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THE BIGGER PICTURE Outbreak simulation technology can greatly enhance individual and community
pandemic preparedness while helping us understand andmitigate outbreak spread. Building on an existing
platform called Operation Outbreak (OO), an app-based program that spreads a virtual pathogen via Blue-
tooth among participants’ smartphones, we demonstrate the power of this approach. We investigate the
first- and second-degree contacts of OO participants, analyzing the differential risk associated with various
local contact network structures. We use OO data to construct an epidemiological model with which com-
munities may predict the spread of infectious agents and assess the effectiveness of mitigation measures.
Based on our findings, we advocate for wider adoption of outbreak simulation technology to study the im-
plications of social mixing patterns on outbreaks in close-knit communities to aid pandemic preparedness
and response.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
An app-based educational outbreak simulator, Operation Outbreak (OO), seeks to engage and educate par-
ticipants to better respond to outbreaks. Here, we examine the utility of OO for understanding epidemiolog-
ical dynamics. The OO app enables experience-based learning about outbreaks, spreading a virtual path-
ogen via Bluetooth among participating smartphones. Deployed at many colleges and in other settings,
OO collects anonymized spatiotemporal data, including the time and duration of the contacts among partic-
ipants of the simulation. We report the distribution, timing, duration, and connectedness of student social
contacts at two university deployments and uncover cryptic transmission pathways through individuals’ sec-
ond-degree contacts. We then construct epidemiological models based on the OO-generated contact net-
works to predict the transmission pathways of hypothetical pathogens with varying reproductive numbers.
Finally, we demonstrate that the granularity of OO data enables institutions to mitigate outbreaks by proac-
tively and strategically testing and/or vaccinating individuals based on individual social interaction levels.
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INTRODUCTION
 OOdiffers from prior projects in several ways. The OO app has
Infectious disease outbreaks have repeatedly emphasized the

potential for detailed contact tracing data to improve public

health.1–3 The coronavirus disease 2019 (COVID-19) pandemic

in particular saw the rapid development and deployment of

contact tracing technologies in an effort to curb the spread of

the virus, accompanied by advances in network science to

facilitate use of graphical contact data as a means of pandemic

mitigation. Despite the theoretical benefits of such technologies,

adoption rates were often low, stemming from numerous factors,

including a lack of enforceability and privacy concerns.Without a

critical mass of users, these technologies failed to capture the

majority of transmission links, compromising their effective-

ness.4–6 Many contact tracing platforms, such as those built on

the Google-Apple Exposure Notification (GAEN) application pro-

gramming interface (API), generally operated on the principle that

contact network data would never be shared unless a user were

to test positive.7 Although such a policy benefits the user from a

privacy standpoint, it neglects thepossible benefit of knowing the

user’s typical social patterns and, when needed, intervening

accordingly. Finally, the pandemic consistently pointed to young

adults in educational settings (e.g., college campuses) as being

disproportionately likely to spreadCOVID-19.7–9However, young

adults generally expressed a particular lack of willingness to

adopt digital contact tracing technologies.10,11

To facilitate engagement of children and young adults in public

health, we built an experiential education platform called Opera-

tion Outbreak (OO) that enables scenario planning for infectious

disease outbreaks.12 OO consists of a suite of tools for learners

that includes a smartphone app, a textbook, and a multi-disci-

plinary curriculum. The smartphone app simulates the spread

of a pathogen through a population by transmitting a ‘‘virtual

pathogen’’ between participating phones within a threshold

proximity. The app also collects anonymous data on the time,

duration, and distance of all close contacts between users, as

typical contact tracing apps do. OO then processes these simu-

lated transmissions into summary statistics useful for students,

teachers, and administrators alike, including levels of social

interaction and risk of exposure broken down by participant as

well as for the group at large. These statistics also feature as

part of the OO curriculum, allowing participants to engage

directly with epidemiology through experiential learning.

Use of mobile technology to collect proximity data for epide-

miology modeling has been explored for some time.13 In 2010,

the FluPhone project used Bluetooth connectivity in early smart-

phones to quantitatively measure societal mixing patterns, con-

ducting virtual epidemics that inform models characterizing the

spread of disease in the social network between participants.14

In 2018, as part of a documentary marking the centenary of the

1918 influenza pandemic, the British Broadcasting Corporation

(BBC) released a separate mobile app in which United Kingdom

citizens could contribute their movement and contact data for a

day.15 These data were used to construct geographical models

of population connectivity that were applied last year to evaluate

the impact of COVID-19 control strategies.16 More recently,

researchers transmitted virtual ‘‘viral strains’’ via Bluetooth in a

college campus in New Zealand with the goal of making real-

time forecasts of COVID-19 spread.17
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many more features to heighten the realism of the outbreak

experience. Participants can visualize their level of illness and

unlock quick response (QR) codes to receive amask, diagnostic,

or vaccine, and beacons can be used to represent fomites. The

app is actively developed for iOS and Android to ensure that all

smartphone users are equally supported and able to participate.

It is also part of a larger platform that provides not only the expe-

riential learning simulation but also curricular and professional

development materials that contextualize the simulation in the

broader context of outbreak science studies. The anonymized

data collected by the app may be used for learning activities

and epidemiological modeling, with learning as an incentive to

generate data and data-driven models as a cornerstone of the

learning process. We have been developing OO and running

simulations continuously since 2016, which sets it apart from

these more circumscribed experiments. The modular architec-

ture of the OO platform will also allow us to incorporate new

proximity sensing technologies, such as ultra-wideband,18 as

they emerge and become available on consumer-level devices

and to continually enhance the experience and data collection.

In thispaper,wequantify andexplore the social interactionpat-

terns observed among 787 participants of two OO simulations

conducted at two universities in the United States: Colorado

MesaUniversity (CMU) andBrighamYoungUniversity (BYU) dur-

ing the COVID-19 pandemic. We provide a graphical analysis of

the contact networks, focusing in particular on first- and sec-

ond-degree contacts and the relationship between known and

unknown transmission pathways. We analyze the times and set-

tings that pose the greatest risk for viral transmission. Finally,

based on the OO data, we construct an epidemiological model

to measure the efficacy of mitigation strategies informed by

OO; in particular, diagnostic testing and vaccinations.

Methodology
Simulation methodology

The OO app, which gathered all data used in this study, is avail-

able to the general public in the Apple AppStore andGoogle Play

Store. Upon opening the app, users enter a simulation code pro-

vided by an OO administrator to join a simulation. During the

simulation period, the OO app uses Bluetooth Low Energy

(BLE) communication to record all proximate interactions be-

tween OO participants up to a distance of approximately 3 m

and at a resolution of 1 s. Some of these interactions result in

simulated viral transmission when one party is in the infectious

state, with the probability of transmission per unit of time prespe-

cified in the parameters of the simulation. Contact detection over

Bluetooth was implemented using a cross-platform software

library for iOS and Android called p2pkit,19 which combined pub-

lic Bluetooth APIs provided by each mobile platform with plat-

form-specific technology, such asWiFi-direct, tomaximize prox-

imity sensing. Participants may engage in various

‘‘interventions’’ (e.g., receive virtual masks, personal protective

equipment, or vaccines) by scanning physical QR codes distrib-

uted by the OO administrators throughout the simulation. All

events over the course of an OO simulation—contacts, transmis-

sions, use of interventions, recoveries, deaths, and more—are

recorded in a backend database that houses the dataset used

for this study.
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Recruitment

At CMU, we primarily sought to recruit first- and second-year on-

campus students, many of whom had high levels of involvement

in on-campus activities and policymaking. This presumably led

to some positive bias in their levels of interaction. Our main

goal at CMU was to empower students with information on their

close contacts and encourage them to consider the epidemio-

logical impact of their social behavior. At BYU, we mainly

advertised to individuals studying the life sciences with the

goal of generating data about student behavior. Unlike at

CMU, BYU OO participants received daily summary statistics

for the simulation, including the total numbers of new contacts,

infections, recoveries, and deaths. We recruited a total of 787

participants between CMU and BYU. At CMU, 327 students

signed up to participate, of which 240 remained after filtering

the data (Results). The CMU simulation lasted 6 days, from

October 29 until November 4, 2020, which included Halloween

weekend. At BYU, 460 participants signed up to participate,

comprising students and BYU faculty, of which 402 remained

after filtering. The BYU simulation lasted 9 days, from February

19 until March 1, 2021. For CMU and BYU, the simulation

occurred during a period where pandemic mitigation measures

were implemented at both universities, such as social

distancing, event size restrictions, and hybrid class cohort split-

ting. Students were still living on campus and commuting from

off-campus residences at both universities. For additional

information, see the supplemental experimental procedures.

Student engagement

CMU and BYU students expressed an overall willingness to

share some of their personal data to engage in the outbreak

simulation experience. We hypothesize that this willingness is

largely due to the anonymous network information collected

about a virtual virus. This differs from traditional contact tracing

technologies that are related to the actual spread of COVID-

19. Beyond contributing and analyzing their own data, many

students took advantage of the opportunity to learn more about

public health. In particular, CMU and BYU student participants

exhibited strong interest in learning how a system for tracking

close contacts during an outbreak can help mitigate outbreaks

and how individual interactions can disproportionately impact

campus-wide health. With the goal of incentivizing pandemic-

mitigating behaviors, we would expect OO to actively or

passively influence student interaction dynamics throughout

the duration of the simulation. Across both simulations, however,

we observed little change in students’ behavior depending on

their epidemiological state within the game (i.e., susceptible, in-

fectious, vaccinated, etc.), which likely improved the reliability of

the social network data but lessened the similarity to an actual

outbreak. Overall, the educational focus of OO made it well

positioned to gather data useful for epidemic mitigation without

appearing as a threat to students’ privacy.

RESULTS

Webegan by investigating OO contact data to better understand

the differential risk among individuals associated with their

contact patterns. First, we simply measured the raw number of

contacts per OO participant at CMU and BYU, filtering out (1)

duplicate contacts (multiple contacts between the same pair of
individuals), (2) contacts shorter than 1 min, and (3) contacts

made by persons who did not participate in the entire OO simu-

lation. We chose the threshold of 1 min as a proposed cutoff for

what constitutes a social contact. Although contacts of (for

example) just over 1 min are unlikely to result in transmission,

these shorter contacts will hold far less weight than longer

ones in determining an individual’s risk of contracting the virus.

For the BYU simulation, we only analyzed the first week of

data to reduce weekday/weekend bias; for the CMU simulation,

we were unable to do so because it lasted only 6 days. Both

schools exhibited an overdispersed distribution in the number

of contacts per individual, consistent with previous findings

(Figure 1, blue distribution).20 The mean number of contacts

per person was 9.29 at CMU (SD = 11.48, range = 0–58) and

11.13 at BYU (SD = 14.32, range = 0–82). See Table S1 for the

graphical properties of the two networks.

We then looked more closely at the network properties of the

contacts. The clustering coefficients––the overall probability

that any two contacts of a given person themselves had a con-

tact (experimental procedures)––were equal to 0.280 at CMU

and 0.243 at BYU. This result is consistent with the findings

of Mayer et al. (2008)21 on undergraduate student social

network dynamics, which reported a range of 0.17–0.27 for

clustering coefficients across 10 American universities based

on Facebook data. To characterize the likely physical environ-

ments for these contacts, we also analyzed the time of day/

week when these contacts were most likely to occur, observing

spikes during class time at BYU and evenings at CMU. We

appreciate that CMU may have exhibited higher-than-normal

and otherwise uncharacteristic interaction levels because of

social gatherings on the night of Friday, October 30, one night

prior to Halloween (Figure 2).

We hypothesized that the raw number of first-degree contacts

served as a reasonable proxy for risk of infection but could be

improved by taking into account (1) durations of contacts and

(2) second-degree contacts. Applying the same filtering pro-

cesses for contacts as described above, we observed high

variance in numbers of second-degree contacts for CMU and

BYU participants (Figure 1, red distribution). The mean number

of second-degree contacts per person was 60.73 at CMU

(SD = 51.61, range = 0–151) and 100.76 at BYU (SD = 84.07,

range = 0–264). This analysis gives us a sense of the distribution

in the number of second-degree contacts but not the relation-

ship between first- and second-degree contacts, which clearly

have a strong correlation. Therefore, we fitted the functional

y = að1 � e� bxÞ to the number of second-degree contacts as a

function of first-degree contacts using least squares. This func-

tional form is a natural choice in that it passes through the origin

with some positive slope (few first-degree contacts imply few

second-degree contacts) and eventually plateaus (the number

of second-degree contacts is bounded by the population size).

Despite a relatively low root-mean-square error (RMSE) of

13.36 at CMU and 19.27 at BYU, indicating that the number

second-degree contacts can be accurately predicted from the

number of first-degree contacts (Figure 3), there were still

some individuals whose second-degree contact counts were

significantly higher or lower than the model would predict. Fig-

ure 4 presents illustrative examples of an individual who had

7 first-degree contacts but only 32 second-degree contacts
Patterns 3, 100572, August 12, 2022 3



Figure 1. Histograms of contacts per student

during CMU and BYU simulations

Histograms of contacts per student at CMU (A) and

BYU (B) over the course of 1 week.

ll
OPEN ACCESS Article
and another with only 3 first-degree contacts but 126 second-

degree contacts.

We hypothesized that the relationship between first- and

second-degree contacts, as well as the durations of such

interactions, would leave certain individuals more or less prone

to infection than their first-degree contacts alone would suggest.

To test this hypothesis, we first simulated the spread of COVID-

19 through the real OO contact networks using mean-field

approximation, a computationally efficient method for estimating

the probabilities of each person being in each epidemiological

state (susceptible, exposed, infectious, recovered) at a given

time.22,23 We then regressed the probability that each individual

had been infected against various statistics describing social

contacts. We began with two extremely simple statistics:

equal-weighted and duration-weighted numbers of contacts.

‘‘Equal-weighted’’ means the number of contacts for an individ-

ual; ‘‘duration-weighted’’ means the sum of durations of all con-

tacts for an individual. Assuming no intercept term, the regres-

sions yielded an adjusted coefficient of determination (R2) of

0.566 and 0.929, respectively, for CMU and 0.430 and 0.886,

respectively, for BYU (Figure 5). These results emphasized the

impact of including contact duration in risk assessment.
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We found that second-degree contacts

had a statistically significant impact on

probability of infection, even beyond what

could be captured by first-degree contacts

alone. Taking into consideration our

previous finding about contact duration,

we constructed an additional predictor var-

iable—duration-weighted second-degree

contacts—bymultiplying the total durations

of the twocontacts involved. For example, if

persons A and B interact for a total duration

of 60 s, and persons B and C interact for a

total of 80 s, then the second-degree con-

tact between persons A and C via person

B contributes a factor of 4,800 to person

A’sduration-weighted second-degreecon-

tacts. To compute the total value of this sta-

tistic for person A, we simply sum over all

possible second-degree contacts for per-

son A, including second-degree contacts

that are also first-degree contacts. Using

duration-weighted second-degree con-

tacts as an additional predictor variable in

our regression analysis, we found high sta-

tistical significance as well as a slight in-

crease in adjusted R2 compared with dura-

tion-weighted first-degree contacts alone

(Figure 5).

We first ran the epidemiological model

varying only the basic reproductive num-
ber (R0) to reflect differences in infectivity associated with

different variants of COVID-19. Using kernel density estimation

from the Monte-Carlo simulation, we determined the distribution

of the cluster size after a 4-week period assuming one initial

case. Under all simulations, this distribution was positively

skewed––increasingly so with higher values of R0. See Figure 6

for a summary of the results.

We then measured the impact of diagnostic testing and

vaccinations, which could be implemented according to a

random strategy (i.e., equal probability of testing/vaccination

for everyone) or an OO-based strategy (i.e., probability of

testing/vaccination proportional to social activity level). Here, so-

cial activity level is simply defined as the number of first-degree

contacts. Under four different levels of testing and vaccination,

the OO-based strategy drastically reduced the reproductive

number and case counts, with a smaller number of tests/propor-

tion vaccinated corresponding to a more dramatic reduction

(Figures 7 and 8). The large credible intervals in Figure 8 are

largely due to the fact that the size of the outbreak correlates

strongly with the number of transmissions made by the index

case, and the probability of an index case making zero onward

transmissions is non-negligible.



Figure 2. Number of interactions recorded

during each hour of simulation at CMU and

BYU

(A and B) These data reflect the 240 participants at

CMU (A) and 402 participants at BYU (B) for whom

we have complete contact information. The data

start on Thursday, October 29, 2020 at 6:30 p.m.

Mountain Daylight Time for CMU and on Friday,

February 19, 2021 at 8:18 a.m. Mountain Standard

Time for BYU. Times at CMU do not account for

daylight savings time, which ended on November

1, 2020.
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DISCUSSION

The OO data we gathered offer a number of substantive

conclusions about how close-knit communities such as

schools and universities should factor social interaction pat-

terns into their pandemic response. Beyond providing a dis-

tribution of the volume, duration, and timing of social con-

tacts, a deeper look at the OO contact network structure

reveals the added risk of cryptic transmission pathways;

that is, pathways largely unbeknownst to the infectee as a

result of the variance in the distribution of second-degree

contacts. As revealed by our regression analysis, these sec-

ond-degree contacts significantly impact individual-level risk

and, therefore, may help public health authorities best iden-

tify individuals who are most liable to contracting or trans-

mitting the virus.

We then propose a framework by which OO-participating in-

stitutions may construct an epidemiological model based on

OO network data. These models rely on statistical inference

techniques that allow them to be constructed even when only

a fraction of institution members participate in OO. Based on

these models, institutions may view how various pathogens
with different epidemiological parameters

will likely propagate through the

population.

We demonstrate the potential benefit of

using OO social activity data as a means

of strategically testing and/or vaccinating

individuals in a population. Although such

a strategy hinges on a high OO participa-

tion rate relative to the population (which

we observed neither at CMU nor at BYU),

the theoretical reduction in cumulative

cases is drastic, even under relatively low

levels of testing and/or vaccination. Any

such proactive risk-based measures,

however, would have to be implemented

thoughtfully to not incentivize riskier be-

haviors. This is a place where such an

educational outbreak simulation can be

useful as an opportunity for communities

to think through varying behavioral re-

sponses and outcomes in a low-stakes

setting.

The data generated by the OO app may

be used for further epidemiological ana-
lyses of various severe acute respiratory syndrome coronavirus

2 (SARS-CoV-2) transmission characteristics, such as the high

overdispersion that results in most introductions going extinct.

We plan to use the OO networks to investigate the effects of

overdispersion on the outbreak dynamics by introducing patho-

gens with varying levels of this parameter. Our data can also be

helpful in distinguishing between virological and behavioral

superspreading. In the former, a subset of infections is more in-

fectious per contact, and in the latter, all individuals are highly in-

fectious at some point, but the superspreaders happen to make

more contacts. We hope such further research will stress the

importance of analyzing individual behaviors in the context of in-

fectious disease outbreaks.

Limitations of the study
OO comes with some limitations in terms of its reliability of

modeling individual-level risk and outbreaks more generally.

For example, student interaction patterns may change dramati-

cally between the time of the OO simulation and the time of an

actual epidemic. In these particular cases, we ran the simula-

tions during the ongoing COVID-19 pandemic, so the recorded

OO data may not reflect typical student behavior but may better
Patterns 3, 100572, August 12, 2022 5



Figure 3. Scatterplot of first-degree con-

tacts and second-degree contacts for each

participant at CMU and BYU

(A and B) For each group, we fitted the fitted func-

tional form Y = að1 � E�bXÞ. Least-squares esti-

mates: for CMU (A), a = 238; b = 0.0850 for BYU (B).

BYU nodes with subgraphs featured in Figure 4 are

highlighted in green.
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reflect behavior in times of public health crises. The degree to

which participants actively engaged with their OO health sta-

tuses (i.e., quarantining when infected with the virtual pathogen)

differs from an actual pandemic, in which there are real conse-

quences associated with contracting the virus. We have previ-

ously conducted research on OO data collected before the

pandemic.12

Our statistical analyses are also limited by the network data

being completely anonymized. Therefore, no additional meta-

data are available to provide an increased understanding of the

narratives behind different interaction patterns. Assuming a

participation rate of less than 100%, there will always be individ-

uals whose social activity levels cannot be computed, so any

strategic testing/vaccination plan cannot be tailored to that

missing fraction of the population. From a technological stand-

point, although Bluetooth-based proximity sensing is widely

available on most smartphones, mobile operating systems often

pose restrictions for the use of such capabilities. The recent

availability of open-source Bluetooth libraries such as Herald,

which contains the basis for the contact tracing app

TraceTogether, offers an ongoing solution to research on

proximity-sensing technologies that aims to be conducted
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over an extended period of time, as is

the case with OO. Earlier experiments

like FluPhone, BBC Contagion, and

SafeBlues, although supporting the value

of this research, also highlight the difficulty

associated with developing and maintain-

ing such platforms as technology evolves

over time.

Takeaways
We are more connected than we may

think. Social contact patterns observed in

the university setting revealed significant

variation in local contact networks be-

tween individuals, leaving some overex-

posed or underexposed to risk in ways

the individual may not recognize. Knowl-

edge of individual-level risk can have a

drastic impact on the ability of an institu-

tion to mitigate an epidemic. To prepare

for the next pandemic, it is essential that

we gather social contact data in times of

health to prepare for times of sickness. A

platform such as OO that integrates

pandemic education with preparation

and mitigation can engage at-risk popula-

tions, such as students, and incentivize
them to comply with public health interventions by allowing

them to be active and informed participants in pandemic

response.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for data and code should be directed to and

will be fulfilled by the lead contact, Ivan Specht (ispecht@broadinstitute.org).

Materials availability

The OO smartphone application is publicly available in the Apple App Store

and the Google Play Store.

Data and code availability

All datasets generated by the OO backend, as well as all original code, have

been deposited to Zenodo Data: https://doi.org/10.5281/zenodo.6584459

and are publicly available as of the date of publication. Any additional informa-

tion required to reanalyze the data reported in this paper is available from the

lead contact upon request.

Epidemiological model

Leveraging the anonymous contact networks generated by OO, we propose

a method by which such data may be used to construct an epidemiological

model that simulates the spread of pathogens and measures the impact of

mitigation measures. Although the model constructed here does not

mailto:ispecht@broadinstitute.org
https://doi.org/10.5281/zenodo.6584459


Figure 4. Representative subgraphs of the

BYU contact network

(A–C) Across each of these three subgraphs, the

number of secondary contacts (blue) is (A) lower,

(B) equal, and (C) higher than the model would

predict based on the number of first-degree con-

tacts (green). In (A), the red node has 7 first-degree

contacts but only 32 second-degree contacts. In

(B), the number of second-degree contacts aligns

with what we would predict based on the number of

first-degree contacts. In (C), the red node has only 3

first-degree contacts but 126 second-degree con-

tacts. Edges between second-degree contacts are

omitted for visual clarity.
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Predictor(s)
Equal−Weighted Contacts

Adjusted R−Squared

Duration−Weighted Contacts

t Statistic(s)

Duration−Weighted 1st− and 2nd−Degree Contacts

Significance Code(s)
0.566
0.929
0.943

17.703
55.967

16.987, 7.848

***
***

***, ***
Predictor(s)

Equal−Weighted Contacts
Adjusted R−Squared

Duration−Weighted Contacts

t Statistic(s)

Duration−Weighted 1st− and 2nd−Degree Contacts

Significance Code(s)
0.43

0.886
0.896

17.452
55.972

20.825, 6.124

***
***

***, ***

Figure 5. Regression analyses for CMU and

BYU

(A and B) We modeled the probability of infection at

the end of the OO simulation as a linear combination

of various factors, including equal-weighted con-

tacts, time-weighted contacts, and time-weighted

second-degree contacts.
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necessarily reflect any individual institution, we show that the critical

assumptions made reflect observations at CMU and BYU, and, therefore,

the methodology may be applied to either university and likely many others.

Construction of an epidemiological model based on OO data is based on

two key inference steps: network-based inference and time-based inference.

By network-based inference, we seek to propose a reasonable model for how

members of an entire institution interact with one another, given that the data

gathered by OO only represent the interaction patterns of OO participants, a

mere fraction of the institutional population. The simulations at CMU and

BYU lasted 6 days and 9 days, respectively; epidemiological models for infec-

tious diseases typically require longer time periods to derive meaningful re-

sults. This is what we call time-based inference; i.e., deriving a model for

how people interact over longer periods of time, given only or 9 days’ worth

of data.

For the network-based inference step, we assumed that the true number of

contacts, C, made by an individual who participated in OO over the simulated

period follows a negative binomial distribution.20 We further assumed that,

givenC, the proportion of contacts who also participated in OO follows a bino-

mial distribution with size parameter C and probability parameter p. We then

solved for the distribution of C via maximum likelihood estimation (MLE), given

the observed number of contacts per OO participant.

The above framework allows us to generate node degrees for the university

contact network but does not provide a characterization of the connectivity

between nodes. Based on the CMU and BYUOO simulations, we found strong
8 Patterns 3, 100572, August 12, 2022
evidence of proportionate mixing, meaning that the probability of two nodes

sharing an edge is proportional to the product of their degrees. To substantiate

this claim, we regressed the (binary) existence of an edge between two nodes

against the product of their degrees and found a relatively high R2 at both uni-

versities: 0.248 at CMU and 0.204 at BYU. Proportionately mixed contact net-

works based on the OO node degrees mimicked the OO network remarkably

well at both universities. In terms of network properties, we focused in partic-

ular on the clustering coefficient, which is the overall probability that any two

contacts of a given person themselves had a contact, and the average shortest

path length, which is the shortest path between a pair of nodes, averaged over

all such pairs. At CMU, the modeled clustering coefficient was 0.238 on

average (95% CrI: 0.219-0.257) versus 0.280 in the actual network; the

modeled average shortest path length was 2.40 on average (95% CrI:

2.34-2.46) versus 2.61 in the actual network. At BYU, the modeled clustering

coefficient was 0.184 on average (95% CrI: 0.172–0.195) versus 0.243 in the

actual network; the modeled average shortest path length was 2.50 on

average (95% CrI: 2.45–2.55) versus 2.69 in the actual network. Based on

this finding and a presumed lack of other available information about non-

OO participants, we applied a proportionate mixing assumption to the model

of the full student body, allowing us to stochastically generate contact net-

works by assigning each node an expected number of contacts and setting

the probability of an edge accordingly.

For the time-based inference step, we implemented a bootstrap method,

assuming for simplicity that interactions between any given pair of people
Figure 6. Results of the epidemiological

model under five different possible values of

R0

Top: results expressed as a density estimate (top).

Bottom: summary statistics from each model run.



Figure 7. Results of the epidemiological

model under four different possible testing

rates

These rates range from 500–2,000 per day, admin-

istered randomly or based on activity level. Top:

results expressed as a density estimate. Center:

summary statistics from each model run under

random testing. Bottom: summary statistics from

each model run under strategic testing.
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are cyclical with a period of 1 week. Themodel in this paper uses 7 days’ worth

of BYU contact data as the bootstrap sampling set; for CMU and other

simulations lasting less than 1 week, weeklong bootstrap samples could be

generated by amalgamating 1-day bootstrap samples, separating byweekday

and weekend. We assumed independence between the total duration of inter-

actions between a pair of nodes and the degrees of those nodes, which was

justified by the relatively low observed correlation between these factors of

0.067 (CMU) and 0.051 (BYU).

Under each randomly generated contact network and bootstrap sample of

interaction times, we simulated the spread of a pathogen in silico on a network

with 6,000 agents sampled from the BYU data. We assumed a single index

case, sampled based on node degree, who entered the infectious stage at

time 0. Letting f be the density function of the generation interval for the virus

and letting Iij be an indicator function of an interaction between infectious indi-

vidual i and susceptible individual j, we set the probability of transmission from

i to j equal to

l

Z N

v0

fðt � v0ÞIijðtÞdt

where l is a constant chosen to reflect the Re (effective reproductive num-

ber) of the virus, and v0 is the time when individual i contracts the virus (see

Newman24 for computation of l; see Hinch et al.25 for a comparable method-

ology). In the event that a transmission occurred (drawn as a Bernoulli trial with

probability of success as given in the above equation), we sampled the time of

transmission from the density function given by fðt � v0ÞIijðtÞ up to a constant

of proportionality. Because our primary focus in this paper is cumulative cases,

and because f(t) approaches 0 as t/N, we did not take into account the

recovery rate and assumed reinfection to be negligibly rare.

Finally, we modeled two possible interventions: testing and vaccination. For

each intervention, we experimented with a ‘‘random’’ version (in which

interventions were administered randomly) and a ‘‘strategic’’ version (in which
interventions were administered based on the level of social interaction ex-

hibited per person). We assumed that tests had a constant turnaround time

and sensitivity and that vaccines had already reached a constant and

maximum effectiveness level by the start of the simulated period. We further

assumed that individuals who test positive would isolate and therefore have

no social interactions after the time of receiving the positive result.

We replicated this stochastic model 10,000 times, each time regenerating

the node degrees, connectivity matrix, and bootstrap time series samples.

We set the model to put out the total number of cases at the end of a

4-week period. The model was implemented in R v.4.0.426 with packages

igraph,27 lubridate,28 Rfast,29 mixdist,30 and ggplot2.31 For a complete list of

model parameters, see Table S2, and for a description of any of the aforemen-

tioned epidemiological terms, see Table S3.
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Figure 8. Results of the epidemiological

model under four different possible vaccina-

tion rates

These rates range from 20%–80%, administered

randomly or based on activity level. Top: results

expressed as a density estimate. Center: summary

statistics from each model run under random

vaccination. Bottom: summary statistics from each

model run under strategic vaccination.
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