measured two‐
dimensional DICOM image of the spot map.
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energy between “up” and “down” directions was 0.02 ± 0.21 mm

(range, −0.57–0.53 mm) and −0.03 ± 0.36 mm (range, −0.84–
0.88 mm), respectively. At the nozzle exit, the average difference in

X and Y positions for given energy between “up” and “down” direc-

tions was −0.01 ± 0.14 mm (range, −0.35–0.32 mm) and

−0.07 ± 0.08 mm (range, −0.27–0.12 mm), respectively.

3.A.3 | Off‐axis spot position measurements

Figure 4 shows the difference in positions of various off‐axis spots

that are delivered in a 2D plane (Lynx detector) using the spot map

as shown in Fig. 2. The spot at the isocenter was used as the refer-

ence spot. The spot maps were delivered for high‐, medium, and

low‐energies (Table 1) at eight different gantry angles. A total of 864

off‐axis spots were evaluated to investigate how close these spots

can be delivered from their intended locations. The difference in off‐
axis spot positions ranged from −0.7 mm to 1.1 mm for gantry 0°,

−0.9 mm to 0.8 mm for gantry 45°, −1.0 mm to 1.1 mm for gantry

90°, −1.1 mm to 0.7 mm for gantry 135°, −1.2 mm to 1.1 mm for

gantry 180°, −1.2 mm to 0.7 mm for gantry 225°, −0.6 mm to

1.1 mm for gantry 270°, and −0.9 mm to 0.7 mm for gantry 315°.

Overall, the off‐axis spot position results demonstrated that 97.9%

(846/864) of the spots were within ±1 mm, and all off‐axis spot posi-

tions were within ±1.2 mm. Additionally, the evaluation among three

different energy groups showed that several spots in the low‐ and

medium energy groups had position differences outside ±1 mm.

3.B | FR mode vs CR mode (“down” direction only)

The comparison between FR and CR modes showed the range dif-

ference within ±0.2 mm. The comparison between FR and CR modes

showed the selection of either FR or CR had very minimal impact on

the spot position. The difference in spot positions ranged from −0.1

to 0.1 mm in both the X‐ and Y‐directions.

4 | DISCUSSION

In this study, the authors investigated the impact of the FR and volu-

metric repainting technique on the spot positions and range of proton

F I G . 3 . Difference in range and spot positions between the “down” (i.e., distal to proximal) and “up” (proximal to distal) directions for various
energies in magnetic field regulation mode.
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F I G . 4 . Spot position (X and Y) differences for a spot map shown in Fig. 2 at the gantry angles 0°, 45°, 90°, 135°, 180°, 225°, 270°, and
315°. The spot map was delivered for high‐, medium, and low‐energies as shown in Table 1.
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pencil beams. In our proton therapy system, each magnet has a current

setpoint that is linked to the proton beam range through set range

tables. However, it is possible to have more than one magnetic field

value for a given current setpoint because of the hysteresis of the elec-

tromagnets. Hence, for the “down” direction, all magnets are cycled

during the set range of the first layer of the delivery map such that the

magnetic field is always the same for given proton energy. It is not

required to cycle the magnets for the subsequent layers in the “down”

direction. However, for the “up” direction in our present site configura-

tion, it is required to cycle the magnets at each set range to ensure the

correct magnetic field. The need of cycling the magnets at each set

range increases the layer switching time by several seconds in the “up”

direction. The placement of Hall probes in the magnets (one in ESS and

other two in the gantry beamline) removes the requirement of cycling

of the magnets at each set range in the “up” direction, thus reducing

layer switching time.

The FR implemented within the IBA ProteusPLUS delivery sys-

tem allows faster layer switching both in the “down” and “up” direc-

tions. The use of FR in the clinical environment is promising, but our

proton therapy vendor has made it available after the proton beam

model was commissioned. Specifically, beam optics and commission-

ing have been performed based on the CR mode. Recommissioning

the entire proton beam model using FR mode would take a signifi-

cant amount of time and resources to complete this task. After dis-

cussions with the vendor, it was determined that FR mode could

potentially affect the proton range and spot positions.

The experimental data presented in the current study demon-

strated that the FR resulted in acceptable differences in spot position

and range when compared to the CR. The range differences between

FR and CR modes were found to be within ±0.2 mm, which is smaller

than the range tolerance of ±1 mm recommended by AAPM TG224.22

Furthermore, the selection of beam delivery direction (“down” vs “up”)

had very minimal impact on the ranges. Hence, if the proton beam

model has beam ranges acquired in CR mode, it may not be necessary

to obtain new ranges in FR mode for the beam model.

The results from the central axis spot position measurements

showed a trend similar to that of the range measurements. The com-

parison between FR vs CR showed that the positions of the spots

are almost identical (±0.1 mm) whether spots are delivered either in

FR or CR modes. For a spot map (“down” and “up” directions in FR

mode), the position of the central‐axis spots at given energy differed

by up to 0.25 mm (Fig. 3). This difference is small compared to the

spot position tolerance (±1 mm) recommended by TG224.22 How-

ever, the off‐axis spot measurements (Fig. 4) showed a larger differ-

ence (up to ±1.2 mm) in the spot positions than the central‐axis spot

measurements.

As FR is becoming available for the existing and new proton cen-

ters, the QA involving FR is not well established yet. Hall probes

used in FR may suffer from the variation in temperature, noise, and

aging of the detector.11 This may result in inaccurate beam delivery

due to drift in the range and positions of the spots. Thus, if the FR

is implemented clinically, the inclusion of volumetric repainting tech-

nique for the routine range and spot positions QA could provide

more realistic scenario resembling clinical volumetric repainting beam

delivery. It is recommended to use the energy steps of 5 MeV or

less to represent the clinical plan.

In this study, the authors did not address the delivery of volu-

metric repainting maps utilizing patient treatment plans to the detec-

tor. This is a limitation of our work. We primarily focused on

delivering fields containing several layers, and each layer included a

single spot. However, in a real clinical scenario, tumor volume will

consist of many spots in each layer depending on the spot spacing

and spot width. Currently, we are working with our TPS vendor to

design volumetric repainting patient treatment plans. As part of the

volumetric repainting project, our next work will include a phantom

study that will mimic the tumor motion and quantify the number of

volumetric repainting needed to reduce any interplay effect. Despite

this limitation, the authors believe that the experimental results from

the current study may be useful to the users who are looking to

implement FR and volumetric repainting at their proton center. Addi-

tionally, the study design and measurement techniques presented in

this paper can serve as examples for the experimental validation of a

volumetric repainting project.

5 | CONCLUSION

The combination of FR and volumetric repainting technique resulted

in clinically acceptable differences in the spot positions and range

for our beam delivery system. The range differences were found to

be within ±1 mm (TG224). For the spot positions (TG224: ±1 mm),

the central axis measurements were within ±1 mm, whereas for the

off‐axis measurements, 97.9% (846/864) of the spots were within

±1 mm, and all spots were within ±1.2 mm.
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