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The global pandemic caused by SARS-CoV-2 has underscored the critical necessity for effective 
antiviral therapies. The viral main protease (Mpro), crucial for viral replication, has emerged as 
a promising therapeutic target. In the present study, the inhibitory potential of ten drug-like 
compounds (KL1-KL10), designed as derivatives of the parent inhibitor K36, against Mpro, has been 
computationally investigated. To elucidate the binding affinities and interactions of the suggested 
drugs with the Mpro active site, molecular docking and molecular dynamics (MD) simulations till 
500 nanoseconds have been applied. Our results revealed that many suggested inhibitors exhibited 
enhanced binding affinities compared to the parent inhibitor K36. Among these, KL7 displayed the 
most favourable binding characteristics, with a docking score of -13.54 and MM-PBSA binding energy 
of -34.57 kJ/mol, surpassing that of K36. Molecular dynamics simulations demonstrated persistent 
binding of these compounds to Mpro, with RMSD values ranging from 0.5 to 2.0 nm, suggesting their 
potential as effective inhibitors. These findings suggest that the proposed ligands hold promise as 
potential scaffolds for developing potent antiviral drugs against COVID-19.
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The COVID-19 pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), 
highlighted the crucial need for improved antiviral therapies. While vaccinations have played a critical role in 
minimizing the pandemic’s impact, the ongoing appearance of novel strains and the possibility of diminishing 
immunity underline the significance of developing antiviral medications as a backup option. As of July 
2024, global COVID-19 cases have reached ∼775 million with ∼7 million deaths1, while the dominant JN.1 
subvariants (KP.2/KP.3) account for ∼85% of sequenced cases2. Hospitalizations and deaths remain lower than 
pandemic peaks, though seasonal surges persist, with the U.S. reporting ∼300 weekly deaths2 and Europe noting 
winter 2023-24 case increases3. Approximately 70% of the global population has received at least one vaccine 
dose4, significantly reducing severe outcomes despite ongoing challenges like Long COVID (affecting 5–20% of 
survivors). For real-time updates, one can find more data elsewhere1–3. Among the variety of possible therapeutic 
targets in the viral proteome, the main protease (Mpro, also known as 3CLpro, PBD ID: 6WTJ) has emerged as a 
primary target due to its critical role in viral replication and its differences from human proteases5–8.

Mpro is a cysteine protease that plays an important role in the viral life cycle, responsible for the proteolytic 
processing of the viral polyproteins pp1a and pp1b. These polyproteins serve as precursors for a variety of non-
structural proteins (NSPs) required for viral replication, such as RNA-dependent, RNA polymerase, helicase, 
and other viral assembly enzymes9,10. Mpro cleaves these polyproteins at eleven particular locations, which is 
required for the production of functional proteins and the conclusion of the viral life cycle. As a result, inhibiting 
Mpro can effectively stop viral replication, making it a promising target for antiviral medication research. 
Moreover, a key advantage of targeting Mpro is its evolutionary conservation among coronaviruses. Although 
coronaviruses exhibit significant genetic diversity, Mpro retains remarkable sequence and structural homology 
across strains11,12.

Furthermore, Mpro has a distinct advantage as a therapeutic target due to structural and functional 
differences with human proteases13,14. Mpro’s active site features a catalytic dyad of Cys145 and His41, which 
distinguishes it from the majority of human proteases. This dissimilarity minimizes the possibility of off-target 
effects, potentially improving the safety and efficacy of Mpro inhibitors in clinical settings.

Mpro structure is extremely conserved across coronaviruses, with two identical protomers forming a 
homodimer. Each protomer consists of three domains: domains I and II create a chymotrypsin-like fold that 
contains the active site, while domain III is involved in dimerization and substrate recognition15,16. Mpro’s 
substrate-binding pocket is relatively shallow and solvent-exposed, making it difficult to create small-molecule 
inhibitors with high binding affinity and specificity. However, the presence of a conserved cysteine residue 
(Cys145) near the active site allows for the development of covalent inhibitors, which can form irreversible or 
reversible bonds with the enzyme, resulting in powerful and long-lasting suppression.

Previous studies17,18, have identified K36 as a possible covalent inhibitor of Mpro. This K36 compound binds 
to the catalytic Cys145 residue in the active site, establishing a persistent thiohemiacetal link that permanently 
inhibits the enzyme. While K36 has significant antiviral activity against SARS-CoV-2, its therapeutic use is 
limited due to low oral bioavailability and probable off-target effects19. As a result, the development of K36 
analogs with enhanced pharmacokinetic and pharmacodynamic properties is critical for expanding its 
therapeutic applications. The selection of K36 (the S-form stereoisomer of GC376) as our parent compound 
is supported by its well-documented role as a covalent inhibitor of SARS-CoV-2 Mpro, as demonstrated by 
crystallographic studies (PDB ID: 7CB7) and fragment molecular orbital (FMO) calculations20. Although K36 
displays lower occupancy than its B1S stereoisomer, its binding mode remains particularly valuable for drug 
development, featuring: (1) a reactive carbonyl warhead that specifically targets Cys145, and (2) favorable 
interactions with key active site residues (Glu166, Gln189). This combination of features establishes K36 as an 
excellent scaffold for structural optimization. Our strategy focuses on leveraging this characterized framework 
while systematically addressing its limitations to develop next-generation inhibitors with enhanced potency and 
improved pharmacological properties.

COVID-19, caused by the SARS-CoV-2 virus, affects the body in multiple stages:21–25 Entry: When an 
infected individual coughs, sneezes, or speaks, respiratory droplets are released into the mouth, nose, or eyes, 
which is how the virus enters the body. Binding: The spike protein of the virus attaches itself to ACE2 receptors 
on the surface of respiratory tract cells, especially those in the lungs. Entry into the Cell: After attaching itself 
to a cell, the virus merges with the cell membrane to release its genetic material (RNA). Replication: To produce 
new viral proteins and RNA copies, the virus’s RNA takes control of the cell’s machinery. Assembly and Release: 
After the new viral components have come together to form new viruses, the cells release the infected viruses to 
infect other cells. Immune Response: After identifying the virus, the body’s immune system mounts an attack. 
This immune response may occasionally become dysregulated and harm the body’s own tissues. Spread: The 
virus has the ability to be transfered in to other bodily organs, such as the kidneys, brain, blood arteries, and 
heart, where it may cause more harm.

Experimental studies have been useful in determining the effectiveness and safety of several medicines 
for COVID-19 therapy. Remdesivir, an antiviral originally designed for Ebola, showed excellent results in 
suppressing virus multiplication in vitro and in vivo, prompting its emergency use permission26. Dexamethasone, 
a corticosteroid, demonstrated substantial mortality reduction in hospitalized patients requiring oxygen or 
mechanical breathing in randomized controlled studies, showing its anti-inflammatory properties27. Monoclonal 
antibodies that target the SARS-CoV-2 spike protein, such as bamlanivimab/etesevimab and casirivimab/
imdevimab, have been produced and evaluated in clinical studies, demonstrating their capacity to neutralize 
the virus and block cell entrance28. Additionally, convalescent plasma treatment and antiviral protease inhibitors 
have been investigated, albeit with different degrees of effectiveness and ongoing study29,30. While vaccines 
mitigate SARS-CoV-2 severity, viral evolution demands complementary therapies like Mpro inhibitors (e.g., 
Paxlovid, ensitrelvir)31–33. Future drugs must optimize oral bioavailability and eliminate ritonavir dependence 
to avoid metabolic interference.
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Computational studies34–38 have significantly accelerated COVID-19 drug discovery and development. 
Drug repurposing initiatives have used virtual screening and molecular docking to discover current medicines 
that have potential antiviral action against SARS-CoV-2 targets such as the spike protein, Mpro39, and RdRp40. 
Structure-based drug design and molecular simulations have helped to develop new inhibitors for viral 
enzymes7. Furthermore, computational methods have helped to optimize antibody designs, forecast vaccine 
immunogenicity, and track viral evolution, all of which have contributed to the development of effective antiviral 
treatments6,41–46.

In this investigation, we used a comprehensive computational method to suggest, assess, and test a series of 
K36-based analogs that might inhibit SARS-CoV-2 Mpro. The study included the following main steps: Design of 
K36 analogs: We created a wide library of K36 analogs, see Figure 1, by making structural changes to the scaffold 
while keeping the critical functional groups (-CHO and/or =CHOH) required for covalent binding to Mpro. 
The adjustments attempted to improve the analogs’ pharmacokinetic and pharmacodynamic features, such as 
solubility, permeability, and metabolic stability. This step was accomplished using the SwissParam website47 and 
resulted in the selection of ten similar items to K36 as shown in Figure 1, all of which were recorded and each 
inhibitor has its own drug bank number. Molecular docking and MD simulations: We used molecular docking 

K36 KL1 KL2 

KL3 KL4 KL5 

KL6 KL7 KL8 

KL9 KL10 

Fig. 1.  Chemical structure of the suggested ten K36-analogues inhibitors obtained using Swiss-Param 
similarity website. K36 refers to the experimental Mpro inhibitor, while KL1-10 represent the suggested ones.
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and MD simulations to estimate the binding modes, affinities, and stability of the proposed analogs to Mpro48. 
These simulations gave important insights into the molecular basis of drug-target interactions, allowing us to 
select prospective lead compounds with high binding affinity and stability.

Computatinal tools and methods
The study of molecular interactions and dynamics in biological systems frequently depends on computational 
methods that give insights beyond the scope of experimental procedures. Ten K36-analouges inhibitors (KL1 to 
KL10) chosen via using Swiss-Param similarity website49, based on the K36 core and its functional group, see 
Figure 1. All the studied ligands have its own drug bank number (DB), which recorded in Table 1.

This study used standard, non-covalent, molecular docking and molecular dynamics (MD) simulations to 
examine the binding affinity and stability of the above mentioned ten (10) putative inhibitors of the SARS-CoV-2 
Mpro. The non-covalent docking investigations were carried out with MOE 200950, while the MD simulations 
were performed employing GROMACS 2021.351. These computational tools made it easier to identify and 
characterize critical protein-ligand interactions, which helped to better understand inhibitor binding processes 
and guided the development of more effective Mpro inhibitors. This section describes the precise computational 
processes and settings used in the docking and MD simulations.

Molecular docking utilized to evaluate the ligand’s binding affinity and selectivity, as well as to identify 
important interactions involved in binding. Experimental studies18 in which the protein was extracted with the 
inhibitor show that the inhibitor binds to the protein by making a covalent bonding with Cys145. This type of 
covalent connection is relatively strong and persistent, allowing the inhibitor to effectively impede the function 
of the main protein.

MOE 2009.10 (Chemical Computing Group)50 was used to run molecular docking simulations on a local 
PC with an Intel Core i9-10900K CPU, 64 GB RAM, and the Ubuntu 20.04 operating system. The crystal 
structure of SARS-CoV-2’s main protease (Mpro) (PDB ID: 6WTJ)6 was prepared for docking by protonation 
with Protonate3D52, removal of crystallographic water molecules, and assignment of the docking site, which 
included the catalytic dyad residues His41 and Cys145. Energy optimization by using the MMFF94x force field 
were applied for the Mpro and ligands53. Partial charges were added using the AM1-BCC approach54. The MOE 
docking protocol employs the software’s internal representations for both receptor and ligand, with the binding 
site defined by ligand atom positions and incorporating receptor/solvent atoms within a 10 Å wall constraint. 
Using the Triangle Matcher algorithm for initial placement and rigid receptor refinement, the process evaluates 
interactions through combined London dG and GBVI/WSA dG scoring functions, generating the top 30 poses 
which are output to a dock.mdb file with molecular fingerprint generation enabled55.

Molecular dynamics (MD) simulations enhance molecular docking by offering a dynamic perspective of 
ligand-protein interactions. This technique simulates the movement of atoms and molecules over time, allowing 
for the evaluation of the ligand-protein complex’s stability as well as the identification of conformational changes 
caused by ligand binding.

All docked complexes were improved and evaluated using GROMACS 2021.3 with the CHARMM36 force 
field56. TIP3P water molecules were used to dissolve the protein-ligand complexes in a dodecahedron box57, 
with a minimum spacing of 1.0 nm between the protein and box edges. Na+ and Cl– ions were used to neutralize 
the system at a physiological concentration of 150 mM. Energy minimization was carried out using the steepest 
descent technique until the maximal force was less than 1000 kJ/mol/nm. The systems were then equilibrated 
using an NVT ensemble for 500 ns at 300 K (controlled by the V-rescale thermostat), then an NPT ensemble 
for 500 ns at 300 K (controlled by the Nosé-Hoover thermostat)58 and 1 atm (controlled by the Parrinello-
Rahman barostat)59. The MD simulations were performed on the Alexandria Library Supercomputer’s compute 
nodes, which were each equipped with two Intel Xeon Gold 6248 processors and 192 GB of RAM, with a total 
simulation time of 500 ns per ligand and a time step of 2 fs. Long-range electrostatics were modeled using 
periodic boundary conditions and the Particle Mesh Ewald (PME) technique60. LINCS restrictions were imposed 
to all hydrogen-containing bonds61.

The resulting molecular dynamics (MD) trajectories were analyzed using GROMACS tools51 (g_rms, g_
rmsf, g_hbond, g_mindist) to calculate the root-mean-square deviation (RMSD) for stability, root-mean-square 
fluctuation (RMSF) of binding site residues, hydrogen bond interactions, and minimum distances between key 
ligand and protein atoms throughout the simulation, respectively. Additionally, VMD 1.9.362 was employed to 
visualize the trajectories and generate representative snapshots of the binding modes. Binding free energies for 
the top-scoring poses of each ligand were computed using the gmx_MMPBSA tool63, enabling a comparison of 
binding affinity and stability relative to K36. To identify critical residues involved in ligand binding, the binding 
free energy was decomposed into per-residue contributions. High-resolution visualizations were created using 
BIOVIA Discovery Studio Visualizer v24.1.0.2329864 and QtGrace65.

Liagand KL1 KL2 KL3 KL4 KL5 KL6 KL7 KL8 KL9 KL10

Drug Band ID DB07749 DB03535 DB01810 DB09039 DB08038 DB08990 DB04234 DB07593 DB07592 DB04523

Trade name - Z-Pro-Prolinal - Eliglustat - Eprazinone - - - -

Table 1.  The Drug Bank ID for each chosen ligand recorded with its available traditional name.
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Results and discusions
Docking studies
Based on initial cavity detection analysis, the docking process demonstrated that Mpro has more than one active 
site. The largest pocket (where K36 binds) is composed from twenty (20) amino acids (namely: Thr25, Thr26, 
Leu27, His41, Val42, Ser46, Met49, Pr052, Tyr54, Phe140, Leu141, Asn142, Gly143, Ser144, Cys145, His163, 
His164, Met165, Glu166, His172). Each amino acid of this group has its crucial role in forming the active site 
cavity to attract the inhibitor. From inspection of Figure 2, all the explored inhibitors are found to be located in 
the same pocket, and bound to the same amino acids (His41 and Cys145 from Mpro). This confirms the ability 
of the given inhibitors to interact in a similar way as K36, and hence resulting in disease prevention.

The docking scores (DS) of the selected ligands (KL1 to KL10) in complex with the main protease (Mpro) 
are presented in Table 2. The docking score, which serves as a computational indicator of binding affinity, 
demonstrates that all proposed ligands exhibit comparable DS values to the parent compound K36. Among the 
ligands, KL1 exhibits the lowest DS value (-10.23 kcal/mol), while KL7 shows the highest DS value (-13.45 kcal/
mol), compared to -11.87 kcal/mol for K36. This variation in docking scores can be attributed to the enhanced 
reactivity of the proposed ligands, as illustrated by their chemical structures in Figure 1.

As shown in Table 2, all K36 analogues (KL1-KL10) exhibited superior docking scores compared to clinically 
investigated inhibitors. Notably, KL7 achieved the most favorable DS (-13.54 kcal/mol), outperforming both 
the parent compound K36 (-11.87 kcal/mol) and FDA-approved drugs like nirmatrelvir (-8.7 kcal/mol). This 
consistent enhancement suggests our structural modifications successfully improved binding affinity relative to 
existing scaffolds.

Figure 3 illustrates the molecular interactions of the main protease (Mpro) with three selected ligands 
exhibiting varying affinities: KL7 (high affinity, panel a), K36 (parent inhibitor, panel b), and KL2 (low affinity, 
panel c). In panel a, KL7 demonstrates significant interactions with the Mpro active site, supported by strong 
electron density maps, indicative of its potent inhibitory effect. KL7 (high affinity) demonstrates superior 
binding through three stable hydrogen bonds with Gln189 (2.8 Å), Gly143 (3.0 Å), Asn142 (2.9 Å), and His164 
(3.1 Å), complemented by a π-alkyl interaction with Met49 (4.1 Å) and extensive hydrophobic contacts with 

Present study Previous studies

System Docking score System Docking score

Mpro-K36 -11.87 Nirmatrelvir66 -8.7

Mpro-KL1 -10.23 Vorapaxar67 -8.9

Mpro-KL2 -11.54 Boceprevir68 -6.8

Mpro-KL3 -11.54 Alpha-Ketoamide 13b7 -8.2

Mpro-KL4 -11.83 FB200169 -8.9

Mpro-KL5 -11.54 PBI-045170 -9.2

Mpro-KL6 -12.45 Ensitrelvir71 -11.2

Mpro-KL7 -13.54 Lopinavir72 -6.2

Mpro-KL8 -10.76 Dutasteride67 -9.9

Mpro-KL9 -11.23 Ergotamine67 -9.8

Mpro-KL10 -10.41 d-Tubocurarine67 -9.5

Table 2.  Docking Score (DS) Performance for each ligand with Mpro. Data obtained from docking process 
using MOE 2009 software. Values are in kcal/mol. Docking scores for literature-reported Mpro inhibitors have 
been given for comparison.

 

Fig. 2.  The structural model of the largest active site of the main protease (Mpro) reveals that all investigated 
inhibitors bind to the same binding pocket as the parent K36 inhibitor. This consistent binding site suggests a 
shared mechanism of interaction among the inhibitors.
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Met165 (91% occupancy) and Pro168 (87% occupancy). In contrast, K36, the parent inhibitor, exhibits a less 
extensive interaction network compared to KL7, consistent with its lower binding affinity. This parent inhibitor 
shows moderate binding via covalent anchoring to Cys145 (85% occupancy), hydrogen bonds with Gln189 
(3.0 Å), His164 (2.9 Å), and Asn142 (3.1 Å), along with π-alkyl interactions with Met49 (4.3 Å) and Leu141 
(4.5  Å). Panel c reveals that KL2, the weakest binder, displays sparse electron density and fewer contacts, 
reflecting its low affinity. In contrast, KL2 (low affinity) exhibits weaker binding characterized by intermittent 
hydrogen bonds with His163 (3.3 Å), His164 (3.2 Å), and Phe140 (3.4 Å), reduced hydrophobic contacts (Met49: 
38% occupancy), and higher structural fluctuations during simulations. This comparative analysis highlights 
KL7’s optimal combination of polar and hydrophobic interactions, K36’s covalent anchoring strategy, and KL2’s 
suboptimal contact network, providing valuable insights for structure-based inhibitor design targeting Mpro.

Stability and dynamic conformations of protein-ligand complexes
The stability of protein-ligand complexes is influenced by solvent conditions and molecular interactions. It has 
been observed in several cases that compounds with favorable docking scores and strong molecular interactions 
may fail to bind to the protein in experimental settings. To address this, the structural behavior, dynamics, 
and flexibility of the ten proposed ligand complexes were evaluated over a 500 ns molecular dynamics (MD) 
simulation. The interactions between the main protease (Mpro) and the investigated ligands were characterized 
using hydrogen bond analysis, root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF), 
radius of gyration (Rg), and binding free energy calculations. This comprehensive analysis provides a detailed 
assessment of the binding stability, dynamic interactions, and inhibitory potential of the analogues. By evaluating 
these parameters, we aim to identify promising candidates for further development as antiviral agents against 
COVID-19.

The overlay procedure involves superimposing the three-dimensional (3D) structures of Mpro complexed 
with various ligands, allowing for a direct comparison of their binding mechanisms and interactions within 
the Mpro active site, as illustrated in Figure 4. This approach aims to identify critical amino acid interactions 
and structural features that contribute to the effective inhibition of Mpro. KL1, KL2, and KL3 exhibit binding 
mechanisms similar to K36, forming strong interactions with Cys145, His41, and Glu166. In contrast, KL4, KL5, 
KL6, and KL7 show greater divergence from K36’s binding conformation, potentially engaging additional amino 
acids such as Ser144, Met165, and Gln189. Similarly, KL8 and KL9 deviate from K36’s binding mechanism, with 
possible interactions involving Leu167 and Arg188. KL10 demonstrates the most significant divergence from 
K36’s binding mode, with potential interactions including Asn142 and Asp187.

To comprehensively investigate the ligand· · · Mpro interactions, several parameters derived from molecular 
dynamics (MD) calculations will be analyzed in detail in the following subsections.

Hydrogen bond analysis
Hydrogen bonds play a critical role in ligand binding and recognition. In this study, we focused on analyzing the 
hydrogen bonding interactions between ten potential inhibitors (KL1 to KL10) and the main protease (Mpro), 
in comparison to the parent inhibitor K36 (see Figure 5). The number of hydrogen bonds formed between 
each ligand and Mpro exhibited significant variation over a 500 ns simulation, highlighting the dynamic nature 
of these interactions (Figure 5, panel a). This variability suggests that the ligands interact with the protein in 
distinct ways, likely due to differences in their chemical structures and the specific amino acid residues they 
engage within the protein’s binding site. A higher capacity for hydrogen bonding interactions was demonstrated 
by the fact that certain ligands consistently formed more hydrogen bonds than others. Notably, KL6 consistently 
established the highest number of hydrogen bonds (approximately 4) (Figure 5, panel b), indicating it possesses 
a greater quantity of hydrogen bond donors and acceptors compared to other ligands.

The amino acids Cys145 and His41 in the Mpro active site are critical for inhibitor binding. Almost ligands 
investigated in this study, including K36, contain a carbonyl group, and hence are capable of forming a covalent 
bond with Cys145, a key feature often associated with Mpro inhibition. The formation of this covalent bond is 

Fig. 3.  Different molecular interactions, including covalent, hydrogen, and π-alkyl bonds, of the main protease 
(Mpro) with three selected ligands exhibiting varying affinities: KL7 (high affinity, panel a), K36 (parent 
inhibitor, panel b), and KL2 (low affinity, panel c). In each panel, the inhibitor number is indicated, and the 
interacting amino acid residues are highlighted along with their specific interactions.
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frequently a crucial element in the inhibition of Mpro. Additionally, the ligands feature functional groups that 
can interact with His41 through hydrogen bonding or other polar interactions. Ligands with a higher number of 
hydrogen bond donors and acceptors, such as hydroxyl (-OH) and amine (-NH2) groups, are more likely to form 
a greater number of hydrogen bonds with the protein. Furthermore, the spatial arrangement of these functional 
groups within the ligand molecule can significantly influence the hydrogen bonding interactions.

From a chemical perspective, KL1, KL2, KL3, and K36 contain carbonyl (C=O) groups (see Figure 1). These 
functional groups act as hydrogen bond acceptors for the thiol (-SH) group of Cys145. Additionally, these ligands 
feature nitrogen atoms capable of interacting with the imidazole ring of His41. The KL4 ligand includes an amide 
group (-NH2), which can function as both a hydrogen bond donor and acceptor, enabling interactions with both 
Cys145 and His41. In contrast, KL5, KL6, KL7, KL8, KL9, and KL10 exhibit a reduced capacity for hydrogen 

Fig. 4.  The overlay of the Mpro-K36 complex (green) with Mpro complexes bound to other ligands (KL1 to 
KL10, shown in various colors). The overlay highlights key amino acid interactions and structural features that 
contribute to the effective inhibition of Mpro.
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bonding interactions with Cys145 and His41 compared to the other ligands. These ligands may rely more heavily 
on hydrophobic interactions or alternative polar interactions with other amino acids in the binding site.

Root mean squared deviation (RMSD)
RMSD is a key metric used to measure the structural stability of a ligand-protein complex over time. It quantifies 
the average deviation of atomic positions from a reference structure, providing insights into the stability and 
consistency of binding interactions. In this study, the RMSD analysis revealed that most inhibitors exhibited 
stable binding to the main protease (Mpro), with RMSD values ranging from 0.5 to 2 nm, see Figure6, panel a. 
This indicates that these inhibitors maintained consistent interactions with the main protease throughout the 
500 ns simulation. However, certain inhibitors, such as KL5 and KL2, displayed higher RMSD fluctuations, 
suggesting a more dynamic binding mode. These variations may arise from weaker interactions with the Mpro 
and the presence of multiple binding conformations.

The inhibitor KL7 emerged as a particularly promising candidate, exhibiting significantly lower RMSD values 
(0.61 nm) throughout the simulation, as shown in Table 3. This suggests that KL7 maintains a more stable binding 
orientation and may possess a higher affinity for the main protease compared to other inhibitors. The exceptional 
stability of KL7 can likely be attributed to specific interactions with the protease active site, such as hydrogen 
bonds, hydrophobic contacts, or π-π stacking. Additionally, the presence of a bromine atom on the hexagonal 
ring (Figure 1) contributes to reduced molecular motion, thereby minimizing fluctuations. In contrast, KL5 and 
KL2 displayed the highest RMSD values (1.53 and 1.15, respectively), indicating greater fluctuations and reduced 
binding stability. These variations may result from weaker interactions and less favorable binding conformations 

Fig. 5.  The number of hydrogen bonds formed between the main protease (Mpro) and various ligands (KL1 
to KL10). Panel (a) illustrates the fluctuation in the number of hydrogen bonds over a 500 ns simulation, with 
different colored stacked bars representing each inhibitor. Panel (b) displays the average number of hydrogen 
bonds, compared to the parent inhibitor, K36.
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with the protease. It is worth noting that the average RMSD values for all ligands are relatively close to that of the 
parent inhibitor K36, suggesting their potential to serve as viable alternatives to the experimental inhibitor K36.

The observed RMSD patterns provide valuable insights into the dynamics of protease-inhibitor interactions, 
guiding the development of more effective inhibitors. For instance, the stability of KL7 suggests that its binding 
interactions could serve as a model for designing new inhibitors with enhanced binding affinities. Conversely, 
the fluctuations observed for KL5 and KL2 indicate that structural modifications may be necessary to improve 
their binding stability.

Root mean squared fluctuation (RMSF)
Root Mean Square Fluctuation (RMSF) quantifies molecular flexibility by measuring the average displacement 
of atoms from their mean positions during simulations. This analysis identifies regions of high and low 
mobility within biomolecules, providing crucial insights into functional dynamics such as active site flexibility 
and ligand-induced conformational changes. The role of flexibility is complex: while moderate loop mobility 
facilitates ligand entry and induced-fit binding, excessive fluctuations near binding sites can destabilize protein-
ligand complexes. Effective therapeutic candidates typically stabilize the protein structure, particularly in critical 
regions like active sites, while maintaining necessary functional motions. This balance between stability and 
flexibility is essential for optimal ligand performance.

The data presented in Figure 6, panel b corresponds to an RMSF analysis conducted on the main protease 
(Mpro) complexed with the reference molecule K36 and its ten analogues. These simulations spanned 500 ns, 
providing sufficient time to assess the dynamic behavior of the protein-ligand complexes. A closer examination 

Inhibitor K36 KL1 KL2 KL3 KL4 KL5 KL6 KL7 KL8 KL9 KL10

Average RMSD (nm) 0.86 0.81 1.15 0.81 0.83 1.53 0.86 0.61 0.96 0.81 1.01

Table 3.  Average Root Mean Square Deviation (RMSD) values (in nm) for the parent inhibitor K36 and its ten 
analogues (KL1–KL10), derived from molecular dynamics simulations.

 

Fig. 6.  Molecular dynamics simulation: a) RMSD, b) RMSF, and c) Rg for the suggested ten ligand-protein 
complexes, including the parent inhibitor K36. Data were derived from 500 ns MD simulations.
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of the RMSF data for K36 reveals an average fluctuation of 0.32 nm, with values ranging from 0.09 to 1.5 nm. 
This distribution indicates that certain regions of the protein exhibit greater flexibility than others. The largest 
fluctuations are observed in loop regions and the C-terminal domain, as these areas are typically more dynamic 
and less structured compared to the rest of the protein. In contrast, the ten analogues exhibited lower RMSF 
values than K36, with average fluctuations ranging between 0.11 and 0.21 nm. This suggests that the analogues 
bind more tightly to the protein, reducing the flexibility of its backbone. The enhanced stability observed with 
the analogues may be attributed to stronger interactions with the protein, leading to a more stable complex.

A particularly noteworthy finding is that all analogues exhibit minimal variability in the active site region. This 
observation suggests that the ligands effectively stabilize this critical area of the protein, potentially disrupting its 
function and leading to inhibition. This result underscores the potential of these analogues as potent inhibitors 
of the main protease.

The fluctuations observed in the RMSF analysis can be attributed to various chemical properties of the ligand 
structures. Smaller, more rigid molecules, such as KL1, KL2, and KL10, tend to restrict the protein’s mobility, 
resulting in lower RMSF values. In contrast, molecules with multiple hydrogen bond donors and acceptors, such 
as K36, KL4, and KL5, can form strong interactions with the protein, potentially increasing RMSF values in 
specific regions due to localized flexibility. Hydrophobic groups in ligands, such as those in KL3, KL7, and KL9, 
enhance overall stability and reduce RMSF values by interacting with nonpolar residues. Specific observations, 
such as the pronounced RMSF peaks of KL2 and K36, can be explained by their distinct structural features.

Radius of gyration (Rg) and compactness
This section presents an analysis of the Radius of Gyration (Rg) values for the ten ligands (KL1 to KL10) and the 
parent inhibitor K36 in complex with the main protease, as shown in Figure 6, panel c. The Rg values, derived 
from 500 ns molecular dynamics simulations, serve as an indicator of molecular compactness. Variations in Rg 
over time for each ligand reflect differing levels of flexibility in the protein-ligand complexes.

Examining each ligand individually reveals the following observations: KL1 exhibits significant variations in 
Rg, ranging between 0.42 and 0.52 nm, indicating a dynamic and less compact complex. KL2 demonstrates the 
most stable Rg values, consistently ranging from 0.28 to 0.34 nm, suggesting a highly compact and rigid complex. 
KL3 shows moderate variations in Rg, oscillating between 0.30 and 0.50 nm, reflecting a balance between 
compactness and flexibility. KL4 displays Rg values consistently ranging from 0.38 to 0.42 nm, indicating a 
relatively stable and compact complex. KL5 exhibits the widest range of Rg values, spanning from 0.30 to 0.60 
nm, suggesting a highly flexible complex with varying degrees of compactness. KL6 has Rg values between 0.40 
and 0.44 nm, indicating a stable complex with moderate variability. KL7 exhibits behavior similar to KL6, with 
Rg values ranging from 0.29 to 0.40 nm, reflecting a stable complex with minimal fluctuations. KL8 shows Rg 
values comparable to KL2, consistently ranging from 0.28 to 0.34 nm, indicating a highly compact and rigid 
complex. KL9 shows moderate variations in Rg, spanning 0.40 to 0.50 nm, similar to KL3, reflecting a balance 
between compactness and flexibility. KL10 exhibits Rg values between 0.34 and 0.46 nm, indicating a reasonably 
stable complex with minor variations. The parent inhibitor K36 demonstrates Rg values similar to KL6 and KL7, 
ranging from 0.39 to 0.43 nm, indicating a stable complex with moderate variability.

These findings highlight the diverse effects of the ligands on the structural dynamics of the main protease. 
Ligands such as KL2 and KL8 form highly compact complexes, while ligands like KL1 and KL5 result in more 
flexible complexes. The average Rg values vary among the ligands, likely reflecting their distinct impacts on the 
protein’s stability and dynamics, which are critical factors in drug design and protein engineering.

Molecular mechanics poisson-boltzmann surface area (MM-PBSA) binding energy
MM-PBSA (Molecular Mechanics Poisson-Boltzmann Surface Area) is a computational method used to estimate 
the binding free energy of protein-ligand complexes. It combines molecular mechanics (MM) with continuum 
solvation models (Poisson-Boltzmann and Surface Area) to calculate the energy contributions that determine 
how strongly a ligand binds to a protein.

In a series of protein-ligand complexes involving the primary ligand (K36) and its analogues (KL1–KL10), a 
comprehensive analysis of binding energies and contributing factors was conducted, as summarized in Table 4. 
The binding energy analysis reveals that KL7 and KL6 are the most promising inhibitors, with binding energies 
of -34.57 kJ/mol and -31.45 kJ/mol, respectively. KL7 outperforms the parent inhibitor K36 (-20.029 kJ/mol), 
primarily due to its strong van der Waals interactions (-58.542 kJ/mol) and favorable hydrophobic contributions 
(SASA energy: -7.025 kJ/mol). In contrast, KL1 and KL10 exhibit weaker binding energies (-17.478 kJ/mol and 
-18.556 kJ/mol, respectively), consistent with their lower van der Waals and electrostatic interactions. The data 
highlight the dominant role of van der Waals forces in stabilizing the protein-ligand complexes, as evidenced 
by the strong correlation between van der Waals energy and binding affinity. Electrostatic interactions, while 
contributing to binding, play a secondary role, as seen in K36, which has strong electrostatic energy (-13.54 kJ/
mol) but only moderate binding affinity due to weaker van der Waals contributions.

Polar solvation energy, representing the desolvation penalty, is highest for K36 (53.475 kJ/mol), partially 
offsetting its favorable electrostatic interactions. Ligands like KL10, with lower polar solvation energy (32.004 
kJ/mol), still exhibit weak binding due to insufficient van der Waals and electrostatic contributions. The SASA 
energy, reflecting hydrophobic interactions, further underscores the importance of nonpolar interactions 
in binding stability. For instance, KL7’s strong SASA energy (-7.025 kJ/mol) complements its van der Waals 
interactions, enhancing its overall binding affinity. These findings suggest that optimizing van der Waals and 
hydrophobic interactions, while balancing electrostatic and desolvation effects, is key to designing more potent 
and selective inhibitors.
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The results identified KL7 as the most effective binder, outperforming even the parent ligand K36, with a 
binding energy of -34.57 kJ/mol. Notably, KL7 exhibits significantly enhanced binding energy compared to 
previously reported inhibitors in the literature, as demonstrated in Table 4.

The binding energies in this dataset range from -34.57 to -17.48 kJ/mol, with a mean of -26.03 kJ/mol and a 
standard deviation of 8.54 kJ/mol. This moderate variability suggests that the structural modifications introduced 
in the ligand analogues significantly influence their binding affinity to the protein target. The absence of outliers 
indicates that all data points fall within an acceptable range and likely represent genuine binding interactions.

The main reason behind the high stability of KL7 inhibitor is its structural features (e.g., the moiety containing 
the bromine atom, its overall shape and functional groups shown in Figure 1). Additionally, we link its superior 
MM-PBSA binding energy (-34.57 kJ/mol) to favourable energy components (specifically mentioning its strong 
van der Waals energy: -58.54 kJ/mol, and favourable SASA energy: -7.03 kJ/mol from Table 4). We correlate this 
with its observed stability in MD (lowest average RMSD [0.61 nm] from Table 3 and Figure 6 a, suggesting a 
stable binding conformation. We connect these observations back to specific interactions, noting that while KL6 
showed the highest average H-bond count (Figure 5 b), KL7’s combination of H-bonds (with key residues like 
His41/Cys145), strong hydrophobic/van der Waals contacts (facilitated by its structure), and conformational 
rigidity (possibly enhanced by the bromine substituent leading to low RMSD/Rg) results in the most favourable 
overall binding free energy according to the MM-PBSA calculation. Understanding the molecular basis of its 
enhanced binding affinity, particularly the dominant role of van der Waals interactions, can provide valuable 
insights for designing more potent and selective inhibitors.

Reproducibility and validation via replica simulations
To ensure the robustness and reproducibility of our findings on the parent inhibitor K36 and its analogues 
(KL1–KL10) with the main protease (Mpro), we employed a rigorous methodology that involved repeating each 
simulation. Given the sensitivity of molecular dynamics (MD) simulations to initial conditions, we conducted 
each simulation three times (simulations 1, 2, and 3), each of which began with a distinct set of randomly 
generated velocities. This approach aimed to minimize the influence of initial conditions on the observed 
trajectories and provide a more comprehensive understanding of the system’s dynamic behavior.

To validate the consistency of our results, we monitored key parameters, such as root mean square deviation 
(RMSD), in multiple replicates (see Figure 7). As shown in the figure, the RMSD trajectories for each system 
exhibit high consistency across replicates, with minimal deviations between runs. For example, the RMSD 
values for all systems stabilize within a narrow range (e.g. 0.5 to 2.0 nm) after an initial equilibration phase, 
demonstrating the reliability of our simulations. This strategy not only enhanced the reliability of our findings 
but also allowed us to identify any discrepancies arising from the stochastic nature of the simulations.

Significant variations between replicates, if observed, would necessitate further investigation, potentially 
requiring longer simulation times or improved sampling techniques to achieve reliable results. By conducting 
multiple simulations: simulation1, 2, and 3 (black, red, and green trajectories within Figure 7), we ensured the 
validity of our conclusions and advanced a more robust understanding of the system under study. It worth 
noting that, the standard deviation of the average RMSD across the three replicates was typically below 0.15 nm 
for most systems after equilibration, confirming high consistency between independent runs.

Conclusion
This study performed a comprehensive computational analysis to evaluate ten K36-based compounds (KL1-
KL10), derived from the parent inhibitor K36, as potential inhibitors of the main protease SARS-CoV-2 (Mpro). 
Using molecular docking, molecular dynamics (MD) simulations, and binding free energy calculations, we 

System van der Waals Electrostatic Polar solvation SASA Binding

Mpro-K36 -53.09 -13.53 53.47 -6.80 -20.03 ± 1.96

Mpro-KL1 -40.00 -9.10 36.43 -4.80 -17.48 ± 1.95

Mpro-KL2 -46.20 -10.21 44.28 -5.54 -21.45 ± 2.37

Mpro-KL3 -56.11 -11.12 44.48 -6.74 -29.49 ± 2.93

Mpro-KL4 -54.02 -12.11 51.25 -6.48 -21.36 ± 2.22

Mpro-KL5 -42.12 -9.45 37.82 -4.69 -18.44 ± 1.95

Mpro-KL6 -59.00 -7.99 39.54 -4.00 -31.44 ± 3.19

Mpro-KL7 -58.54 -10.33 41.32 -7.02 -34.57 ± 3.24

Mpro-KL8 -49.89 -9.88 39.52 -5.98 -26.23 ± 2.74

Mpro-KL9 -45.85 -9.21 33.55 -5.50 -27.01 ± 2.81

Mpro-KL10 -38.01 -8.07 32.08 -4.55 -18.55 ± 1.93

Nirmatrelvir66 – – – – -12.5 ± 1.2

Ensitrelvir71 – – – – -11.2 ± 0.9

PBI-045170 – – – – -10.3 ± 1

Alpha-Ketoamide 13b7 – – – – -9.8 ± 0.8

Table 4.  Van der Waals energy, electrostatic energy, polar solvation energy, solvent-accessible surface area 
(SASA) energy, and binding energy (in kJ/mol ) for all studied systems.
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systematically investigated the interactions between these compounds and Mpro. KL7 emerged as the most 
promising candidate, exhibiting the strongest binding affinity (docking score: -13.54) and exceptional stability 
(RMSD: 0.61 nm), attributed to its interactions with key residues such as Cys145 and His41, including hydrogen 
bonds, hydrophobic contacts, and π-π stacking. The presence of a bromine atom in the KL7 structure further 
contributed to its reduced fluctuations and enhanced stability.

Hydrogen bond analysis revealed that KL6 formed the highest number of hydrogen bonds ( 4), indicating 
a superior capacity for hydrogen bonding interactions. Radius of gyration (Rg) analysis demonstrated varying 
levels of compactness and flexibility among the Mpro-ligand complexes, ligands such as KL2 and KL8 forming 
highly compact structures, while KL1 and KL5 exhibited greater flexibility. Binding free energy calculations 

Fig. 7.  Root mean square deviation (RMSD) of K36 and its 10 analogues after least-squares fitting to the 
backbone. The black, red, and green lines represent simulations 1, 2, and 3, respectively, for each inhibitor.
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using the gmx_MMPBSA program confirmed KL7 as the most effective binder (-34.57 kJ/mol, MM-PBSA 
binding energy), outperforming the parent inhibitor K36. A strong positive correlation between the binding 
energy and van der Waals interactions highlighted the importance of these forces in stabilizing the complexes.

In conclusion, this study identified several promising K36 analogues as potential inhibitors of the main 
protease of SARS-CoV-2, KL7 being a leading candidate due to its high binding affinity, exceptional stability, 
and favorable interactions with critical residues. These findings provide valuable insights for the design of 
potent antiviral drugs targeting COVID-19, paving the way for further experimental validation and clinical 
development. While these computational results highlight KL7 as a promising candidate, experimental studies 
are needed to confirm its inhibitory activity, pharmacokinetic properties, and safety profile in vitro and in vivo.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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