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Abstract

Neural computation is determined by neurons’ dynamics and circuit connectivity. Uncertain

and dynamic environments may require neural hardware to adapt to different computational

tasks, each requiring different connectivity configurations. At the same time, connectivity is

subject to a variety of constraints, placing limits on the possible computations a given neural

circuit can perform. Here we examine the hypothesis that the organization of neural circuitry

favors computational flexibility: that it makes many computational solutions available, given

physiological constraints. From this hypothesis, we develop models of connectivity degree

distributions based on constraints on a neuron’s total synaptic weight. To test these models,

we examine reconstructions of the mushroom bodies from the first instar larva and adult

Drosophila melanogaster. We perform a Bayesian model comparison for two constraint

models and a random wiring null model. Overall, we find that flexibility under a homeostati-

cally fixed total synaptic weight describes Kenyon cell connectivity better than other models,

suggesting a principle shaping the apparently random structure of Kenyon cell wiring. Fur-

thermore, we find evidence that larval Kenyon cells are more flexible earlier in development,

suggesting a mechanism whereby neural circuits begin as flexible systems that develop into

specialized computational circuits.

Author summary

High-throughput electron microscopic anatomical experiments have begun to yield

detailed maps of neural circuit connectivity. Uncovering the principles that govern these

circuit structures is a major challenge for systems neuroscience. Healthy neural circuits

must be able to perform computational tasks while satisfying physiological constraints.

Those constraints can restrict a neuron’s possible connectivity, and thus potentially

restrict its computation. Here we examine simple models of constraints on total synaptic

weights, and calculate the number of circuit configurations they allow: a simple measure

of their computational flexibility. We propose probabilistic models of connectivity that

weight the number of synaptic partners according to computational flexibility under a

constraint and test them using recent wiring diagrams from a learning center, the mush-

room body, in the fly brain. We compare constraints that fix or bound a neuron’s total
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connection strength to a simple random wiring null model. Of these models, the fixed

total connection strength matched the overall connectivity best in mushroom bodies from

both larval and adult flies. We also provide evidence suggesting that neural circuits are

more flexible in early stages of development and lose this flexibility as they grow towards

specialized function.

Introduction

The connectivity of neural circuits, together with their intrinsic dynamics, determines their

computation. A goal of systems neuroscience is to uncover and describe these computational

mechanisms in specific circuits. For example, associative memory is a quintessential neural

computation [1–3]. In cerebellar and cerebral cortices, random connectivity may form high-

dimensional representations to facilitate associative memory [4–7]. The synaptic weight distri-

butions of Purkinje cells and cortical pyramidal neurons are consistent with optimal associa-

tive memory in simple models [8–13].

At the same time, neuronal connectivity is constrained by resource limitations and homeo-

static requirements. The total strength of synaptic connections between two neurons is limited

by the amount of receptor and neurotransmitter available and the size of their synapses [14].

Homeostatic synaptic scaling in pyramidal neurons of mammalian cortex and hippocampus

regulates their total excitatory [15–18] and inhibitory [19–23] synaptic input strengths to regu-

late activity levels [24].

The neural connectivity necessary for a given computation must exist or develop within

these physiological constraints. Furthermore, the computations performed by a circuit may

require modification based on exposure to the environment and the needs of the organism.

Physiological constraints could conflict with a required circuit configuration and pose a chal-

lenge to computational learning. It might thus be advantageous for circuits, under a fixed con-

straint, to enable a broad array of computations. We refer to connectivity patterns that can

enable many computations as “flexible” under a constraint. Here we seek to understand

whether this flexibility can predict neural connectivity patterns.

We examine the interaction between constraints and computations in the mushroom body,

a cerebellum-like associative memory center in Drosophila melanogaster and other insects [25,

26]. Mushroom bodies are composed largely of Kenyon cells (KCs), which receive input from

sensory projection neurons (PNs; Fig 1a). KCs also connect recurrently to each other, receive

inhibitory and modulatory inputs, and project to mushroom body output neurons (MBONs).

A combinatorial code for odorants in KCs [27–29] forms a substrate for associative learning at

KC-MBON synapses [25, 30]. In D. melanogaster, neurons from a variety of circuits exhibit

homeostatic regulation of connectivity during growth from the first instar larva to the third

instar larva. This includes a homeostatic regulation of mechanosensory receptive fields [31],

functional motor neuron outputs [32], and nociceptive projections [33]. Changes in inputs to

central motor neurons elicit structural modifications to their dendrites that homeostatically

maintain input levels [34]. Finally, changes in olfactory PN activity lead to homeostatic com-

pensations in the number and size of their output synapses in the mushroom body [35–37].

Connections in the mushroom body also are generally limited to a few synapses per connec-

tion [38, 39]. We thus hypothesize that mushroom body connectivity in D. melanogaster might

be structured to be computationally flexible under physiological constraints.

Consider the connections from one KC to its K targets. We will describe each projection by

one synaptic weight, summed across synapses if the projection is multi-synaptic, so that this
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KC’s output weight configuration is a point in a K-dimensional synaptic weight space. Regions

of this space might correspond to weight configurations that support different learned associa-

tions or computations (Fig 1b; “computation spaces”). A physiological or homeostatic constraint,

such as those discussed above, also defines a region of allowed connectivity configurations (Fig

1b; “constraint space”). If a constraint is very tight, it might only allow a few configurations, and

even disallow computationally useful configurations as in Fig 1b, where the constraint and com-

putation spaces do not overlap. In order for the KC to be both healthy and computationally use-

ful, its connectivity must lie in the intersection of the constraint space and a computation space.

This is easier if the constraint space is large—if the KC’s connectivity is flexible under its con-

straints. (Fig 1c). “Flexibility” thus refers to the number of possible joint configurations of all this

KC’s outputs and is a property of the neuron’s full K-dimensional output connectivity rather

than of an individual synapse. While we discussed the flexibility of a KC’s output connectivity

here, the same idea can be applied to its inputs, or those of MBONs, or of other neurons in other

systems.

In this study, we formulate this idea for simple models of two constraints: a (1) bounded or

(2) fixed total connection strength. We propose that circuits might face a pressure to be flexible

under these constraints. This motivates probabilistic models for the number of synaptic part-

ners to a neuron. We test these models against each other and a simple random wiring null

model using recently available electron microscopic wiring diagrams of the mushroom body

from larval [38] and adult [39] D. melanogaster. We found that overall, the fixed net weight

model provided the best description for neurons’ numbers of synaptic partners in the mush-

room bodies. The one exception we saw was in the most mature KCs of the larval mushroom

body, which were better described by a binomial random wiring model. This suggests a

Fig 1. Flexible connectivity under constraints. (a) Mushroom body circuitry (cartoon based on [38]). (b) Synaptic weights

occupy a K-dimensional space. K is the number of synaptic partners. The solution spaces for computational tasks are

subspaces of the synaptic weight space, with dimension up to K. Constraints also define subspaces with dimension up to K. A

tight constraint defines a small subspace with low potential overlap with computational solution spaces. (c) A loose

constraint defines a large subspace, with greater potential overlap with computational solution spaces. (d) Cartoon of a

postsynaptic resource constraint: a neuron with M = 3 units of postsynaptic weight (e.g., receptors) to distribute amongst two

synaptic partners. (e) Cartoon of a presynaptic resource constraint a neuron with M = 4) units of synaptic weight (e.g.,

vesicles) to distribute amongst two partners. (f) Number of possible connectivity configurations for different values of K and

M (given by the binomial coefficient).

https://doi.org/10.1371/journal.pcbi.1008080.g001

PLOS COMPUTATIONAL BIOLOGY Flexible neural connectivity under constraints on total connection strength

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008080 August 3, 2020 3 / 29

https://doi.org/10.1371/journal.pcbi.1008080.g001
https://doi.org/10.1371/journal.pcbi.1008080


developmental progression in the pressures shaping KC wiring in the first instar larva of D.
melanogaster.

Results

Measuring constraint flexibility

We begin with a simple example where a neuron has M units of synaptic weight, of size ΔJ,
available. These could correspond, for example, to individual receptors or vesicles. The neuron

can assign these synaptic weight units to its K partners (presynaptic partners for receptors, Fig

1d, or postsynaptic partners for vesicles, Fig 1e). We will also call the number of synaptic part-

ners the degree or connectivity degree.

To measure how flexible the neuron is with M synaptic weight units and K partners, we can

count possible connectivity configurations. Since the constraint treats all synaptic partners

symmetrically, the number of possible configurations is given by the binomial coefficient “M

choose K”. For M = 4 and degree two, there are six possible configurations. With M = 4 and

degree three, there are four possible configurations. Thus with the constraint of M = 4, the

neuron is more flexible with two connections than three since there are more ways to satisfy

the constraint. The neuron’s flexibility under this constraint (of fixed total synaptic resources

MΔJ) is a function only of the number of synaptic partners K only. For different numbers of

synaptic weight units M, the flexibility exhibits different profiles as a function of the degree K
(Fig 1f).

Synaptic weights can be made up of many small units of strength, corresponding to (for

example) individual receptors or vesicles. So, we will model individual synaptic weights as con-

tinuous variables rather than the discrete description above. Throughout, we will use “synaptic

weight” and “connection strength” interchangeably to refer to the total strength of projections

from one neuron to another.

Degree distributions from constraints on net synaptic weights

We consider a simple model of synaptic interactions where a neuron has K synaptic partners

and the strength of projection i is Ji. The first constraint we consider is an upper bound on the

total connection strength:

XK

i¼1

Ji � �J ð1Þ

The bound �J could be interpreted multiple ways, for example as a presynaptic limit due to

the number of vesicles currently available before more are manufactured or a postsynaptic

limit due to the amount of dendritic tree available for synaptic inputs. The value of �J could be

set by metabolic or resource constraints. Rather than modeling the biological origin of �J , we

will focus on the structure this constraint imposes in the K-dimensional synaptic weight con-

figuration space.

With K synaptic partners, the constraint (Eq 1) defines a K-dimensional volume. For a neu-

ron with two synaptic partners, this is the portion of the plane bounded by the axes and a line

that stretches from ð0;�JÞ to ð�J ; 0Þ (Fig 2a). For three synaptic partners, the weight configura-

tions live in three-dimensional space and are constrained to lie in the volume under an equilat-

eral triangle (Fig 2b). It is equilateral because its vertices are defined by the configurations

where one connection uses the total weight, �J . In general, for K synaptic partners the synaptic

weights live in the volume under a K − 1 dimensional simplex (the geometric generalization of
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a triangle to higher dimensions). This K-dimensional volume is [40]

VðK;�JÞ ¼
�JK

K!
ð2Þ

This extends the counting model of Fig 1d–1f to the case of a large pool of synaptic

resources (Measuring synaptic weight configuration spaces) and measures the size of the space

of allowed circuit configurations under the constraint of Eq 1. The volume under the simplex

increases with the max weight �J , but for �J � 2 it has a maximum at K� 1 and then decays

(Fig 2c).

Under our hypothesis of flexible computation under a constraint, there should be a pressure

towards circuit structures with a large number of allowed synaptic weight configurations.

There may be other competing pressures on the circuit architecture, which prevent it from

being optimally flexible (achieving the largest number of possible configurations). To model

the pressure towards flexibility, we thus stipulate that the probability of having K synaptic part-

ners given resource limits �J is proportional to the number of possible configurations, i.e., the

volume of the weight space with K partners. For a bounded net synaptic weight:

pVðKj�JÞ ¼
VðK;�JÞ
ZVð

�JÞ
ð3Þ

where the subscript V marks the probability distribution as proportional to the simplex’s

Fig 2. Constraints on total synaptic weights. (a-c) An upper bound on the total synaptic weight. (d-f) A fixed total

synaptic weight. (a) For two inputs with a total synaptic weight of at most �J , the synaptic weights must live in the area

under a line segment from ð0;�J Þ to ð�J ; 0Þ (a regular 1-simplex). (b) For three inputs, the synaptic weights must live in

the volume under a regular two-simplex. (c) Volume of the K − 1 simplex as a function of the number of presynaptic

partners, K, for different maximal net weights �J . (d) For two inputs with a total synaptic weight fixed at �J , the synaptic

weight configurations must be on the line segment from ð0;�J Þ to ð�J ; 0Þ. (e) The solution space for the fixed net weight

constraint with three inputs is an equilateral planar triangle (a regular 2-simplex). (f) Surface area of the regular K − 1

simplex as a function of the number of presynaptic partners, K, for different net synaptic weights �J .

https://doi.org/10.1371/journal.pcbi.1008080.g002
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volume and the normalization constant, ZV, ensures that the probability distribution sums

to 1:

ZVð
�JÞ ¼

X1

K¼1

VðK;�JÞ ð4Þ

This normalization constant can be computed exactly to reveal a zero-truncated Poisson

distribution:

pVðKj�JÞ ¼
�JK

ð exp ð�JÞ � 1ÞK!
ð5Þ

Note that this is a distribution for the number of synaptic partners to a neuron (its degree),

not for its synaptic weights. The degree distribution is conditioned on the maximum total syn-

aptic weight, as measured by the parameter �J .

In addition to facing resource constraints, neurons also homeostatically regulate their total

input strengths. Motivated by this, the next constraint we consider holds the total synaptic

weight fixed at �J :

XK

i¼1

Ji ¼ �J ð6Þ

This constraint is satisfied on the surfaces of the same simplices discussed above (Fig 2d

and 2e). Their surface area is (Measuring synaptic weight configuration spaces):

AðK;�JÞ ¼
�JK� 1

ffiffiffiffi
K
p

ðK � 1Þ!
ð7Þ

Like the simplex’s volume, the surface area increases with the total synaptic weight �J but for

�J ⪆ 0:7 it has a maximum at K� 1 (Fig 2f). We will also examine the size of this constraint as a

model for degree distributions:

pAðKj�JÞ ¼
AðK;�JÞ
ZAð

�JÞ
ð8Þ

where pA denotes the probability proportional to the simplex’s surface area and the normaliza-

tion constant is

ZAð
�JÞ ¼

X1

K¼1

�JK� 1
ffiffiffiffi
K
p

ðK � 1Þ!
ð9Þ

In contrast to the bounded net weight model (Eq 5), we are not aware of an exact solution

for ZA. When required, we will either approximate it by truncating at large K or bound it

(Model comparison: Fixed net weight model).

Testing degree distribution models

To test these models, Eqs 5 and 8, requires joint measurements of neurons’ total synaptic

weight and number of synaptic partners. One type of data with measurements reflecting both

of these are dense electron microscopic (EM) reconstructions with synaptic resolution, where

(in a large enough tissue sample) all of a neuron’s synaptic partners can be identified and the

size or number of synapses provide indirect measurements of the connection strength.
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The published EM wiring diagrams of D. melanogaster mushroom bodies measure synaptic

strengths by the count of synapses [38, 39]. While we are not aware of joint measurements of

synapse counts and physiological connection strength in Kenyon cells, the relationship of ana-

tomical and physiological measures of connection strength has been studied in mammalian

pyramidal neurons. There, synapse size and synapse strength are highly correlated [41–45].

We thus assumed that the total number of synapses onto a neuron, �S, is proportional to its

total connection strength constraint:

�J ¼ a�S ð10Þ

where α is the unknown constant relating the synapse count and the net synaptic weight. This

assumption introduces α as an additional parameter in our degree distribution models, Eqs 5

and 8, so that each neuron’s degree is conditioned on two things: the unknown parameter α
and that neuron’s number of synapses �S.

In addition to the two constraint-inspired models of Eqs 5 and 8, we also examined a simple

random wiring null model where the number of partners follows a zero-truncated binomial

distribution:

pBðKjN; qÞ ¼ ð
N
K Þ

qKð1 � qÞN� K

1 � ð1 � qÞN
ð11Þ

This binomial wiring model assumes that each of N potential synaptic partners to a Kenyon

cell has a fixed probability q of making a connection, and that whether or not different poten-

tial partners actually connect is independent. We used anatomical measurements for N
(Model comparison: Zero-truncated binomial model) and took q as an unknown parameter

for this model. Note that this is a binomial model for connections, in contrast to the binomial

model for resource allocation of Fig 1d–1f.

To measure and compare how well these models explain KC connectivity we computed

their Bayesian evidence: the likelihood of the data under a model, marginalizing over the

unknown parameters (Model comparison). For the fixed net weight, for example, the evidence

is

pAðKj�SÞ ¼
Z 1

0

da pðaÞ
Y

i

pAðKija;
�SiÞ ð12Þ

where i indexes KCs and p(α) is a prior distribution for α. We have a corresponding integra-

tion over α to find the model evidence of the bounded net weight model, and for the binomial

wiring model an integration over the unknown connection probability q.

Calculating the model evidence requires choosing a prior distribution for the unknown

parameter (p(α) in Eq 12). We will use flat priors, as well as the Poisson Jeffreys prior. (Jeffreys

priors maintain uncertainty under different scaling or unit choices.) The normalization con-

stant for the fixed net weight model (ZA, Eq 9) was not analytically tractable, so we computed

upper and lower bounds for it. These bounds for ZA then gave us bounds on the fixed net

weight model’s evidence (Model comparison: Fixed net weight model).

Larval Kenyon cell outputs

We first examined KCs outputs in the first instar larva, using the complete synaptic wiring

diagram of its 223 KCs (110 on the left side of the brain and 113 on the right) from [38]. We

excluded projections to the inhibitory APL neuron and the modulatory dopaminergic, and

octopaminergic neurons as well as interneurons so the out-degree of each KC measures its
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number of postsynaptic KCs and MBONs. (There are 48 MBONs, 24 on each side of the

brain.) We obtained similar results as reported here, however, when including those other syn-

apses. As in previous studies, we used only reliable multi-synapse connections (but obtained

similar results as reported when including single-synapse connections) [38, 39]. Larval KCs

can be morphologically classified by their age. The dendrites of mature KCs form claws around

PN axons. The 78 young KCs do not have claws, and the 36 single-claw KCs are older than the

109 multi-claw KCs [38]. KCs have a wide range of presynaptic degrees, with very different

out-degree distributions for young and clawed KCs (Fig 3a histograms).

As a first test, we examined the maximum likelihood marginal degree distributions. That is,

we computed the maximum likelihood value of α to obtain the conditional degree distribution

pðK j â; �SÞ and then marginalized out the number of synapses, �S, using its observed distribu-

tion to compute pðKjâÞ (Fig 3a, solid lines). For the binomial model we computed the maxi-

mum likelihood value of the connection probability q (Fig 3a, dashed lines). For the young and

clawed KCs, the fixed net weight model appeared to match the marginal degree distributions

better than the binomial wiring model (Fig 3a).

To quantitatively compare how two models explained the data, we computed their log evi-

dence ratio (log odds). The log odds for the fixed net weight model pA versus the bounded net

weight model pV are

L ¼ ln
pAðKj�SÞ
pVðKj�SÞ

ð13Þ

Fig 3. Kenyon cell degree distributions in larval D. melanogaster. (a) Distribution of number of postsynaptic partners for larval KCs. Shaded

histograms: empirical distribution. Solid lines: the marginal simplex area distribution at the maximum likelihood value of α, after integrating out the

number of synapses �S against its empirical distribution. Dotted lines: the maximum likelihood binomial distribution. (b) Lower bound for the log

evidence ratio (log odds) for the fixed net weight and binomial wiring models. Positive numbers favor the fixed weight model. Evidences computed by a

Laplace approximation of the marginalization over the parameters. (c) Lower bound for the log odds for the fixed net weight and bounded net weight

models; positive numbers favor the fixed weight model. (d) Log likelihood of the fixed net weight model (
P

i ln pAðKi j
�Si; aÞ) as a function of the scaling

between synapse counts and net synaptic weights, α. (e-h) Same as (a-d) but for inputs to larval KCs.

https://doi.org/10.1371/journal.pcbi.1008080.g003
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and positive L favors the fixed net weight model, while negative L favors the bounded net

weight model. For example, L = 1 means that the data are exp(1)� 2.72 times more likely

under the fixed net weight model than the bounded net weight model and L = 10 means the

data are exp(10)� 22026.47 times more likely under the fixed net weight model.

We found that the log odds favored the fixed net weight model over the binomial wiring

model for young and multi-claw KCs (Fig 3b; log odds at least 48.17 and 201.8 respectively),

but not for single- or two-claw KCs (Figure Ab in S1 Figs; log odds at most -0.78 and -0.50

respectively). For KCs with three or more claws, the log odds for the fixed weight model over

the binomial wiring model were at least 20.3 (Figure Ab in S1 Figs). The log odds favored the

bounded net weight model over the binomial wiring model in the same cases: for young and

clawed KCs, except for single- and two-claw KCs (Figure Ac in S1 Figs). The fixed net weight

model described KC output degree distributions better than the bounded net weight for all

types of KC in the larva (Fig 3c, Figure Aa in S1 Figs). To control for our choice of prior (e.g.,

p(α) in Eq 12) we also performed a model comparison using the Jeffreys prior for the Poisson

distribution (Model comparison) for α and q. Under the Poisson Jeffreys prior, the only result

that changed was that the bounded net weight was the best model for the young KC outputs

(Figure Ad-f in S1 Figs).

We next asked whether the relationship between anatomical and physiological synaptic

weights exhibited a similar developmental trajectory as the model likelihoods, with multi-claw

KCs appearing more similar to young KCs. To this end, we examined the likelihood of the

data under the fixed net weight model as a function of the scaling parameter α (Fig 3d). The

maximum likelihood values of α decreased with KC age, from 0.29 for young to 0.22 for multi-

claw and 0.17 for single-claw KCs (Fig 3d). The two-claw KCs exhibited a similar scaling as

the single-claw KCs (0.17), while KCs with three or more claws had higher α values (0.24 for

three- and four-claw KCs, 0.28 for five- and six-claw KCs). This suggests that the relationship

between net synapse counts and regulated net synaptic weights in the larval mushroom body

may become weaker during KC maturation.

Larval Kenyon cell inputs

We next examined the inputs to KCs in the larva. Like for the outputs, we examined multi-syn-

apse connections and excluded inputs from the inhibitory APL and modulatory neurons (but

obtained similar results when including them). There is a wide distribution of in-degrees for

both larval and clawed KCs (Fig 3e, histograms). The maximum likelihood fit of the fixed net

weight model appeared a much better fit than the maximum likelihood binomial for young

KC inputs (Fig 3e, black solid vs dashed curves). For clawed KCs, it was less immediately clear

which maximum likelihood model better explained the in-degree distribution (Fig 3e, blue

solid vs dashed curves).

We again examined the log odds for pairs of models. The log odds favored the simplex area

model over the binomial model for both young and clawed KCs (Fig 3f, log odds at least 70.46

and 0.97). We next asked whether this depended on the number of claws. The log odds favored

the fixed net weight model over the binomial wiring model for multi-claw KCs, but not single-

claw KCs (Fig 3f, log odds at least 9.92 for multi-claw KCs; Figure Bb in S1 Figs, log odds at

most -1.57 for single-claw KCs). Within multi-claw KCs, the log odds also favored the bino-

mial model over the fixed weight model for two-claw KCs, but not for KCs with at least three

claws (Figure Bb in S1 Figs). We found similar results comparing the bounded net weight

model with binomial wiring (Figure Bc in S1 Figs). The log odds favored the fixed net weight

model over the bounded weight model for all KC types (Fig 3g). We obtained similar results

under the Poisson Jeffreys prior for α and q (Figure B in S1 Figs). Since single-claw KCs are
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more mature than multi-claw KCs [38], these results together suggest that flexibility under a

homeostatically fixed net weight governs KC input connectivity early in development, with

other factors shaping connectivity after sensory and behavioral experience.

We next asked whether the relationship between anatomical and physiological input syn-

aptic weights exhibited a similar developmental trajectory. We saw that that the maximum

likelihood value of α, â, decreased with KC age (Fig 3h); maximum likelihood values of α:

0.33, 0.25, and 0.21 for young, multi-claw, and single-claw KCs, respectively). The scaling for

single- and two-claw KCs were similar (â of 0.2 for two-claw KCs), while KCs with three or

more claws had â � 0:25. Under the simple model of Eq 10, these suggest that the translation

of synapse counts into a physiologically regulated net synaptic weight becomes weaker dur-

ing KC maturation. This could relate to the spatial concentration of synapses in claws of the

dendrite.

Larval MBON inputs

The next stage of mushroom body processing after KCs occurs at MBONs (Fig 1a). They

exhibit a wide range of in-degrees (Fig 4a) from three presynaptic KCs (for the left MBON-n1)

to 105 presynaptic KCs (for the left MBON-m1) [38]. Neither of the max likelihood fixed net

weight (Fig 4a, black) and binomial (Fig 4a, blue) models appeared to be as good fits for the

MBON in-degree distribution as they were for the KCs (Fig 3a and 3d). The fixed net weight

model matched the breadth of the degree distribution, however, while the binomial model did

not. We observed similar results for the bounded net weight model. To test which model pro-

vided a better explanation of the data overall, not just at a single parameter value, we again

computed their log odds (Fig 4b). The log odds favored the fixed net weight model over both

the bounded net weight (log odds at least 7.70) and binomial models (log odds at least 249.44).

This was despite the fixed and bounded net weight models’ likelihoods being sharper functions

of α than the binomial model’s likelihood as a function of q (Fig 4c).

In summary, we found that the degree distribution predicted by flexible wiring under a

homeostatically fixed total connection strength was the best overall model for KC input and

output degrees, and MBON input degrees (Figs 3 and 4). The one exception to this were the

single-claw KCs, which were best described by a binomial wiring model (Fig 3b and 3f).

Fig 4. Mushroom body output neuron degree distributions in larval D. melanogaster. (a) Number of inputs to

MBONs. Shaded histograms: empirical distribution. Black curve: the marginal simplex area distribution at the

maximum likelihood value of α, after integrating out the number of synapses �S against its empirical distribution. Blue

curve: the maximum likelihood binomial distribution. (b) Lower bound for the log evidence ratio (log odds) for the

fixed net weight and binomial wiring models. Positive numbers favor the fixed weight model. Evidences computed by

a Laplace approximation of the marginalization over the parameters. (c) Likelihood vs model parameter for the fixed

net weight (black) and binomial (blue) models).

https://doi.org/10.1371/journal.pcbi.1008080.g004
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Adult Kenyon cell outputs

To test the generality of these results, we turned to a related circuit: the adult D. melanogaster
mushroom body. It contains the same general types of cells as the larva, though in different

numbers, with the same broad circuit structure (Fig 1a). We examined a recent connectome

of the alpha lobe of the adult mushroom body from Takemura et al. [39]. The alpha lobe is

defined by KC axons, so these data do not include the PN inputs which target dendrites. It con-

tains the axons of 132 alpha prime lobe KCs and 949 alpha lobe KCs. Like in the larva, the age

of adult KCs can be classified morphologically. KCs of the alpha prime lobe are born before

KCs of the alpha lobe. In the alpha lobe, the 78 posterior KCs are born before the 480 surface

KCs, which are in turn born before the 259 core KCs [46, 47].

Since the adult data are only for axo-axonal connectivity, we first repeated our previous

analysis without KC-MBON connections to examine the axo-axonal KC output connectivity

in the larva. We found similar results as for the full connectivity (Figure Cf, g in S1 Figs).

In the adult, Kenyon cells had heterogenous out-degrees, with alpha lobe KCs exhibiting a

bimodal distribution (Fig 5a). This bimodality was reflected in the out-degrees of posterior,

core and surface KCs, rather than arising from the separate alpha lobe KC types. The fixed net

weight models predicted adult KC out-degree distributions better than the binomial wiring

model for all KC types (Fig 5b), as did the bounded net weight model (Figure Df, in S1 Figs).

The fixed net weight provided a better description for all the out-degree distributions of all

types of adult KC than the bounded net weight except when posterior, core, and surface KCs

were all considered together (Fig 5c blue). These results were consistent when using the Pois-

son Jeffreys prior for α and q (Figure Dd-f in S1 Figs). In summary, the degree distributions of

Fig 5. Kenyon cell degree distributions in adult D. melanogaster. (a) Distribution of number of postsynaptic partners for adult KCs. Shaded histograms:

empirical distribution. Solid lines: the marginal simplex area distribution at the maximum likelihood value of α, after integrating out the number of

synapses �S against its empirical distribution. Dotted lines: the maximum likelihood binomial distribution. (b) Lower bound for the log evidence ratio (log

odds) for the fixed net weight and binomial wiring models. Positive numbers favor the fixed weight model. Evidences computed by a Laplace

approximation of the marginalization over the parameters. (c) Lower bound for the log odds for the fixed net weight and bounded net weight models;

positive numbers favor the fixed weight model. (d) Log likelihood of the fixed net weight model as a function of the scaling between synapse counts and

net synaptic weights. (e-h) Same as (a-d) but for inputs to adult KCs.

https://doi.org/10.1371/journal.pcbi.1008080.g005
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KC outputs in the adult alpha lobe are best described by flexibility under a homeostatically

fixed net synaptic weight.

The scaling between synapse counts and synaptic weights varied by KC type in the adult

(Fig 5d). The maximum likelihood values of α were 0.58, 0.54, 0.7 and 0.67 for alpha prime,

posterior, surface and core KCs respectively (in approximate developmental order). These

suggest a divide with more mature KCs having more synaptic weight per synapse, on average,

than younger KCs. The log likelihood for the alpha prime KCs was also much less sensitive to

low values of α than the other KC types (Fig 5d black vs colored curves), suggesting a more het-

erogenous or flexible relationship between axonal input synapse counts and regulated output

synaptic weights similar to for the input synaptic weights (Fig 5d black vs colored curves).

Adult Kenyon cell inputs

As in the larva, adult KCs exhibited a range of in-degrees. KCs in the alpha prime lobe receive

fewer axonal inputs than KCs in the alpha lobe (Fig 5e). As before, we computed the maximum

likelihood marginal degree distributions, and saw that the binomial model appeared much

worse than the fixed net weight model (Fig 3e solid vs dashed lines). This observation was

born out by the models’ evidences.

For comparison with the adult data, we again examined KC-KC connectivity in the larva,

neglecting the inputs from projection neurons onto KC dendrites, and found similar results as

for the full connectivity (Figure Ca-d in S1 Figs).

In the adult, the fixed net model explained the in-degree distribution of every KC type bet-

ter than the binomial model (Fig 5f; log odds at least 232.57, 551.5, 5.36, 85.82, and 83.02 for

alpha prime, all alpha lobe, posterior, core and surface KCs respectively). The fixed net weight

model also explained the in-degree distributions better than the bounded weight model (Fig

5f; log odds at least 4.59, 9.0, 0.87, 2.0, and 6.96 for alpha prime, all alpha lobe, posterior,

core and surface KCs respectively). The upper bounds for the log odds of the fixed net weight

distribution were close to the lower bounds for the adult KCs (Figure Ea, b in S1 Figs). We

found similar results using the Poisson Jeffreys prior for the unknown parameters α and q
(Figure Ed-f in S1 Figs). Together with the consistent results for adult KC output degrees (Fig

3e–3g), these suggest that flexibility under a fixed net synaptic weight governs KC connectivity

in the alpha lobe of the mushroom body.

The scaling between the synapse count and net synaptic weight, α, exhibited similar pat-

terns for adult KC inputs and outputs (Fig 5d vs 5h). The maximum likelihood values for α
were 0.68, 0.6, 0.73, and 0.72 for alpha prime, posterior, surface, and core KCs (ordered from

approximately oldest to youngest). These suggest that in the alpha lobe, surface and core KCs

have more input synaptic weight per synapse on average than posterior KCs. The log odds for

the alpha prime KCs was much less sensitive to small values of α than the classes of alpha lobe

KCs (Fig 5h, black vs colored curves), suggesting a more heterogenous or flexible relationship

between axonal input synapse counts and regulated synaptic weights in alpha prime KCs.

Measuring the cost of changing joint synaptic weight configurations

In measuring the flexibility of connectivity under a constraint, we measured the difference

between two synaptic weight configurations by their straight-line (Euclidean) distance: the

root sum squared difference in each synaptic weight. This was the origin of
ffiffiffiffi
K
p

in the surface

area of the simplex (Eq (7)). It corresponds to the assumption that different connections can

potentiate or depress simultaneously: for example, that a vesicle can be taken from one con-

nection, depressing it, and given to another connection to potentiate it (Fig 1e). This implies
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that the cost of changing one synaptic weight by an amount d is the same as that of changing

two weights by d=
ffiffiffi
2
p

each.

Potentiating one connection and depressing another might, however, have separate costs.

This can be modeled by choosing a different norm for the space of synaptic weight configura-

tions. For example, a neuron’s connections might potentiate or depress separately so the cost

of changing one connection by d is the same as the cost of changing two connections by d/2.

In this case distances between configurations are measured by the 1-norm given by the sum of

absolute differences. This changes the measure of the surface area of the simplex, replacing
ffiffiffiffi
K
p

by K in Eq 7. This does not change the results of our analysis of KC input connectivity

(Figures F, G in S1 Figs). For KC output connectivity, the bounded net weight was a better

model than the fixed net weight, under the 1-norm for weight changes, for larval young KCs

(Figure H in S1 Figs) and adult surface KCs (Figure I in S1 Figs).

Optimally flexible connectivity

Above, we examined the hypothesis that the distribution of connectivity degrees for Kenyon

cells would match the flexibility of those cells under homeostatic or resource constraints on

their total synaptic weight. We used a simple measure of flexibility: the size of the allowed

synaptic weight configuration space (Fig 1b and 1c). We next considered a related but more

restricted hypothesis: that KCs directly maximize their flexibility. For each constraint, we max-

imized the size of the allowed synaptic weight space to find the optimal degrees.

For the bounded net weight constraint (Eq 1), this consists of maximizing the volume

under the simplex (Eq 2) and is equivalent to finding the mode of the zero-truncated Poisson

distribution. We found an approximately linear relationship between the optimal degree and

the maximum net connection strength:

K�V ¼ a�S �
1

2
þO 1=K�V

� �
ð14Þ

The derivation of this equation involves the harmonic numbers, which are defined by posi-

tive integers, so it applies only for K�V � 1 (Optimal degrees: Bounded net weight). Under the

fixed net weight constraint, we similarly found an approximately linear relationship between

the optimal degree and the net connection strength (Optimal degrees: fixed net weight):

K�A ¼ a�S þ 2þOð1=K�AÞ ð15Þ

This equation applies only for K� 2, for a similar reason as above (Optimal degrees: fixed

net weight). By comparing K�V and K�A, we see that the optimally flexible degrees under the

fixed net weight constraint are higher than those for the bounded net weight constraint. Eqs

(14) and (15) reveal that to leading order, the model comparisons of Figs 3–5 encapsulate lin-

ear fits of K as a function of �S while accounting for the variability around that line predicted by

each constraint.

In both larval and adult KCs, we observed approximately linear relationships between the

total number of synapses and number of partners for each KC type (Fig 6). To quantify this lin-

ear relationship, we computed the Pearson correlation between the number of synapses and

number of partners for the different KC types. In the larva, we found that less mature KCs bet-

ter matched this linear relationship (Table 1: young> multi-claw > single-claw). The same

was true for the adult KCs (Table 2: alpha prime > core > surface > posterior).

The binomial model we examined above does not depend on or model synapse counts. If it

were augmented with a wiring process where each connection independently sampled a num-

ber of synapses, its total synapse count and number of connections would also be linearly

PLOS COMPUTATIONAL BIOLOGY Flexible neural connectivity under constraints on total connection strength

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008080 August 3, 2020 13 / 29

https://doi.org/10.1371/journal.pcbi.1008080


related. Each of these three models are thus consistent with the same qualitative result. The

model comparison we performed above tests which best explains the data, accounting for the

variability around the mode described by each model (Figs 3–5).

Finally, we generalized this optimization to allow the constraints on total synaptic weights

to explicitly depend on the number of inputs:

XK

i¼1

Ji � �JKp or
XK

i¼1

Ji ¼ �JKp ð16Þ

for the bounded and fixed net weight constraints, respectively. This scaling of the summed

synaptic weight corresponds to scaling the individual synaptic weights as Kp−1. If every synap-

tic weight has an order 1/K strength, the sum of the synaptic weights would be order 1 and

p = 0. If every synaptic weight has an order 1 strength, the summed weight is order K and

p = 1. If synaptic weights have balanced ð1=
ffiffiffiffi
K
p
Þ scaling [48], then the summed weight would

have p = 1/2. Under this generalization of our constraint models, our Bayesian model compari-

sons still apply if we take the total synaptic weight to be proportional to the number of synap-

ses: Kp�J ¼ a�S instead of Eq 10. That corresponds to the requirement that the scaling of

synaptic weights with the number of inputs does not arise from scaling the number of synap-

ses, but from other physiological mechanisms. This generalization still led to approximately

linear relationships between the optimal degree and the total synaptic weight (Optimal

Fig 6. Relation between number of synaptic partners and synapse counts in D. melanogaster Kenyon cells. (a)

Inputs to Kenyon cells (KCs) of the first instar larva. (b) Outputs of the first instar KCs. (c) Inputs to adult KCs in the α
lobe. (d) Outputs of adult KCs in the α lobe.

https://doi.org/10.1371/journal.pcbi.1008080.g006

Table 1. Correlation of number of synapses and number partners in larval Kenyon cells.

Cell type Inputs Outputs

Young 0.99 0.99

Multi-claw 0.77 0.86

Single-claw 0.67 0.8

https://doi.org/10.1371/journal.pcbi.1008080.t001

PLOS COMPUTATIONAL BIOLOGY Flexible neural connectivity under constraints on total connection strength

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008080 August 3, 2020 14 / 29

https://doi.org/10.1371/journal.pcbi.1008080.g006
https://doi.org/10.1371/journal.pcbi.1008080.t001
https://doi.org/10.1371/journal.pcbi.1008080


degrees: Bounded net weight and Optimal degrees: fixed net weight):

K�V ¼ a exp ðpÞ�S �
1

2
þO 1=K�V

� �

K�A ¼ a exp ðpÞ�S þ 2 � pþOð1=K�AÞ
ð17Þ

As before, we see that the optimally flexible degree under the fixed net weight constraint,

K�A, is greater than that under the bounded net weight constraint, K�V . In this generalization, we

can make a similar assumption as before to relate the net synaptic weight �J to anatomical mea-

sures of connection strength. If we assume that Kp�J ¼ a�S so that the number of synapses �S
absorbs the scaling with Kp, consistent with its origin reflecting the size of a neuron, the same

analysis and results of Figs 3–5 follow. If we instead assumed that �J ¼ a�S, so that the anatomi-

cally measured total synaptic weight were Kpa�S, a model comparison that also accounts for the

unknown parameter p would be required.

Discussion

We hypothesized that under a particular constraint, the probability of a neuron having K
synaptic partners is proportional to the size of the space of allowed circuit configurations

with K partners. The general idea of considering the space of allowed configurations can

be traced back to Elizabeth Gardner’s pioneering work examining the associative memory

capacity of a perceptron for random input patterns [49]. In the limit of infinitely many con-

nections and input patterns, that model yields predictions for the distributions of synaptic

weights [8–11]. Here, in contrast, we examined the hypothesis that the size of the space of

allowed configurations—the flexibility of a neuron’s connectivity under constraint—governs

the distribution of the number of connections without defining a computational task. This

motivated predictions for neural degree distributions, rather than synaptic weight distribu-

tions. We examined constraints on the total strength of connections to or from a neuron and

found that overall, the degree distribution corresponding to flexible connectivity under a

homeostatically fixed total connection strength gave the best explanation for mushroom

body connectivity.

Flexible connectivity and circuit development

Computational flexibility should be desirable for an organism’s fitness, allowing the organ-

ism to solve problems in a variety of environments. One mechanism of adaptability and flex-

ibility is to build the nervous system out of computationally flexible units that may over

time adapt to specific computational roles. Our results are suggestive that this type of strat-

egy may be at play in the development of mushroom body connectivity in the first instar D.
melanogaster larva. The log odds for larval young KCs vastly favor the constraints models

over the binomial model (Figs 3c and 4c). The odds also approximately decreasingly favor

Table 2. Correlation of number of synapses and number partners in adult alpha lobe Kenyon cells.

Cell type Inputs Outputs

alpha prime 0.99 0.97

core 0.76 0.81

surface 0.74 0.74

posterior 0.69 0.69

https://doi.org/10.1371/journal.pcbi.1008080.t002
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the constraint model with KC maturity (Figs 3 and 4). In the adult, the log odds favored flex-

ible connectivity under constraints on the net synaptic weight over the binomial random

wiring model most for the alpha prime KCs, and more for core than surface KCs (Figs 3f

and 4f, Figures D, E in S1 Figs). These suggest that flexibility under constraints might also

reflect a developmental or experience-dependent progression in the alpha lobe KCs, but it

remains a better explanation for their connectivity than binomial wiring even in the more

mature KCs of the adult. The less mature KCs in the larva and adult also showed more linear

relationships between their number of synapses and number of synaptic partners (Table 1),

better matching the prediction of maximizing the space of allowed configurations under a

constraint. Together, these results suggest that Kenyon cell connectivity is structured to be

flexible early in development, allowing many possible connectivity configurations to sup-

port specialization as the organism matures.

Anatomical measures of connection strength

To test the hypothesis that neurons in the mushroom body are subject to a pressure towards

flexible connectivity under constraints, we required measurements of the total input or output

connection strength of these neurons. For this purpose, we used electron microscopic recon-

structions of mushroom body circuitry [38, 39]. These published data contain anatomical mea-

surements of connectivity: the number of synapses between neurons. The general types of

constraint we considered (bounded or homeostatically fixed total connection strengths) might

not operate directly on synapse counts. To account for this uncertainty, we assumed that syn-

apse counts were proportional to the constrained total connection strength (Eq 10) [38]. Spa-

tially detailed, biophysical neuron models could in principle be used to account for synapse

locations and the passive and active membrane conductances transforming anatomical con-

nectivity into physiological connection strengths in specific neurons. In hippocampal pyrami-

dal cells, cerebellar Purkinje cells, and Drosophila visual neurons, dendritic structures can

compensate for signal decay systems [50–53]. If this is also the case in mushroom body neu-

rons, detailed spatial models to relate anatomical and physiological connection strengths

might not provide additional insight. Alternatively, additional information about the processes

governing homeostatic synaptic scaling or synaptic resource limits could motivate models of a

different functional form than Eq 10 [54, 55].

Physiological constraints on neural circuits

We modeled constraints as requirements on synaptic weight vectors, consistent with point

neuron models commonly used in studies of neural computation, rather than specifying the

biophysical implementation of these constraints. Minimizing the amount of wire used to con-

nect neural circuits can predict the spatial layout of neural systems (e.g., [56–60]) and dendritic

arborizations [61, 62]. We examined setting the number of connections separately from the

strengths of connections, consistent with the assumption that rewiring neural circuits is more

costly than changing the strength of existing connections [63].

Neural activity faces metabolic constraints [64]. In early sensory systems, the combination

of metabolic constraints with sensory encoding needs can explain the structure of neural activ-

ity [65–69]. In our model, both wiring and metabolic costs could be related to setting the

parameter �J . We hope that, analogously to how metabolic costs and encoding performance

combine in metabolically efficient coding, the idea of flexibility under constraints might be

useful in determining how metabolic and wiring constraints interact with computational tasks

to shape neural circuit structures.
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Materials and methods

Measuring synaptic weight configuration spaces

First, consider measuring the available configurations of synaptic weights when they can vary

continuously. Consider the total synaptic weight, divided into K segments (Fig 7). For one syn-

aptic weight, the measure of the weight configurations is

Z �J

0

dJ1 ¼ �J ð18Þ

For two synaptic weights, the available configurations are measured by

Z �J

0

Z �J

J1

dJ2 dJ1 ¼
�J 2

2
ð19Þ

and in general,

Z �J

0

Z �J

J1

Z �J

J2

� � �

Z �J

JK� 1

dJK � � � dJ3 dJ2 dJ1 ¼
�JK

K!
ð20Þ

which is the volume under the simplex with vertex length �J .

Now consider synaptic weights that vary discretely by ΔJ, with �J ¼ MDJ. How many ways

can we assign M units of synaptic weight amongst K partners? For K = 1, this is M. For K = 2,

this is

XM

n1¼1

XM

n2¼n1þ1

¼
MðM � 1Þ

2
ð21Þ

and in general the number of combinations of M units of synaptic weight in K connections is

given by the binomial coefficient

ð
M
K Þ ¼

M!

K!ðM � KÞ!
ð22Þ

Fig 7. Synaptic weight configurations. a) Two example configurations of K = 4 synaptic weights with

J1 þ J2 þ J3 þ J4 � �J . b) Two examples of K = 5 synaptic weights with sum bounded by �J .

https://doi.org/10.1371/journal.pcbi.1008080.g007
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For large M, the binomial coefficient is

MK

K!
1þO 1=Mð Þð Þ ð23Þ

Now if we measure synaptic weights relative to ΔJ, this replaces �J with �J=DJ ¼ M in the

simplex’s volume. So for large M, the volume under the simplex approximates the number of

allowed configurations.

Similarly, the surface area of the simplex (Eq 7) approximates the number of allowed con-

figurations under the fixed net weight constraint (Eq 6) if we discretize the synaptic weights. It

is measured by the K − 1 dimensional Haussdorff measure (hyper-surface area). We can com-

pute the surface area by differentiating the volume (Eq 2) with respect to the inner radius of

the simplex (the minimal distance from the origin to its surface) [70]. For the regular simplex

with vertices at �J , that inner radius is r ¼ �J=
ffiffiffiffi
K
p

. Differentiating the volume with respect to r
thus yields the surface area

A ¼
dV
dr

¼
ffiffiffiffi
K
p dV

d�J

¼
�JK� 1

ffiffiffiffi
K
p

ðK � 1Þ!

ð24Þ

Note, however, that the inner radius and thus the surface area depends on the norm of the

space of synaptic weight configurations (Distances in synaptic configuration space).

Model comparison

Under equal prior likelihoods for two models X and Y, the posterior likelihood ratio between

two models, X and Y is

pXðKj�SÞ
pYðKj�SÞ

¼

R
da
Q

ipXðKij
�Si; aÞpðaÞR

da
Q

ipYðKij
�Si; aÞpðaÞ

ð25Þ

where i indexes data points. We consider the Laplace approximations for the posterior odds,

obtained by writing pX = exp ln pX and Taylor expanding the log likelihood lnpX in α around

its maximum likelihood value,

â ¼ arg max
a

Y

i

pXðKij
�Si; aÞ ð26Þ

Truncating at second order then yields a tractable Gaussian integral over the unknown

parameter:

Z

da pðaÞ
Y

i

pXðKij
�Si; aÞ ¼

Z

da pðaÞ
Y

i

exp ln pXðKij
�Si; aÞ

�

Z

da pðaÞ
Y

i

pXðKij
�Si; âÞ exp

� ða � âÞ
2

2s2
i

ð27Þ
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where the integrals run over the allowed range for α and

s2
i ¼ �

@2

@a2
ln pXðKij

�Si; aÞ

�
�
�
�
â

ð28Þ

Under a flat prior for non-negative α, the marginal likelihood is:

pXðKj�SÞ �
Y

i

pXðKij
�Si; âÞ

 ! ffiffiffiffiffiffiffi
ps2

2

r

1þ Erf
â
ffiffiffiffiffiffiffi
2s2
p

� �� �

ð29Þ

where 1=s2 ¼
P

i1=s
2
i . The simplex volume distribution is a truncated Poisson; we might rea-

sonably use the Jeffreys prior for the Poisson distribution, pðaÞ / 1=
ffiffiffi
a
p

. In that case, the mar-

ginal likelihood is

pXðKj�SÞ �
Y

i

pXðKij
�Si; âÞ

 !
p
ffiffiffi
â
p

2
exp �

â2

4s2

� �

I � 1
4

â2

4s2

� �

þ I 1
4

â2

4s2

� �� �

ð30Þ

where I a is the modified Bessel function of the first kind. We will drop the indices on K; �S in

most of the remaining sections, reintroducing them where necessary.

Model comparison: Bounded net weight model

Under a bounded net weight, the degree distribution is:

pVðKj�S; aÞ ¼
ða�SÞK

ZVð
�S; aÞK!

ð31Þ

The normalization constant Z is

ZVð
�S; aÞ ¼

X1

K¼1

ða�SÞK

K!
¼ exp a�Sð Þ � 1 ð32Þ

so the simplex volume distribution is a zero-truncated Poisson distribution. We will make a

Laplace approximation for the simplex volume distribution around â, leading to the posterior

odds Eq 29 (for a flat prior on non-negative α) or Eq 30 (for the Poisson Jeffreys prior). To cal-

culate the Laplace approximation for the posterior odds we need â and σ2. The derivatives of

lnpV can be calculated directly (again dropping indices over measurements),

@

@a
ln pVðKj�S; aÞ ¼

K
a
þ �S

1

1 � expa�S
� 1

� �

@
2

@a2
ln pVðKj�S; aÞ ¼ �

K
a2
þ

�S
2
Csch

a�S
2

� �� �2
ð33Þ

So we have

s2 ¼
X

i

Ki

â2
�

�Si

2
Csch

â�Si

2

� �� �2
 !� 1 !� 1

ð34Þ
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and the maximum likelihood solution for α satisfies

0 ¼
X

i

Ki

â
�

�Si

1 � exp â�Si
ð35Þ

Model comparison: Fixed net weight model

Under the fixed net synaptic weight, our model is that the degree distribution is proportional

to the surface area of the simplex:

pAðKj�S; aÞ ¼
1

ZAð
�S; aÞ

ða�SÞK� 1
ffiffiffiffi
K
p

ðK � 1Þ!
ð36Þ

where

ZAð
�S; aÞ ¼

X1

K¼1

ða�SÞK� 1
ffiffiffiffi
K
p

ðK � 1Þ!
ð37Þ

To calculate â and σ2 we need the derivatives of lnpA.

@

@a
ln pA ¼

@

@a
lnA �

@

@a
lnZ ð38Þ

where

@

@a
lnA ¼

K � 1

a
ð39Þ

and we use the identity

@

@a
lnZ ¼

@

@a
Z

Z
ð40Þ

We next bound @

@a
Z.

@

@a
Z ¼

X1

K¼2

ða�SÞK� 2

ðK � 2Þ!

ffiffiffiffi
K
p

S

¼ S
X1

K¼1

ða�SÞK� 1

ðK � 1Þ!

ffiffiffiffi
K
p

ffiffiffiffiffiffiffiffiffiffiffiffi

1þ
1

K

r ð41Þ

For K� 1,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=K

p
is bounded above by

ffiffiffi
2
p

and below by 1. So,

SZ <
@

@a
Z <

ffiffiffi
2
p

SZ ð42Þ

Inserting these into the critical point equation for â provides the bounds:
P

iðKi � 1Þ
ffiffiffi
2
p P

i
�Si

< â <

P
iðKi � 1Þ
P

i
�Si

ð43Þ

We will also need the curvature of lnpA w.r.t. α at â:

s2 ¼ �
@

2

@a2
ln pA

ð44Þ
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Similarly to the first derivative,

@
2

@a2
ln pA ¼

@
2

@a2
lnA �

@
2

@a2
lnZ ð45Þ

where

@
2

@a2
lnAðKj�S; aÞ ¼ �

ðK � 1Þ

a2
ð46Þ

We use the identity

@
2

@a2
lnZ ¼

@2

@a2 Z
Z
�

@

@a
Z

� �2

Z2
ð47Þ

The curvature of Z is

@
2

@a2
Z ¼ S2

X1

K¼3

ða�SÞK� 3

ðK � 3Þ!

ffiffiffiffi
K
p

¼ S2
X1

K¼1

ða�SÞK� 1

ðK � 1Þ!

ffiffiffiffi
K
p

ffiffiffiffiffiffiffiffiffiffiffiffi

1þ
2

K

r ð48Þ

The final term
ffiffiffiffiffiffiffiffiffiffiffi
1þ 2

K

p
is bounded above by

ffiffiffi
3
p

and below by 1, so

S2Z <
@

2

@a2
Z <

ffiffiffi
3
p

S2Z ð49Þ

Defining upper and lower bounds for @2

@a2 lnZ using the upper and lower bounds of the first

and second terms in Eq 47 yields:

� S2 <
@

2

@a2
lnZ < ð

ffiffiffi
3
p
� 1ÞS2 ð50Þ

The upper bound for @2

@a2 lnZ provides an upper bound for σ2, while neglecting Z provides a

lower bound for σ2 (since Z� 1 from Eq 37, so that ln Z� 0):

K � 1

a2
� s2 <

K � 1

a2
þ ð

ffiffiffi
3
p
� 1ÞS2 ð51Þ

The posterior odds for the simplex area are:

Z

da pðaÞ
Y

i

pAðKij
�Si; aÞ �

Y

i

pAðKij
�Si; âÞ

 !Z

da pðaÞ exp
ða � âÞ

2

2s2

� �

ð52Þ

where s2 ¼ 1=
P

i1=s
2
i . We use the upper and lower bounds for s2

i to define upper and lower

bounds, respectively, for the likelihood’s variance:

s2
U ¼

X

i

ðKi � 1Þ

â2
þ

ffiffiffi
3
p
� 1

� �
�S2

i

� �� 1
 !� 1

s2
L ¼

X

i

ðKi � 1Þ

â2

� �� 1
 !� 1

ð53Þ
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We compute â numerically by maximizing the likelihood, and compute pAðKij
�Si; âÞ also

numerically, estimating Z by ranging over K = 1 to 2max i
�Si.

Bounds for the posterior odds of the fixed net weight model

The derivative of the posterior odds under the flat prior, Eq 29, with respect to σ is propor-

tional to

1 �

ffiffiffi
2

p

r
a

s
exp �

a2

2s2

� �

þ Erf
a
ffiffiffi
2
p

s

� �

ð54Þ

Since α> 0 and σ> 0, the last term is bounded between 0 and 1. The middle term is pro-

portional to the form x exp(−x2/2), which is maximized by 1=
ffiffi
e
p

at x = 1. Since
ffiffiffiffiffiffiffiffiffiffi
2=pe

p
< 1,

the middle term is less than 1 and the derivative of the posterior odds under a flat prior for α,

with respect to σ, is non-negative. The upper bound for σ2 thus provides an upper bound on

the posterior odds. We see that the posterior likelihood
Q

ipAðKij
�SiÞ increases from s2

L to s2
U

(reflected in the log posterior odds ratio for the simplex volume vs the simplex area, Figures A,

B, D-I in S1 Figs).

The derivative of the posterior odds under the Poisson Jeffreys prior, Eq 30, with respect to

σ2, is proportional to

�
a2

2s3
exp �

a2

4s2

� � 

I � 5
4

a2

4s2

� �

þ I � 3
4

a2

4s2

� �

þ 2I � 1
4

a2

4s2

� �

þ2I 1
4

a2

4s2

� �

þ I 3
4

a2

4s2

� �

þ I 5
4

a2

4s2

� �! ð55Þ

We saw that the posterior odds for the simplex area distribution also increased with σ2 for

the Poisson Jeffreys prior (S1 Figs).

Model comparison: Zero-truncated binomial model

The marginal likelihood for the zero-truncated binomial with distribution pB is

Z

dq pðqÞ
Y

i

pBðKijN; qÞ �
Y

i

pBðKijN; q̂Þ

 !Z

dq pðqÞ
Y

i

exp �
ðq � q̂Þ2

2s2

� �

ð56Þ

where pB(Ki|N, q) is given by Eq 11. For connections to larval KCs, we used the total number

of traced projection neurons (PNs) and KCs as the binomial parameter N, averaged over the

two sides of the brain [38]. For projections from larval KCs, we used the total number of KCs

and output neurons, averaged over the two sides, as N. For projection to adult KCs, we used

the number of Kenyon cells plus 150 (the estimated number of olfactory PNs) as N [71]. For

projections from adult KCs, we used the number of KCs and output neurons labelled in the

data as N.
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The variance with respect to q is determined as in Eq (28). The derivates of lnpB are, again

dropping indices on K,

@

@q
ln pB ¼

K
q
�

N � K
1 � q

�
Nð1 � qÞN� 1

1 � ð1 � qÞN

@
2

@q2
ln pB ¼ �

K
q2
þ

N � K
ð1 � qÞ2

þ
NðN � 1þ ð1 � qÞNÞð1 � qÞN� 2

ðð1 � qÞN � 1Þ
2

ð57Þ

The maximum likelihood parameter q̂ for the zero-truncated binomial, with M samples of

K, each with N trials, obeys:

q̂
1 � ð1 � q̂ÞN

¼

PM
i¼1

Ki

MN
ð58Þ

and the variance at q̂ is

s2 ¼
X

i

Ki

q̂2
�

N � Ki

ð1 � q̂Þ2
�

NðN � 1þ ð1 � q̂ÞNÞð1 � q̂ÞN� 2

ðð1 � q̂ÞN � 1Þ
2

 !� 1 !� 1

ð59Þ

Optimal degrees: Bounded net weight

Now we examine what numbers of synaptic partners maximize the size of the allowed configu-

ration space under the bounded net weight constraint. Here we generalize the constraint to

allow the maximum total synaptic weight to explicitly depend on the number of inputs, K:

XK

i¼1

Ji � �JKp ð60Þ

where we will typically take 0� p� 1. This replaces the maximum weight �J with Kp�J in the

volume:

V ¼
ð�JKpÞ

K

K!
ð61Þ

The volume is non-decreasing in �J . We compute its derivative with respect to K by analyti-

cally continuing the factorial to real values of K as the Gamma function, yielding

@V
@K

¼
ð�JKpÞ

K

K!
ln�JKp þ pþ g � HKð Þ

¼
ð�JKpÞ

K

K!
ln�JKp þ p � lnK �

1

2K
þO K � 2ð Þ

� � ð62Þ

where HK is the Kth harmonic number,

HK ¼
XK

x¼1

1

x
ð63Þ
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We used Euler’s expansion for the harmonic numbers,

HK ¼ gþ lnK þ
1

2K
þO K � 2ð Þ ð64Þ

At a critical point in K, truncating Oð1=K2Þ and higher-order terms, we find

�JðK�Þp ¼ e 1
2K�� pðK�Þ þOð1=K2Þ

¼ K� þ
1

2

� �

exp ð� pÞ þOð1=K�Þ
ð65Þ

Substituting Kp�J ¼ a�S yields

K� ¼ a exp ðpÞ�S �
1

2
þOð1=K�Þ ð66Þ

Alternatively, the critical point can be calculated without first extending K to real numbers

by using ratios:

1 ¼
VðK�Þ

VðK� þ 1Þ
¼
ðK� þ 1Þ

1� p

�J
K�

K� þ 1

� �pK�

ð67Þ

which yields

�JðK�Þp ¼ ðK� þ 1Þ
K�

K� þ 1

� �pðK�þ1Þ

¼ ðK� þ 1 � pÞ exp ð� pÞ þOð1=K�Þ
ð68Þ

Optimal degrees: Fixed net weight

If
P

jJj ¼ �JKp then we have the surface area of the K − 1 simplex. We consider a regular sim-

plex (equal side lengths) with vertex length �JKp (from the origin to any vertex). Its surface area

is

A ¼
ð�JKpÞ

K� 1
ffiffiffiffi
K
p

ðK � 1Þ!
ð69Þ

By the same method as above, the derivative with respect to K is

@A
@K

¼
ð�JKpÞ

K� 1

2
ffiffiffiffi
K
p
ðK � 1Þ!

2K ln ð�JKpÞ þ 2ðK � 1Þp � 2KðHK� 1 � gÞ þ 1ð Þ

¼
ð�JKpÞ

K� 1

2
ffiffiffiffi
K
p
ðK � 1Þ!

�

2K ln ð�JKpÞ þ 2ðK � 1Þp

� 2K ln ðK � 1Þ þ
1

2ðK � 1Þ
þO

1

K2

� �� �

þ 1

�

ð70Þ
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Since HK−1 appears in the derivative, we only consider the derivative at K� 2. At a critical

point in K, dividing through by K and truncating Oð1=K2Þ and higher-order terms yields

ln�JKp ¼ � p
K � 1

K
þ ln ðK � 1Þ �

1

2K
�

1

2ðK � 1Þ
þOð1=K2Þ

�JKp ¼ ðK � 1Þ exp ð� pÞ exp p=K �
1

2K
�

1

2ðK � 1Þ
þOð1=K2Þ

� �

¼ exp ð� pÞðK þ p � 2Þ þOð1=KÞ

ð71Þ

and substituting Kp�J ¼ a�S yields

K� ¼ a exp ðpÞ�S þ 2 � pþOð1=K�Þ ð72Þ

If we do not continue to real K first, we instead have

1 ¼
AðK�Þ

AðK� þ 1Þ
¼
ðK�Þ1� p

�J
K�

K� þ 1

� �pK�þ
1

2 ð73Þ

which yields

�JðK�Þp ¼ K�
K�

K� þ 1

� �pK�þ
1

2

¼ K� þ
p � 1

2

� �

exp ð� pÞ þOð1=K�Þ

ð74Þ

Distances in synaptic configuration space

Above we assumed that synaptic weight configurations could travel between different points

in the synaptic weight space along straight lines, endowing the K-dimensional synaptic weight

space with a Euclidean (or 2-) norm. This amounts to assuming that synaptic weights can vary

together. This could be interpreted, for example, as allowing a unit of synaptic weight (a recep-

tor, perhaps) to be transferred directly between connections. An alternative is to assume that

synaptic weights must move separately, which corresponds endowing the synaptic weight

space with the 1-norm. In the above interpretation this would mean separating the removal of

a receptor from one synapse from the addition of a receptor to another synapse. This changes

the surface area of the simplex, since its inner radius is �J=K rather than �J=
ffiffiffiffi
K
p

:

A1 ¼
ð�JKpÞ

K� 1K
ðK � 1Þ!

ð75Þ

Changing the norm for the synaptic weights leaves the above calculation of the posterior

odds for the fixed net weight model mostly unchanged. The factors of
ffiffiffiffi
K
p

in the normalization

constant are replaced by K; this removes the square roots in the derivation of the upper bound

for the variance with respect to α so that

K � 1

a2
� s2 <

K � 1

a2
þ 2S2 ð76Þ
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The optimal number of connections can be calculated in the same manner as previously.

The derivative of A1 with respect to K is (to order 1/K):

@A1

@K
�
ð�JKpÞ

K� 1

ðK � 1Þ!
K ln�JKp þ ðK � 1Þp � K ln ðK � 1Þ þ

1

2ðK � 1Þ
þO

1

K2

� �� �

þ 1

� �

ð77Þ

At a critical point in K, truncating Oð1=K2Þ and higher-order terms yields

�J � K � pðK � 1Þ exp
1

KðK � 1Þ
� p

K � 1

K

� �

ð78Þ
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