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Abstract: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the
selective degeneration of upper and lower motor neurons and by the progressive weakness and
paralysis of voluntary muscles. Despite intense research efforts and numerous clinical trials, it is still
an incurable disease. ALS had long been considered a pure motor neuron disease; however, recent
studies have shown that motor neuron protection is not sufficient to prevent the course of the disease
since the dismantlement of neuromuscular junctions occurs before motor neuron degeneration.
Skeletal muscle alterations have been described in the early stages of the disease, and they seem to
be mainly involved in the “dying back” phenomenon of motor neurons and metabolic dysfunctions.
In recent years, skeletal muscles have been considered crucial not only for the etiology of ALS but
also for its treatment. Here, we review clinical and preclinical studies that targeted skeletal muscles
and discuss the different approaches, including pharmacological interventions, supplements or diets,
genetic modifications, and training programs.

Keywords: amyotrophic lateral sclerosis; skeletal muscle; pharmacological approaches; physical
activity; genetic intervention

1. Introduction

Amyotrophic lateral sclerosis (ALS) is a progressive disease characterized by motor
neuron degeneration and skeletal muscle atrophy [1]. There are no effective therapies for
ALS: riluzole and edaravone are the only FDA-approved drugs; however, they have a
rather modest impact on the course of the disease [2].

While the majority of ALS cases are sporadic (sALS), about 10% of the cases are familial
(fALS) and characterized by autosomal dominant inheritance. The clinical manifestations
of sALS and fALS are indistinguishable, suggesting that different pathways converge,
causing the typical neuromuscular degeneration of ALS [3]. However, despite the intense
efforts to identify the pathogenetic mechanisms, the etiology of ALS remains elusive.

As ALS has long been considered the prototype of motor neuron diseases, many
studies on its pathology have been “neurocentric”. However, since the early 2000s, several
papers have started describing the key roles of non-neuronal cell types in triggering or
supporting the ALS neuromuscular degenerative processes [4]. Today, ALS is considered
a multisystemic and multifactorial disease characterized by the degeneration of motor
neurons in the motor cortex and spinal cord and accelerated by physiological alterations of
other cell types and organs [5].

Genetic models showed that only the ubiquitous expression of a gain-of-function
mutant of the human superoxide dismutase 1 (mSOD1) induced fast and severe paralysis
in mice, mimicking ALS progression [6]. The overexpression of mSOD1 in neurons led
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to a late-onset of the disease with slow progression [7], while restricting the expression
of mSOD1 to motor neurons did not trigger the pathology [8]. mSOD1 expression in
skeletal muscle elicited muscle atrophy, decreased muscle strength, impaired mitochondrial
distribution and the contractile apparatus [9], reduced the spinal cord mass, triggered late
motor neuron loss, and shortened the lifespan [10].

The neuromuscular junction (NMJ) connects muscle fibers and motor neurons, allow-
ing their communication; ALS is the classic example of severely compromised communica-
tion between muscles and nerves [11]. Motor neuron activity regulates muscle physiology
and function; in turn, muscles affect the neuronal activity by sending retrograde signals
that preserve NMJ functionality and structure [12]. The so-called “dying back” hypothesis
suggests that retrograde signals contribute to the centripetal motor neuron degeneration in
ALS [13]. Studies in ALS mouse models have corroborated this hypothesis and described
ALS as a distal axonopathy also caused by alterations in skeletal muscle [14].

Different studies have reported that more than 60% of familial and sporadic ALS
patients have increased resting and non-resting energy expenditure, an unexpected feature
considering the effects of undernutrition on energy balance and the defense mechanisms to
lower energy waste [15–17]. A study involving a large cohort of ALS patients found that
high levels of physical activity were related to an increased risk of ALS [18,19]. It also has
been shown that a low premorbid body mass index (BMI) increases the risk of ALS and
that weight loss and hypermetabolism correlate with a less favorable prognosis [16,20].
Interestingly, variants of the ACSL5 gene, previously associated with rapid weight loss in
humans, have recently been associated with ALS risk and lean body mass reduction in ALS
patients [21]. Moreover, ALS incidence is lower among obese individuals, and patients
with a high pre-diagnostic body and subcutaneous fat have a lower mortality risk [22,23].
Overall, the studies suggest a key role of energy expenditure and hypermetabolism in
ALS pathology.

The cause of defective energy homeostasis in ALS is still unknown; however, since
muscle metabolism is the major determinant of the total energy expenditure, we should
further investigate the role of skeletal muscle in ALS etiology to understand whether
the metabolic disorder contributes to its pathogenesis. Early events before denervation
affecting muscle physiology have been described, supporting the “dying back” hypothesis
in ALS. Understanding the molecular mechanisms involved in skeletal muscle degeneration
may help develop therapeutic strategies that preserve muscle function, slow down the
disease progression, and improve ALS patients’ quality of life.

In this review, we have summarized and discussed the therapeutic approaches that
have been used to increase the performance of skeletal muscle in ALS animal models
and patients.

2. Genetic Interventions

Gene therapy aims to treat a disease by inserting genetic material into cells with viral
or non-viral vectors [24]. The technology allowed obtaining remarkable results in patients
affected by spinal muscular atrophy (SMA), a childhood neuromuscular disease caused by
the deletion or mutation of survival of motor neuron 1 (SMN1). The treatment involved
the injection of antisense oligonucleotides (ASOs) [25,26] or viral vectors [27] in restoring
SMN1 protein levels [28]. These results have opened doors to new treatments for fALS
patients, and gene therapy clinical trials have been proposed.

Genetic interventions in ALS animal models, which targeted not only ALS-linked
mutations, have been useful to understand the role of several proteins and pathways in the
progression of the disease. Some studies have shown the importance of skeletal muscle
in ALS progression, highlighting that motor neuron degeneration is not the only cause of
alterations in this tissue. For instance, the modifications of trophic factors, such as glial
cell-derived neurotrophic factor (GDNF), vascular endothelial growth factor (VEGF), and
insulin-like growth factor 1 (IGF-1), in particular, improved ALS symptoms and survival.



Cells 2021, 10, 525 3 of 24

GDNF is a member of the TGF-β family, it was originally isolated in rat glial cells, and
it promotes the differentiation and survival of dopaminergic neurons by increasing their
dopamine uptake [29,30]. GDNF also has a neurotrophic function in motor neurons, where
it enhances survival by preventing apoptosis and degeneration [31–36]. Because of this
function, GDNF has been proposed as a therapeutic target for ALS [31,36,37]. Its expression
in the skeletal muscle of 5–7-day-old SOD1G93A mice slowed down the progression of
the disease. The mice were injected with adenoviral vectors (AVR) into the hind limbs
and the paraspinal muscles. In treated mice, the disease onset, the reduction of motor
performance, and the motor neuron loss were delayed. Moreover, SOD1G93A-GDNF mice
survived about two weeks longer than control mice [38]. The reason why the intramuscular
injection of GDNF increased the lifespan is not clear, but it could be due to the effect
on the NMJ, as GDNF increases the nerve sprouting capacity [38]. Alternatively, GDNF
expression in skeletal muscle could promote motor neuron preservation in the spinal cord.
Indeed, Acsadi and colleagues detected the protein both in the muscles and the spinal
cord, probably because of the retrograde transport of motor neurons [38]. Consistent with
these findings, the intramuscular transplantation with human mesenchymal stem cells
engineered to secrete GDNF (hMSC-GDNF) protected SOD1G93A rats from motor neuron
loss and denervation, significantly delayed motor decline and increased the lifespan by
about four weeks [39].

VEGF is another neuroprotective factor that may play a role in ALS. VEGF promotes
angiogenesis and neuronal survival [40], as shown by the knockout of VEGF in wild-type
mice that led to neurodegeneration and ALS-like symptoms [41]. Azzuoz and colleagues
observed that a single injection of VEGF-expressing lentiviral vector (EIAV-VEGF) in
different muscles of SOD1G93A mice (gastrocnemius muscle, diaphragm, intercostal, facial,
and tongue muscles) had positive effects on ALS symptoms [42]. To replicate potential
clinical applications, two groups of mice received the EIAV-VEGF injection at two different
time points: one before the onset (21 days of age) and the other at the onset of the disease.
Both groups showed longer survival, better motor performances, and delays in motor
neuron loss and motor weakness compared to controls [42].

The neurotrophin neuregulin 1 (NRG1) protects motor neurons from degeneration
and is involved in the development and maintenance of axons [43–45] and NMJs, where it
induces the clustering of acetylcholine receptors (AchRs) [46–48]. NRG1 exerts its functions
by interacting with ErbB receptors; this interaction is impaired in ALS patients and animal
models [49,50], which show low levels of expression of ErbB4 mRNA and protein in
their skeletal muscle [51]. Similarly, the gastrocnemius muscle of SOD1G93A mice has
reduced levels of ErbB4 mRNA, which correlates with denervation [51]. The injection of
an adeno-associated viral vector (AAV) expressing NRG1-I into the gastrocnemius muscle
of SOD1G93A mice significantly increased the muscle action potential and the collateral
sprouting of axons [51]. In line with these results, expressing NRG1 in the skeletal muscles
using the human desmin (hDesmin) promoter delayed the onset of ALS and improved the
phenotype in SOD1G93A mice. Indeed, NRG1 was shown to activate cell survival pathways
in muscles and the spinal cord, protecting against denervation, neuroinflammation, and
motor neuron loss. As the NMJs were preserved, treated mice had better neuromuscular
and motor functions [52].

In ALS, NMJ degradation is the first event of denervation, and it occurs before motor
neuron loss [14,53]. NRG1-ErbBs signaling and, hence, NMJ development and maintenance
depend on the activation of muscle-specific receptor tyrosine kinase (MuSK) [54]. MuSK
orchestrates the muscle-derived retrograde signal through the interaction with LRP4 and
agrin, ensuring NMJ stability and maintenance while preventing disassembly [55–58].
MuSK overexpression in SOD1G93A double transgenic mice delayed the onset of ALS,
improved motor ability, and preserved the integrity of NMJs [59].

DOK-7 (docking protein 7) controls MuSK activation and response to agrin [60];
mutations in the DOK7 gene are responsible for the congenital myasthenic syndrome, which
is characterized by impaired NMJ structure and functionality [61]. Since the administration
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of a recombinant AAV carrying the human DOK7 gene (AAV-D7) improved motor abilities
and survival of animal models of DOK-7 myasthenia [62] and Emery–Dreifuss muscular
dystrophy [63], Miyoshi and colleagues tried this therapeutic approach in ALS models:
intravenous injection of AAV-D7 in SOD1G93A mice at the onset of the disease significantly
increased motor abilities, counteracted muscle atrophy, preserved NMJs, and extended the
lifespan by more than ten days [64].

The microRNA miR206 and class II histone deacetylase 4 (HDAC4) control the
denervation-reinnervation process [65]. The involvement of miR206 and HDAC4 in ALS
progression has been proposed since their expression is altered in the skeletal muscles of
patients and animal models [65–68]. HDAC4 is considered as a link between neuronal
activity and muscle transcription because of its response to denervation [69]: HDAC4
expression levels in skeletal muscles increase during denervation, activating the muscle
atrophy pathway driven by E3 ubiquitin-ligases MuRF1 and atrogin-1 transcription [69–71].
HDAC4 mRNA is upregulated in the muscle biopsies of ALS patients and correlates with
disease severity, as the expression is higher in patients with a faster progression of the
disease [68].

Pharmacological inhibition of class II HDACs in SOD1G93A mice increased skeletal
muscle electrical potential and improved motor abilities; however, it had no effect on
survival and motor neuron loss [72]. On the other hand, the knockout of HDAC4 in skeletal
muscle of SOD1G93A mice worsened the ALS-like phenotype by speeding up the onset,
the muscle force decline, and the NMJ loss, demonstrating that HDAC4 specifically has
a protective role in ALS [73]. Indeed, HDAC4 induces the reinnervation pathway by
activating the transcription of MuSK, miR206, and synaptic AchR through the indirect
regulation of myogenin expression [69–71].

miR206 could be a prognostic marker for ALS, as high levels in serum correlate with a
slower disease progression [74]. SOD1G93A mice genetically deficient in miR206 showed
worse ALS symptoms, shorter survival, increased muscle atrophy, and early NMJ loss,
corroborating the important role of miR206 in the reinnervation process [65]. Williams
and colleagues also observed that miR206 upregulation after denervation was higher in
fast-twitch fibers than in slow-twitch fibers, probably because slow-twitch fibers express
higher levels of miR206 in physiological conditions [65]. Interestingly, fast-twitch fibers are
more vulnerable to denervation in ALS [75,76]; thus, the upregulation of miR206 could be
a defense mechanism to protect them [65,77].

The protective role of miR206 in ALS could also be due to its role in satellite cell
differentiation: miR206 promotes the differentiation of satellite cells into muscle cells by
inhibiting PAX7 expression; PAX7 inhibition is further enhanced by a positive feedback
loop in which the muscular differentiation factors MyoD, myogenin, and MEF2 induce
miR206 transcription [78–80].

In adult muscles, MyoD is predominantly expressed in fast-twitch fibers, while myo-
genin in slow-twitch fibers [81–83], where it stimulates oxidative metabolism [84,85]. Given
their differential role and expression patterns, Park and colleagues hypothesized that the
postnatal expression of MyoD and myogenin in muscles could affect ALS progression
in opposite ways [86]. Indeed, MyoD overexpression in 30-day-old SOD1G93A mice via
intramuscular injection with an AVV vector led to a more aggressive phenotype, shorter
survival, earlier decline of motor performances, and premature loss of motor neurons and
NMJs [86]. On the other hand, myogenin overexpression in skeletal muscle improved
motor functions and preserved innervation and motor neurons; however, there were no
changes in the lifespan [86].

The results from MyoD and myogenin overexpression and miR206 deletion led to the
hypothesis that fibers in ALS switch from the fast to the slow type to preserve integrity and
functionality of motor units and skeletal muscle [87]. This switch may reflect the metabolic
shift towards oxidative metabolism occurring in ALS patients and animal models [88–90].
Since mitochondria regulate metabolism plasticity, they may also play a crucial role in
the ALS fiber switch [90]. In ALS mouse models, mitochondrial dysfunctions and energy
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production impairments occur before the onset of the disease in skeletal muscle and at
the onset of the disease in the spinal cord [90–92]. In addition, it has been shown that
mitochondrial dysfunctions start before muscle differentiation, as they can be detected in
the satellite cells of SOD1G93A mice [90].

Studies have shown that genetic interventions that enhance mitochondrial perfor-
mance can improve muscle functionalities and quality of life. Peroxisome proliferator-
activated receptor-gamma coactivator-1a (PGC-1a) is a major regulator of mitochondrial
biogenesis and activity [93,94]. In SOD1G37R mice, the overexpression of PGC-1a in skeletal
muscle improved muscle performance, locomotor activity, resistance to fatigue, and muscle
atrophy; it also increased the mitochondrial area and the oxygen consumption in skeletal
muscle [86,95]. Consistent with these results, the overexpression of uncoupling protein 1
(UCP1) (a mitochondrial protein that mediates non-shivering thermogenesis by uncoupling
the mitochondrial electron transport chain) shortened the lifespan of SOD1G86R mice and
increased disease duration and progression [96]. UCP1 overexpression in skeletal muscle
of wild-type mice was sufficient to trigger NMJ dismantlement and distal motor neuron
degeneration [96], highlighting the importance of mitochondria for the integrity and func-
tionality of skeletal muscle. Together, these results show that enhancing mitochondrial
functions and regulating the energy homeostasis of muscles can delay disease progression
and improve the quality of life. However, it should be noted that improving mitochondrial
performance in mouse models of ALS does not always produce an increase in survival, as
described by some works that through genetic or pharmacological approaches improve
mitochondrial proliferation [97–99].

IGF-1 regulates skeletal muscle physiology as well as mitochondrial dynamics and
turnover [100–102]; it prevents inflammation, controls protein synthesis and degradation,
and promotes satellite cell proliferation and neuronal survival [101–104]. The expression
of IGF-1 in skeletal muscle of ALS models gave the most remarkable results on disease
progression and survival, delaying the death of SOD1G93A mice by about one month [105].
In these mice, the regeneration pathways through calcineurin and CDK5 were induced,
while apoptotic and ubiquitin pathways were inhibited, protecting muscles against atrophy
and denervation and preserving NMJs and motor neurons [105,106]. Interestingly, high
concentrations of IGF-1 in patients’ serum correlate with a better prognosis but not with a
lower risk of ALS, suggesting that IGF-1 plays a role in the survival of ALS patients [107].

All preclinical genetic interventions on skeletal muscle highlighted the importance of
this tissue in ALS progression as modifying the expression of genes involved in skeletal
muscle physiology, metabolism, and functions had a strong impact (either positive or nega-
tive) on the disease. Therefore, muscle-directed gene therapy could become a therapeutic
approach for ALS.

Table 1 summarizes the genetic interventions on ALS skeletal muscle.
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Table 1. Genetic intervenctions.

Gene Function Expression Type in Muscle Model Effect Survival References

Glial cell-derived neurotrophic
factor (GDNF)

Trophic effect on motor neurons

Expression by muscle injection (AVR) at not
symptomatic stage (age: 5–7days) SOD1G93A mice ∧ Motor performance; ∨ motor neuron loss YES [38]

Engineered human mesenchymal stem cells
(hMSC-GDNF) SOD1G93A rats ∧ Motor performance; ∨ motor neuron loss;

∨ denervation YES [39]

Vascular endothelial growth
factor (VEGF)

Angiogenesis and neuroprotection

Expression by muscle injection (EIAV) at not
symptomatic stage (age: 21 days) SOD1G93A mice ∧ Motor performances; ∨ motor weakness;

delayed onset YES [42]

Expression by muscle injection (EIAV) at the
onset (age: 90 days) SOD1G93A mice ∧ Motor performances; ∨ motor weakness; ∨ motor

neuron loss YES [42]

Insulin-like growth factor 1 (IGF-1)
Anabolism of muscle and nerve

tissues, myogenesis and
neuronal survival

Transgenic mice, muscle restricted expression SOD1G93A mice
∧ Muscle regeneration; ∧ preservation NMJ; ∨ Muscle

atrophy; ∨ MN loss; ∨ apoptotic and
ubiquitin pathways

YES [105,106]

MicroRNA-206 (miR-206) Myogenesis, NMJ formation,
stabilization and repair Transgenic mice, muscle restricted deletion SOD1G93A mice ∧ Muscle atrophy; ∧ NMJ loss; ∧ disease progression;

∨ disease duration NO [65]

Uncoupling protein1 (UCP1)
Thermogenesis by uncoupling

mitochondrial electron transport
from ATP synthesis

Transgenic mice, muscle
restricted overexpression SOD1G86R mice ∧ Disease progression; ∨ disease duration NO [96]

Muscle-specific kinase (MuSK) Formation and maintenance of NMJ Transgenic mice, muscle
restricted overexpression SOD1G93A mice ∧ Motor performances; ∨ NMJ denervation;

delayed onset NO [59]

Peroxisome proliferator-activated
receptor-gamma

coactivator-1a (PGC-1a)

Cellular energy metabolism,
mitochondrial

biogenesis and angiogenesis

Transgenic mice, muscle
restricted overexpression

SOD1G937R mice

∧ Mitochondrial biogenesis; ∧mitochondria area;
∧ resistance to fatigue;

∧ Locomotor activity; ∧ Mitochondrial oxygen
consumption in skeletal muscle; ∨ muscle atrophy

NO [95]

SOD1G93A mice ∧ Muscle fiber oxidation; ∨ motor function NO [86]

MyoD Muscle development
and differentiation

Expression by muscle injection (AV) in adult
mice (age: 30 days) SOD1G93A mice

∧ Weight loss; ∧ Motor neuron loss;
∨ motor performances;

∨ NMJ innervation; ∨ muscle fiber oxidation
NO [86]

Myogenin
Muscle development and

differentiation increases oxidative
metabolism of muscle

Expression by muscle injection (AV) in adult
mice (age: 30 days) SOD1G93A mice ∧ Motor performances; ∧ NMJ innerve tion; ∧ Muscle

fiber oxidation; ∨ motor neuron loss NO [86]

DOK-7 Neuromuscular synapsis formation
by regulation of Musk activity

Expression by intravenous injection (AAV) at
the onset (age: 90 days) SOD1G93A mice ∧ NMJ innervation (diaphragm); ∧ Motor activity;

∨ muscle atrophy YES [64]

Histone deacetylase 4 (HDAC4) Skeletal muscle response
to denervation Transgenic mice, muscle restricted deletion SOD1G93A mice ∧ Muscle atrophy; ∧ weight loss; ∨ muscle force;

∨ NMJ innervation; precocious disease onset. NO [72]

Neuregulin 1 (NRG1) Axonal and neuromuscular
development and maintenance

Overexpression by intramuscular injection
(AAV) at the onset (age: 8 weeks) SOD1G93A mice ∧ Axons collateral sprouting and NMJ; ∧ Compound

muscle action potential N/A [51]

Overexpression by intravenous injection
(AAV under hDesmin promoter) in adult

mice (age: 6 weeks)
SOD1G93A mice

∧ Neuromuscular functions; ∧ NMJ innervation; ∧ cell
survival pathway activation; ∧ locomotor ability;

∨ Motoneuron loss; ∨ neuroinflammation; ∨ oxidative
stress in skeletal muscle; delayed onset

N/A [52]
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3. Pharmacological and Nutritional Interventions

To date, pharmacological interventions to counteract ALS neuromuscular degenera-
tion target mainly neurons. Drugs targeting skeletal muscle have been tested only recently;
they could improve energetic metabolism and allow sprouting and formation of new
synapses. Enhancing muscle and, hence, respiratory functions should be a priority in ALS
care, also because it can improve the patient’s quality of life.

In this section, we have classified the pharmacological treatments based on their action
on pathological events; however, considering their tight interdependence, there is a fine
line between the different skeletal muscle alterations.

3.1. Pharmacological Interventions That Target Hypermetabolism

As muscle activity is the major contributor to the whole-body energy metabolism,
muscles are likely to play a crucial role in ALS hypermetabolism. Defects in muscular ATP
production and altered substrate utilization have been reported in patients and animal
models [53,108]. In ALS, fiber transition from fast fatigable to fast intermediate and fast
fatigue-resistant occurs before any measurable locomotor defects [88–90]. As shown in
mSOD1 ALS mice, this transition results in the switch from glycolysis (i.e., the use of
glucose as the main energy source) to ß-oxidation (i.e., the use of fat as the main energy
source) [88–90]. Consistent with these findings, a study found that many ALS patients
experience a sharp decrease in BMI and weight due to lipid consumption almost ten years
before the onset of the disease and the appearance of motor symptoms [20].

Different metabolic therapies have been tested on animal models and patients to
sustain their fatty acid consumption.

Carnitine is a fundamental source of acetyl groups. As it acts by transporting long-
chain fatty acids into the mitochondrial matrix, its bioavailability is directly related to the
rate of ß-oxidation [109]. 95% of carnitine resides in skeletal muscle since this tissue largely
depends on fatty acids as an energy source [110].

Carnitine affects muscle remodeling by preventing atrophy and activating the ox-
idative stress response [111]. In presymptomatic SOD1G93A mice, oral administration of
L-carnitine extended the lifespan while delaying motor impairment and disease onset [112].
Similar results were also obtained with subcutaneous injection at the onset of the dis-
ease [112]. The co-administration of acetyl-L-carnitine and riluzole in a small group of
ALS patients was well tolerated and resulted in a better ALSFRS score (ALS Functional
Rating Scale) as compared to riluzole alone [113] (EudraCT number: 2004-004158-23). De-
spite these encouraging results, a larger Phase III trial to validate the effectiveness of the
treatment is still missing.

A high-fat diet (HFD) in SOD1G93A mice extended the mean survival by about 20% [114],
and a high-energy diet based on medium-chain fatty acids and beta-hydroxybutyrate reduced
locomotor defects in a Drosophila model of ALS [115]. Interestingly, a study involving more
than two hundred patients fed with HFD showed that this diet significantly extended the
survival of fast-progressing patients [116].

Creatine has been recently proposed in preclinical and clinical studies to compensate
for the progressive depletion of energy reserves in ALS. Creatine is an amino acid endoge-
nously synthesized or found in food, which is mainly absorbed by skeletal muscle. Creatine
is phosphorylated by creatine kinase (CK) to phospho-creatine (PK) that is used as a source
of energy during rapid and intense muscle contractions [117–120]. Since it helps improve
muscle performance, creatine is often taken by athletes as a dietary supplement [121].
Initially, preclinical studies provided encouraging data as creatin was shown to delay
the impairment of locomotor functions and extend lifespan [122–124]; however, a later
study did not confirm these results [125]. Similarly, randomized controlled human trials
evaluating the efficacy of creatine monohydrate, administered alone or in combination with
other drugs (NCT00005766, NCT00005674, NCT00355576, NCT00070993, NCT00069186,
NCT01257581) [126–128], showed that this compound did not improve disease progression
or survival in ALS patients [129]. However, high CK levels have been correlated with a
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slower progression of the disease in ALS patients and mouse models [130], suggesting that
providing supplements to the muscles could partially compensate for the catabolic effects
of ALS hypermetabolism.

Inhibiting the β-oxidation of fatty acids to induce glycolysis has been another strategy
to counter hypermetabolism in ALS. A recent study of SOD1G93A mice showed that starting
the chronic administration of Ranolazine, an inhibitor of β-oxidation, at the onset of the
disease slowed down the muscle strength loss and improved the motor functions, but not
the lifespan. We correlated the administration of Ranolazine with improvements in energy
metabolism, as the drug reduced the whole-body energy expenditure of SOD1G93A mice
by increasing the levels of ATP in muscles [90].

Consistent with these results, dichloroacetate (DCA), a pyruvate dehydrogenase ki-
nase 4 (PDK4) inhibitor that switches muscle metabolism from β-oxidation to glycolysis,
improved muscle strength, maintained NMJ integrity and reduced the expression of dener-
vation markers in SOD1G86R mice [89]. Its administration in presymptomatic SOD1G93A

mice delayed the onset of the disease, enhanced motor performance and increased the
lifespan by improving the mitochondrial redox status [131]. However, although its use
in certain chemotherapies, DCA has severe side effects, hepatotoxicity in particular [132],
making it not suitable for long-term treatment of neurodegenerative diseases.

Together, these results indicate that hypermetabolism, and thus skeletal muscle, can
be good drug targets for ALS.

3.2. Pharmacological Interventions to Increase Muscle Mass

Several pathological phenomena, including defects in the proliferation and differentia-
tion processes, lead to skeletal muscle mass loss in ALS [53,133]. Different pharmacological
approaches have been tried to counter mass loss, such as the treatment with anabolic
androgenic steroids (AAS).

AAS are synthetic derivatives of the testosterone hormone that increase muscle mass
(and, for this reason, are also often used illegally by athletes to enhance performances). Sub-
cutaneous administration of dihydrotestosterone crystals (an AAS) in early-symptomatic
SOD1G93A-induced weight gain, reduced muscle atrophy, increased grip strength, and
extended lifespan [134]. Interestingly, dihydrotestosterone treatment increased muscular
expression of IGF-1, which protects mitochondria of murine and cellular models of ALS by
increasing mitophagy and upregulating the expression of anti-apoptotic proteins [135] (see
above). Similarly, the chronic administration of the AAS nandrolone in presymptomatic
SOD1G93A mice maintained the mass of the diaphragm muscle, despite mild side effects
on muscle fiber innervation [136]. However, an earlier study on the same mouse model
showed that the administration of nandrolone significantly increased the expression of
TGFβ1a in muscles [137], suggesting that it could even worsen the disease [138].

Myostatin inhibits myogenesis and muscle growth by reducing fiber number and
size [139–142]. Its overexpression led to weight loss, muscle atrophy, and sarcopenia [143],
while its downregulation to muscle hypertrophy and a hypermuscular phenotype [144,145].
Because of its impact on muscle mass, several drugs that inhibit the myostatin signaling
pathway have been evaluated in preclinical and clinical studies to treat a variety of muscle-
wasting diseases [146]. Myostatin levels are significantly higher in ALS patients than
in healthy individuals and they are positively correlated with the rate of muscle degen-
eration [147]. In two rodent models of ALS, neutralizing antibodies against myostatin
decreased the weight loss and increased the mass and strength of muscles at the onset of
the disease and during the early-stages [142]. However, they did not delay the disease
onset nor increased survival [142]. Similar results were obtained in SOD1G93A mice us-
ing an Fc chimera of the activin receptor type IIB, an endogenous signaling receptor for
myostatin [148].

Although obtained only in preclinical studies, these data suggest that targeting myo-
statin signaling pathways may have a therapeutic effect in ALS. Supporting this hypothesis,
anti-myostatin antibodies improved muscle performance in a mouse model of Duchenne
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muscular dystrophy and prevented skeletal muscle alterations in a Huntington’s disease
mouse model [149]; moreover, the administration of follistatin, a natural antagonist of
myostatin, improved the severity of SMA in mice [150].

3.3. Pharmacological Interventions to Preserve NMJs and Reduce Atrophy

NMJ dismantling and muscle atrophy are early events in ALS and precede denervation,
supporting the idea that skeletal muscle plays a key role in the disease. The maintenance
of NMJs and the inhibition of atrophic processes have been considered as main targets for
pharmacological interventions.

ALS patients’ muscles aberrantly express the neurite growth inhibitor Nogo-A, and
its levels correlate with the severity of symptoms [151,152]. In ALS, Nogo-A causes
retrograde axonal degeneration by destabilizing the NMJs. The overexpression of Nogo-
A in murine healthy muscle fibers induced the detachment of NMJs, while its genetic
ablation in SOD1G86R mice reduced denervation and increased the lifespan [151]. Despite
these encouraging results, the administration of the anti-Nogo-A monoclonal antibody
ozanezumab was ineffective in a phase II trial (NCT01753076) [153].

As discussed above, activating MuSK has been another approach to prevent or delay
NMJs dismantling. Although ALS patients and animal models do not have alterations
in the MuSK pathway, two preclinical studies have stimulated MuSK with an agonist
antibody. These studies obtained conflicting results despite using a similar approach (same
antibody and same mouse model). In the first study, the administration of the MuSK agonist
preserved NMJs, delayed denervation and increased survival in SOD1G93A mice [154]. The
second study did not report any improvements in diaphragm functionality or lifespan,
despite the retention of NMJs in the diaphragm [155]. Therefore, further investigations are
needed to understand the effectiveness of this therapeutic strategy.

Muscle acetylcholine receptors (AchRs) have also been proposed as therapeutic targets
in ALS. In a recent clinical study, the administration of palmitoylethanolamide (PEA), an
endocannabinoid that reduces the desensitization of AchRs currents following repeated
stimulation, improved pulmonary functions and delayed the decrease of forced vital capac-
ity (FVC) (NCT02645461) [156]. The authors also reported that PEA strongly upregulated
the expression of the α1 AChR subunit and that it maintained NMJ functionality by reduc-
ing the rundown of ε-AChRs currents. Interestingly, another study showed that riluzole
blocked muscle AchRs with greater specificity for γ-AChRs than ε-AChRs; however, the
resulting biological consequences were not clarified [157].

3.4. Other Pharmacological Interventions

Fast skeletal muscle troponin activators (FSTA), which selectively activate the troponin
complex and increase its sensitivity to calcium, have been studied as potential treatments
for ALS [158,159]. Troponin is a protein complex that modulates muscle contractility and
increases muscular strength and power, slowing down the onset of fatigue, particularly
in respiratory muscles. The FSTA tirasemtiv gave good results in both preclinical [159]
and early clinical studies (NCT01486849; NCT01089010; NCT02936635; NCT01709149;
NCT01378676), maintaining muscle strength and delaying the onset and the level of muscle
fatigue. However, in the phase III VITALITY-ALS trial (NCT02496767) involving 81 centers
in the United States and Europe, tirasemtiv did not impact the decline of slow vital capacity
(SVC), nor secondary outcomes, such as the ALSFRS-R score, the first use of mechanical
ventilatory assistance, and death [160]. The fact that many patients did not tolerate the treat-
ment and left the trial may have contributed to its disappointing results [160]. Following
these data, reldesemtiv, a next-generation FSTA compound, was synthesized. Its functions
are similar to tirasemtiv, but it has different chemical characteristics. A double-blind,
randomized, placebo-controlled, variable dosage trial (NCT03160898) tested the safety of
reldesemtiv and demonstrated that the drug was well tolerated by patients and that there
was a trend towards improvement in primary and secondary outcomes, though it was not
statistically significant [161]. The therapeutic potential of reldesemtiv is currently studied
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for the treatment of other diseases associated with muscle dysfunction and weakness,
such as SMA, chronic obstructive pulmonary disease (COPD), and in elderly subjects with
reduced mobility (NCT02644668sma- NCT03065959-copd).

The FSTA levosimendan has been recently tested. This compound showed positive
effects in a phase II clinical trial [162] (NCT02487407); however, phase III clinical trials did not
confirm the data, as the oral administration of levosimendan did not improve the respiratory
function nor the general functions of ALS patients (NCT03505021; NCT03948178). In light
of these discouraging results, this pharmacological approach has now been abandoned.

Recently, different studies have shown that CTGF/CCN2, a member of the CCN fam-
ily of extracellular matrix-associated heparin-binding proteins, is upregulated in skeletal
muscle and spinal cord of ALS patients [163,164]. CTGF/CCN2 plays a crucial role in tissue
fibrosis, as it affects angiogenesis, migration, proliferation, and cell adhesion [165]. Treating
SOD1G93A mice with a monoclonal neutralizing antibody against CTGF/CCN2 (FG-3019)
improved locomotor performance and reduced muscular fibrosis and atrophy [163]. Pre-
clinical studies using this treatment have provided encouraging results also for other
pathologies associated with fibrosis, including skeletal muscle dystrophies [166].

Another therapeutic approach using aminophylline, which is supposed to mainly
act on smooth muscle, was tested. Aminophylline is a soluble derivative of theophylline,
a compound that relaxes smooth muscles and relieves bronchial spasm. Theophylline
functions as a phosphodiesterase inhibitor, an adenosine receptor blocker, and a histone
deacetylase activator [167]; it is widely used for the treatment of asthma, bronchospasm,
and COPD [168–170]. Two studies showed that theophylline improved the strength and
endurance of peripheral and respiratory muscles [171,172]. In a double-blind, randomized
crossover trial, 25 ALS patients with a disease duration of fewer than five years received
intravenous aminophylline; the treatment improved the endurance of respiratory muscles
and increased handgrip strength [173]. Despite these promising results, the therapeutic
potential of aminophylline in ALS has not been further investigated.

Finally, the activation of P2X7, a purinergic receptor abundantly expressed in skeletal
muscle, with the specific agonist 2′(3′)-O-(4-benzoylbenzoyl) adenosine 5′-triphosphate im-
proved muscle metabolism and preserved NMJ morphology in presymptomatic SOD1G93A

mice. Interestingly, P2X7 is a key regulator of myofiber differentiation and regenera-
tion [174].

Together, these data highlight the possibility to target skeletal muscle with a wide
range of drug classes.

Preclinical and clinical studies are summarized in Tables 2 and 3, respectively.
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Table 2. Preclinical pharmacological interventions.

Drugs Function Model Effects Survival References

Metabolic modulation

L-Carnitine Cofactor for the beta-oxidation of
long-chain fatty acids SOD1G93A mice Delayed deterioration of motor activity YES [112]

Dichloroacetate Improves glycolysis SOD1G86R mice ∧ Maintenance of NMJs; ∧ Muscle strength;
∨ denervation markers YES [89,131]

Ranolazine Inhibition of beta-oxidation SOD1G93A mice ∧ Motor functions; ∧ Muscle ATP;
∧ energy metabolism NO [90]

Modulation of muscle mass growth

Anti-Myostatin Endogenous inhibitor of myogenesis SOD1G93A mice SOD1G93A rats ∧ Muscle mass strength; ∨ weight loss NO [142]

ActRIIB.mFc Endogenous signaling receptor
for myostatin SOD1G93A mice ∧ Body weight; ∧ grip strength; ∧ Muscle size NO [148]

Dihydrotestosterone Activator of anabolic functions SOD1G93A mice ∧ Weight loss; ∧ grip strength YES [133]

Nandrolone Activator of anabolic functions SOD1G93A mice ∧ Diaphragm muscle mass NO [136]

NMJ preservation and
atrophy reduction Anti-Musk Development and stability of NMJs SOD1G93A mice

∧ Muscle mass; ∧ strength; ∨ muscle;
∨ denervation YES [154]

∧ innervation of the neuromuscular junction;
∨ diaphragm function, motor neurons NO [155]

Other interventions

Tirasemvit (CK-357) Fatigue resistance of the muscle SOD1G93A mice
∧ Submaximal isometric force; ∧ forelimb grip

strength; ∧ grid hang time; ∧ rotarod
performance; ∧ diaphragm force

NO [159]

FG-3019 Development and stability of NMJs SOD1G93A mice ∧ Locomotor; ∧ performance; ∨ muscular
fibrosis; ∨ atrophy NO [160]

2′(3′)-O-(4-Benzoylbezoyl)
Adenosine5′-triphosphate (BzATP) P2X7 agonist SOD1G93A mice ∧ Muscle metabolism; ∧ NMJs morphology NO [174]
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Table 3. Clinical pharmacological interventions.

Drugs Function Phase Clinical Trial References

Acetyl L-carnitine Cofactor for the beta-oxidation of long-chain fatty acids II EudraCT Number: 2004-004158-23 [113]

Metabolic modulation Creatine
Facilitates recycling of adenosine triphosphate (ATP),

the energy currency of the cell, primarily in muscle and
brain tissue.

II II II II III
NCT00005766 NCT00005674
NCT00355576 NCT00070993

NCT00069186
[126–128]

II NCT01257581

NMJ
preservation and atrophy reduction Ozanezumab Humanized monoclonal antibody against Nogo-A II NCT01753076 [153]

Other interventions

II NCT01486849
II NCT01089010

Tirasemvit (CK-357) Fast skeletal muscle troponin activators (FSTA) III
II

NCT02936635
NCT01709149 [163]

II NCT01378676
III NCT02496767

Reldesemtiv (CK-2127107) Protein complex that modulates muscle contractility and
increases the strength and power of the muscular system II NCT03160898 [161]

II NCT02487407

Levosimendan Increases the functionality of the
musculoskeletal system III NCT03505021 [162]

III NCT03948178

Palmitoylethanolamine Analgesic and anti-inflammatory N/A NCT02645461 [158](PEA)

Aminophylline Adenosine receptor antagonist N/A N/A [173]
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4. Physical Exercise as a Therapeutic Approach

Adult skeletal muscle is a highly plastic tissue that adapts in response to external
stimuli [175]. For instance, variations in nutrient intake, aerobic, anaerobic conditions, and
hormonal responses determine the structure of skeletal muscle. In addition, muscles adapt
to physical training with structural and physiological changes, leading to positive health
impacts [176].

The benefits of physical activity on motor neuron loss and sarcopenia are widely recog-
nized [177]. As exercise may improve several chronic conditions, it could be considered as
a therapeutic intervention to slow down muscle degeneration and preserve NMJ integrity
in ALS.

Besides mental and other biological improvements, physical activity preserves specific
mechanisms altered in the progression of ALS. For instance, exercise triggers pathways
that improve skeletal muscle metabolism, enhance muscle glucose utilization and induce
myofiber regeneration by activating satellite cells [178]; moreover, regular physical activity,
regardless of the type, strengthens antioxidative defenses [179], and endurance training
increases mitochondrial biogenesis in skeletal muscle [180] and neurogenesis [181,182].
However, preclinical studies have so far provided contradictory results, suggesting that
the outcomes depend on the type and intensity of physical activity.

The adaptive response to exercise is a hormetic response that follows a biphasic
curve, where low levels of stimuli elicit beneficial effects, whereas chronic and/or high
levels of the same stimuli lead to negative or even toxic effects [183]. According to the
exercise-induced hormesis theory, regular moderate-intensity training counteracts free
radicals-induced cell injuries and inflammation processes [184–186], improves cardiovascu-
lar functions [187–189] and protects from different senescence-related processes [190,191],
such as mitochondrial alterations in skeletal muscle [192–194]. On the other hand, continu-
ous and high-intensity training triggers opposite effects, speeding up aging processes and
increasing oxidative stress [195,196].

Models of ALS have shown the effects of exercise-induced hormesis. For instance,
the phenotype of SOD1G93A mice that exercised on a motorized treadmill improved only
with moderate exercise intensity, whereas high exercise intensity speeded up the decline of
motor performance and did not preserve the density of motor neurons in the lumbar spine
ventral horn [197]. In line with these observations, SOD1G93A mice exercising on a running
wheel at moderate intensity showed a modest improvement in lifespan and locomotor
performances [198–200]; on the other hand, intense, forced treadmill exercise worsened
their phenotype [201].

Kirkinezos et al. and Veldink et al. showed that the effects of exercise on ALS
phenotype depended on gender; however, they reported opposite conclusions. In both
studies, SOD1G93A mice run daily on a treadmill for 30 and 45 min, respectively, at moderate
intensity [202,203]. Kirkinezos et al. concluded that physical activity benefitted only in
male mice [202], while Veldink et al. observed a positive neuroprotective effect only in
females [203]. The authors proposed a different role of sex hormones to explain the gender-
specific responses. However, in both studies, the mice were forced to run using an electric
shock; this method has likely introduced biases in the results because of the stress that
is induced in the animals. Garbugino et al. described the effects of voluntary exercise
in low-copy SOD1G93A mice running on a home-cage running-wheel system [204]. The
authors concluded that male mice were worse affected by prolonged and repeated exercise
than females, showing shorter survival, increased body weight loss, and poorer prognosis.
Their results were in line with the theory of exercise-induced hormesis [204].

The type of exercise may also affect the ALS phenotype. While running exercises have
provided controversial results, the benefits of swimming-based exercises have been clear,
as Deforges et al. showed that swimming extended the lifespan of SOD1G93A mice by about
25 days [205]. The authors hypothesized that swimming and running involve different
motor units: while swimming is characterized by high-frequency and large-amplitude
movements mainly recruiting the fast motor units, mostly running triggers the slow motor
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units [205]. These results were confirmed by other papers describing the beneficial effects
of swimming on the phenotype of ALS mouse models [206–209].

Motor neuron fast-twitch fibers, which are preferentially stimulated when swimming,
degenerate first and are more compromised in ALS [210], probably because they use the
glycolytic pathway as their main energy source, a pathway heavily impaired in ALS [88–90])
(see above). Swimming improved glucose metabolism in SOD1G93A mice more efficiently
than running [209]; specifically, it induced the expression of glucose transporter GLUT4 and
of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), the key enzyme of the glycolytic
pathway, countering the glucose intolerance of SOD1G93A mice [88,90].

Exercise, and swimming, in particular, reduced the deregulation of the BDNF/TrkB
pathway in SOD1G93A mice [211]. BDNF, a neurotrophin secreted following muscle contrac-
tion, can be either a neuroprotector or a neurotoxin by probably acting in a paracrine way
and increasing glutamate excitotoxicity through the activation of TrkB receptors [212,213].
In SOD1G93A mice, the neuronal hyperexcitability and the following muscle contractions
induced the over-secretion of BDNF that likely contributed to neurodegeneration by en-
hancing glutamate toxicity [211]. A recent paper showed that preserving the BDNF/TrkB
pathway through a specific swimming-based training improved the phenotype of ALS
mice [206]. Consistent with these findings, 70 to 115-day-old SOD1G93A mice trained by
swimming (performed in an adjustable-flow swimming pool) and running (performed on
a treadmill at moderate intensity) showed a decrease in muscular BDNF concentration; in
particular, muscular BDNF reached physiological levels in the mice that underwent the
swimming-based training [206].

Overall, preclinical studies have shown that mild-to-moderate aerobic training im-
proves the phenotype of ALS animal models. A recent meta-analysis assessed the impact
of exercise on ALS patients by comparing 94 patients that underwent therapeutic exercise
with 159 patients treated with conventional therapy [214]. The authors concluded that
exercise could positively affect the rate of weakening of physical functions; however, these
results should be interpreted with caution due to the limited number of studies and the
different protocols used [214].

Although the therapeutic use of physical activity in ALS patients is still debated, a
recent randomized controlled study on 22 patients showed that repetitive twitches induced
by local magnetic stimulation hampered muscle atrophy, increased local muscular strength,
and slowed down the metabolic shift towards ß-oxidation [215]. The molecular analysis of
muscular biopsies showed that the magnetic stimulation counteracted muscle atrophy and
proteolysis by increasing the efficacy of nicotinic ACh receptors [215].

ALS patients have defects in the energetic metabolism of skeletal muscle and alter-
ations in energy expenditure, which indicate a poor prognosis [16]. The hypothesis that
lifetime physical activity is a risk factor for developing ALS is under debate [216] and
has raised doubts about the use of physical activity, which increases the body’s energy
requirements, as a therapy. These doubts are also justified by clinical evidence showing that
the oxidative capacity of skeletal muscle is impaired when ALS patients undergo intense
physical exercise [217–219]. A study also described a mild mitochondrial dysfunction at
the onset of the disease that could be detected only during exercise [218].

The analysis of the oxidative capacity of skeletal muscle in exercised patients has pro-
vided heterogeneous results depending on their exercise capacity and clinical profile [218].
Overall, the data have highlighted the need to adapt the type and intensity of physical
activity to each patient. For instance, Ferri and colleagues showed that a training program
combining moderate-intensity aerobic and strength training improved the patients’ aerobic
capacity and physical function when tailored to their individual needs [220].

Consistent with the effectiveness of training programs that combine strength and
endurance exercises, Lunetta et al. showed that patients doing strength exercises for the
upper and lower limbs and exercises on a cycle ergometer at a moderate intensity improved
their ALSFRS-R score; however, the training did not extend their survival [221]. These
results were confirmed by a pilot randomized study from Merico et al. that showed how a
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combined exercise program improved the patients’ functional status measured with the
functional independence measure (FIM) [222]. Resistance and strength exercises alone
were also well tolerated by ALS patients and generally improved the patient’s quality of
life [223]. Indeed, resistance training protocols at moderate intensity improved the scores
of the ALSFRS-R test [224,225] and of the 30-second sit-to-stand test [226]. Endurance
training performed with moderate aerobic exercises has also been shown to increase the
ALSFRS-R score in certain cases [227,228].

In conclusion, physical activity as a therapy option has given interesting results,
especially regarding the patient’s quality of life. However, the type of exercise should be
tailored to each patient’s needs, and the intensity should always be moderate.

5. Concluding Remarks

Skeletal muscle has been long neglected in ALS, but recent data have highlighted its
role in the etiopathogenesis of the disease.

In this review, we have discussed the preclinical and clinical studies that have tar-
geted skeletal muscle to treat ALS. Since all of them emphasized the pivotal role of this
tissue in ALS progression, skeletal muscle should be considered an optimal target site for
therapeutic intervention.

In our opinion, although the results obtained so far have not introduced substantial
innovations in clinical practice, they allow us to draw important conclusions:

Skeletal muscle is the main determinant of the whole-body energy expenditure, and
interventions that improve its metabolism bring benefits to the entire organism.

Given that the functions of muscles and motor neurons are tightly intertwined, ther-
apeutic interventions targeting skeletal muscle can counter the dying back process and,
ultimately, protect motor neurons.

Both the physiology and the accessibility of muscle tissue make it a good therapeutic
target that is worth considering at least to improve the patients’ quality of life.
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