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Abstract

Complex biological systems usually pose a trade-off between robustness and fragility where a small number of
perturbations can substantially disrupt the system. Although biological systems are robust against changes in many
external and internal conditions, even a single mutation can perturb the system substantially, giving rise to a
pathophenotype. Recent advances in identifying and analyzing the sequential variations beneath human disorders help to
comprehend a systemic view of the mechanisms underlying various disease phenotypes. Network-based disease-gene
prioritization methods rank the relevance of genes in a disease under the hypothesis that genes whose proteins interact
with each other tend to exhibit similar phenotypes. In this study, we have tested the robustness of several network-based
disease-gene prioritization methods with respect to the perturbations of the system using various disease phenotypes from
the Online Mendelian Inheritance in Man database. These perturbations have been introduced either in the protein-protein
interaction network or in the set of known disease-gene associations. As the network-based disease-gene prioritization
methods are based on the connectivity between known disease-gene associations, we have further used these methods to
categorize the pathophenotypes with respect to the recoverability of hidden disease-genes. Our results have suggested
that, in general, disease-genes are connected through multiple paths in the human interactome. Moreover, even when
these paths are disturbed, network-based prioritization can reveal hidden disease-gene associations in some
pathophenotypes such as breast cancer, cardiomyopathy, diabetes, leukemia, parkinson disease and obesity to a greater
extend compared to the rest of the pathophenotypes tested in this study. Gene Ontology (GO) analysis highlighted the role
of functional diversity for such diseases.
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Introduction

A fundamental characteristic of biological systems is tolerance to

noise. The ability to counteract both internal mechanistic failures

and changes in environmental conditions plays a central role in the

survival of the organism. The main components of robustness are

controlling the system through negative and positive feedback [1],

splitting the parts of the system as functional units [2] (modularity

and decoupling), and phenotypic plasticity [3] (typically achieved

by redundancy). In a biological system, groups of genes are

optimized in functional decoupling, redundancy and diversity such

that the effects of perturbations are minimized [4]. However,

complex biological systems have to balance between robustness

and fragility which implies that a small number of rare

perturbations can substantially disrupt the system [5]. In

particular, some mutations are the main cause of diseases by

exploiting the fragility of the biological system.

During the past decade, genome-wide efforts such as linkage

analysis and association studies have successfully associated

numerous causal loci with human disorders [6]. Still, much effort

needs to be taken to fully understand the complex implications on

the whole system. For this purpose, several methods have been

developed recently to amplify available disease-gene associations

using the principle of ‘‘guilt-by-association’’ through underlying

biomolecular networks. These methods typically exploit relation-

ships of the disease causing genes with other candidate genes,

using the neighborhood of known associations in the physical [7,8]

or functional [9] interaction network. Recent methods extend the

definition of the neighborhood to account for the global topology

of the underlying network (network-based disease-gene prioritiza-

tion) [10,11]. Such global topology based methods have been

showed to improve disease-gene association prediction [12–15].

Following the emergence of high-throughput experimental

techniques that produce large amount of biological data, several

studies have investigated robustness of a complex system in respect
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to the underlying network topology. Different types of networks

have been studied with this purpose, such as metabolic networks

[16], protein-protein interaction networks [17,18] and regulatory

interaction networks [19]. However, to our knowledge, robustness

of network-based disease-gene prioritization methods, where the

underlying network itself is perturbed, has not been extensively

investigated. Due to the fact that network-based disease-gene

prioritization methods use the connectivity between genes

associated with the disease, we hypothesize that they may serve

to distinguish diseases with respect to the predictability of causative

genes via examining the behavior of network-based prioritization

under noisy network models. The definition of robustness is

problem specific [20] and here we define the robustness as the

observed change in the prediction capacity of the prioritization

methods when perturbing the underlying network.

In this work, our main goal has been to test the quality and

robustness of several network-based disease-gene prioritization

methods against perturbations introduced either in the underlying

network or to known disease-gene associations. Next, to look into

the relationship between robustness, functional diversity and

modularity, we have examined the capability of these methods

to identify disease modules (groups of genes that are enriched with

the functions relevant to the disease). Through the analysis of the

prediction performance of the network-based prioritization

method under in silico perturbations and adopting a jackknifing

scheme, we have categorized various disease-phenotypes (patho-

phenotypes) in Online Mendelian Inheritance in Man (OMIM)

database [21] based on the level of recovery of the hidden disease-

gene associations. Our results suggest that hidden disease-gene

associations in several pathophenotypes, particularly the ones with

high prevalence such as breast cancer and diabetes, can be

recovered easier than the rest of the compared pathophenotypes,

even when the underlying network is substantially perturbed. We

have found that this was independent of the number of initial

genes associated with the disease and rather mediated by the

diversity of functions deduced by them. These findings provide

evidence on the role of functional diversity in defining robustness

of biological systems.

Results and Discussion

Network-based prioritization is sensitive to known
disease-gene associations

Network-based disease gene prioritization methods rank the

relevance of genes to a disease using known disease-gene

associations (seeds) and the network topology. Any perturbation

in the network topology or seeds induces a change on the ranking

of the genes for the disease in concern. Systematically introducing

perturbations at different levels and analyzing the changes in the

ranking of the disease-genes provide a way to measure the

robustness of the prioritization (see Figure 1 for an overview of the

perturbations applied in this study). In order to assess the tolerance

of a prioritization method to the noise in the underlying network

or in the known disease-genes we used the jackknifing technique.

This is a blind test in which we hid the disease-gene association of

some seeds and we used the remaining seeds and a prioritization

method to predict genes associated with the disease. Then, we

checked whether the hidden seeds were predicted accurately by

the prioritization. We tested five prioritization algorithms:

NetShort, NetZcore and NetScore, three algorithms we have

recently proposed that use global network topology [15]; and two

existing algorithms, Functional Flow [22] and PageRank with

priors [11]. The human protein-protein interaction (PPI) network

(referred simply as network hereafter, unless otherwise stated) was

obtained by integrating protein-protein interactions from several

publicly available repositories. The network consisted of 11250

nodes (gene products) and 59220 edges (physical interactions)

connecting them. We analyzed 19 disease phenotypes that were

compiled among the human disorders in OMIM [21]. The

phenotypes were created by merging disorders in OMIM using

keywords describing the phenotype (see Methods and Table S1).

We first questioned the robustness of the prioritization methods

by means of testing the quality of the genes associated with a

disorder. To address the dependence on the number of seeds, we

replaced the seeds with non-seeds in the network at varying

percentages (10% to 80%). That is, we disturbed the initial disease-

gene associations at different levels by introducing wrong

associations between genes and pathophenotypes. Then we

calculated the area under Receiver Operating Characteristic

(ROC) curve of network-based prioritization methods using a five-

fold cross-validation setting on the perturbed disease-gene

annotations. An increased percentage of mis-annotated seeds

reduced the reliability of predictions for all methods (Figure 2a). If

more than 70% of seeds were false, the area under ROC curve

(AUC) reduced to less than 50% for all methods. Only NetShort

resulted in an AUC higher than 50% when using 40% false seeds.

In conclusion, all methods were dependent on the quality of the

initial associations, but NetShort was less affected, compared to the

rest, in predicting new genes associated with the disease. In order

to ensure that this was not an artifact of the network, we repeated

the analysis on the network used by Goh et al. [23]. This network

contained a set of high confident protein-protein interactions in

human (we refer to this network as Goh network hereafter, see

Methods). The AUCs for the methods at different perturbation

percentages using Goh network are given in Figure S1a and

confirmed our observation.

In silico analysis highlights the existence of alternative
routes connecting disease-genes

To examine the effect of the quality of the interactions in

prioritization, we randomly swapped the edges of the network.

Also, to observe the relevance of the number of interactions, we

randomly deleted edges of the network. The variation in the edges

of the network ranged between 10% and 80%. We applied the

prioritization methods to these perturbed networks and calculated

the average AUC over all diseases as before. Figure 2b shows the

decrease in AUC produced using false interactions (randomly

swapped edges) for all methods. It is noteworthy that PageRank

was the most robust method, the prediction performance of which

was less affected from the perturbation of edges than the rest. On

the other hand, edge deletion decreased the AUC for NetScore,

Functional Flow and PageRank, but NetZcore and NetShort

improved the prediction quality by increasing the AUC, and it

only began to drop after more than 60% of the interactions were

removed (Figure 2c). Repeating the same analysis with the Goh

network revealed that the prioritization approaches exhibited a

similar behavior (Figures S1b and S1c), indicating that these

features were independent of the underlying network. Although

this behavior was unexpected, it could be explained by the way the

prioritization algorithms work [15]. These algorithms used the

seed nodes to disseminate information through the network. For

each disease, there were very few number of seeds compared to

non-seeds in the network (varying in the range of 0.1–0.9% of all

nodes, see Table S1). Therefore, random deletion of edges

disconnected fewer seeds because the number of edges connecting

a seed (either one seed with another seed or one seed with a non-

seed) was much less than the number of edges connecting two non-

seeds (only ,2% of all edges involve a seed, see Table S2).

Robustness of Network-Based Disease-Gene Prioritization Methods
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Consequently, Functional Flow and NetScore were more affected

than others because of their dependence on the number of paths

that connected seeds with each other (Functional Flow simulates

flow of information through links of the network and NetScore

exploits multiple shortest paths connecting seeds). However, the

effect of deletion diminished in the case of NetZcore since it

normalized the score using random networks. Considering that

disease-genes tend to be highly connected to each other, the scores

of the nodes connected with seeds and thus the prioritization of the

hidden disease-genes was improved. To understand this with an

example, let’s take a node u that is relatively more connected to

seeds in comparison to any of the random networks. The random

deletion of an edge would be more likely to remove a link

connecting at least one non-seed. Hence, it would be more likely

that node u would remain relatively more connected to seeds in

comparison to random networks. NetShort, which accounted for

the number of seeds involved in a path to identify shortest paths

leading to seeds, also improved the quality of the predictions, due

to the seeds being connected by alternative routes unaffected by

the deletion of links (see Table S3 for the number of all shortest

paths between pairs of seeds in each pathophenotype). Such

backup circuits constitute a fail-safe mechanism and explain the

resilient nature of cells [4].

In order to gain an insight on the consequences of the changes

in the network and explain the behavior of the prioritization

algorithms independent of the jackknifing test described above, we

focused on Alzheimer’s Disease (AD), a relatively well studied

pathophenotype for which we had an expert curated set of disease-

gene associations [24]. We analyzed the connectedness of the

genes associated with the AD in the perturbed networks

introduced above. We used the genes associated with AD in

OMIM [21] as seeds (AD-seeds). We took the neighbors of seeds in

the network and checked how many of their neighbors are

implicated in AD using an independent set of genes taken from

literature (AD-related genes) [24]. We repeated this procedure on

perturbed networks, interactions of which were either randomly

swapped (permuted) or deleted (pruned) at different percentages

(see Methods). Figure 3 shows the total number of genes and AD-

related genes in the neighborhood of seeds. Not surprisingly, as the

percentage of perturbation increased, the number of AD-related

genes in the neighborhood of AD-seeds decreased. However, in

the case of interaction pruning, the ratio of AD-related genes

versus the total number of genes in the neighborhood of AD-seeds

Figure 1. Different types of perturbations applied to the original network. (A) Original network, (B) seed swapping, (C) interaction rewiring,
(D) interaction removal. N(p,k) represents the kth instance of the network with a perturbation level of p in a random ensemble of networks for a given
perturbation type (see Methods).
doi:10.1371/journal.pone.0094686.g001

Figure 2. Robustness of the methods against the perturbation of the edges of the bPPI network and initial disease-gene
associations. The interactions of the bPPI network were perturbed (A) by swapping the links in order to make false interactions or (B) by removing
links. Plots show the average AUC and 95% confidence intervals calculated for the prediction of gene-disease associations for 19 diseases using
NetScore (red), NetZcore (yellow), NetShort (green), Functional Flow (blue), and ToppGene (purple). The percentage of interactions swapped or
removed varied between 0 and 80%. (C) Dependence on the number and quality of seeds. The average AUCs are given as the percentage of mis-
annotated seeds goes from 0% to 80%.
doi:10.1371/journal.pone.0094686.g002

Robustness of Network-Based Disease-Gene Prioritization Methods
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increased. This suggested that AD-related genes tended to remain

connected with at least one AD-seed in the network. To confirm

that this behavior was arising from the AD phenotype and not an

artifact of the perturbations in the network, we checked the

expected number of genes that would be covered at each

perturbation level using 100 random sets of genes with sizes equal

to the set of AD-related genes. The ratio of random gene sets

covered in the neighborhood was substantially lower compared to

the observed ratio of coverage of AD-related genes (Figure 3).

Discovery of disease-genes under noisy network models
varies among pathophenotypes

The analysis of the prediction performance caused by pertur-

bations showed that disease-gene associations could still be

discovered using network-based prioritization methods even when

half of the interactions were perturbed (see Figures 2b and 2c). We

questioned whether the emergence of such network-centric

robustness of the prioritization methods depended on the

pathophenotype. For this purpose, we defined, ‘‘prioritization

tolerance’’ of a disease as the amount of perturbations required to

cause a ‘‘critical’’ AUC change when we applied a network-based

prioritization approach to predict its associated genes (see Methods

for details). Among the different approaches to prioritize candidate

genes we used NetScore for this analysis, since it had good overall

prediction accuracy (Figure 2) and produced the smallest number

of clusters coherently enriched in the functions associated with the

corresponding disease (see Supplementary Results in Text S1 and

Figure S2). Note that NetZcore had also similar properties,

however the perturbation analysis above shoved that NetZcore

was robust against perturbations whereas the AUC for NetScore

fell down linearly as the percentage of perturbations increased

(Figure 2). In order to minimize the bias on the prediction

performance due to using a robust prioritization method and focus

on the network-centric tolerance of the disease, we selected

NetScore over NetZcore.

We grouped diseases into two categories based on the

differences of the prioritization performance (assessed by the

AUC) between the original network and perturbed networks using

NetScore. For each pathophenotype, we checked the amount of

perturbation (both for edge swapping and removal) required in the

network that caused the prioritization performance fall below the

critical AUC (table 1). If after perturbing more than 50% of the

interactions, the prioritization of a disease still achieved a

performance higher than the critical AUC, we labeled this disease

as bearing high tolerance (referred as ‘‘tolerant’’ hereafter) in

prioritization. On the other hand, if the critical AUC was reached

with perturbations affecting less than 50% of the interactions in

the network, we labeled the disease as bearing low tolerance

(referred as ‘‘non-tolerant’’ hereafter). See Figure S3 for the

changes in the NetScore prioritization AUC upon perturbations in

the network for tolerant and non-tolerant diseases. According to

our criteria, pathophenotypes such as breast cancer, cardiomyopathy,

diabetes, leukemia, obesity and parkinson disease were tolerant and thus

higher capability of adaptation against perturbations in the

underlying network than the rest of the pathophenotypes. Tolerant

pathophenotypes have been extensively studied and might have a

larger number of known disease-gene associations than the rest.

Therefore, it may be argued that this is the cause to be classified as

tolerant diseases under our criterion. However, in the following

section we show that this is not true.

Figure 3. Change in the number and ratio of AD-related genes in the neighborhood of AD-seeds with respect to the amount of
interaction permutation. The interactions of bPPI network were perturbed (A) by swapping the links in order to make false interactions or (B) by
removing interactions. The percentage of interactions swapped or removed varied between 0 and 80%. The bars correspond to the average number
of genes over perturbed networks (except the first bar in which the number of genes in the original network are given) whereas the line shows the
ratio of the number of AD-related genes in the neighborhood of AD-seeds to the number of all genes in the neighborhood in the perturbed
networks.
doi:10.1371/journal.pone.0094686.g003

Robustness of Network-Based Disease-Gene Prioritization Methods
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Comparison between pathophenotypes implies a role for
functional diversity in determining prioritization
tolerance

We checked whether the diseases in different categories bore

similar properties: 1) in terms of known disease annotations

associated with disease (seeds); 2) in terms of connectivity of these

seeds; and 3) in terms of functions enriched among these seeds. In

principle, it is reasonable to think that the prioritization tolerance

might depend on the number of seeds of the phenotype. This

would also suggest an explanation to the fact that diseases of high

prevalence were categorized as tolerant, simply because they were

more studied. Tolerant diseases had slightly higher number of

seeds, nevertheless, there was not a significant difference between

the number of seeds of tolerant and non-tolerant diseases

(Figure 4a, associated p-value with the two-sided Wilcoxon rank

sum test, p = 0.27). In order to make sure that number of seeds has

no significant effect on the categorization, we took the diseases

with less than 50 seeds in each category and confirmed that

tolerant diseases (with less than 50 seeds) still had higher AUC

values on average compared to non-tolerant diseases (with less

than 50 seeds) upon perturbations (one-sided p-values were 5.5e-3

and 0.04 for interaction swapping and deletion respectively). In

our previous study [15], we had shown that the prediction

performance of network-based disease-gene prioritization methods

was inversely correlated with the average shortest path length

between seeds of a phenotype. Nevertheless, seeds of tolerant

pathophenotypes were not distinguished significantly from the rest

with respect to the average length of shortest paths between seeds

(Figure 4b, p = 0.13). We have to note that the average length of

shortest paths connecting two seeds is independent of the number

of seeds. We also investigated the difference between the number

of shortest paths connecting seeds (normalized by the number of

seeds per pathophenotype) among two groups of diseases and

found not significant discrepancy (p = 0.15). No significant

difference between the number of interaction partners (degrees)

of the seeds of tolerant and non-tolerant diseases were observed

either (p = 0.24).

Next, we looked at the functional enrichment of seeds involved

in the two groups of diseases. We calculated the enrichment of GO

terms of seeds (i.e., seed GO terms, see Methods for details) for

both categories. In order to avoid possible bias towards the

number of seeds, we normalized the number of seed GO terms

dividing them by the total number of seeds for each pathophe-

notype. Considering that tolerant diseases had slightly more

number of seeds (as mentioned above), normalizing by total

number of seeds ensures that the observed number of GO terms

are penalized more for tolerant diseases. Still, pathophenotypes

with high prioritization tolerance contained higher ratio of seed

GO terms per seed (around 3 times more than that of non-tolerant

pathophenotypes), proving that a larger number of biological

functions associated with seeds were involved in tolerant diseases

than in pathophenotypes with low prioritization tolerance

(Figure 4c, p = 3.29e-3). Likewise, on average there were almost

twice as many GO terms enriched within the high scoring

subnetworks (top 5% scored nodes in the network using NetScore)

of tolerant diseases compared to non-tolerant diseases (Figure 4d,

p = 0.03). These findings suggested that tolerant pathophenotypes

tended to be functionally more diverse, being involved in a larger

number of functions compared to non-tolerant phenotypes.

Further analysis on the GO terms shared between pathopheno-

types suggested that tolerant diseases tended to share more GO

terms among themselves than non-tolerant diseases (Figure S4 and

Figure S5).

Differential network analysis reveals a connected core
machinery in breast cancer

Breast cancer was one of the pathophenotypes that was

observed to bear high prioritization tolerance upon the analysis

of network-based prioritization on the ensemble of randomly

perturbed networks. To gain insights on the interactions giving rise

to network-centric tolerance in breast cancer, we focused on the

perturbed networks in which 80% of the interactions were

randomly removed and chose among the random networks those

with highest and lowest prediction accuracy when the network-

based prioritization method was applied. We selected two

networks in each case, two networks with AUCs of 82% and

73.9% and two networks with AUCs of 46.1% and 46.9%. Then,

we checked the set of interactions yielding the difference between

highest and lowest AUC. For this, we considered the interactions

that were common in the two networks with highest AUC but

were not among the common interactions of the two networks

Table 1. Network-based prioritization performance on the original and perturbed networks*.

Pathophenotype AUC (%) Pathophenotype AUC (%)

org. crit. perm. del. org. crit. perm. del.

alzheimer 78.3 64.2 62.5 62.8 lung cancer 85.0 67.5 65.8 68.4

anemia 70.3 60.2 56.4 57.9 lymphoma 79.7 64.9 62.3 71.8

ataxia 62.6 56.3 54.2 53.8 mental retardation 56.3 53.2 46.6 45.3

breast cancer 76.7 63.4 70.7 75.8 myopathy 86.0 68.0 67.3 72.0

cardiomyopathy 69.5 59.8 65.0 70.5 obesity 72.0 61.0 67.4 70.4

cataract 72.0 61.0 53.9 52.8 parkinson disease 80.0 65.0 70.9 78.5

diabetes 61.4 55.7 58.4 63.4 prostate cancer 68.0 59.0 52.7 62.7

epilepsy 62.1 56.1 47.4 47.4 schizophrenia 53.3 51.7 40.9 42.1

hypertension 70.0 60.0 47.7 51.8 systemic lupus erythematosus 86.3 68.2 64.2 72.7

leukemia 84.6 67.3 75.8 81.6

*Table shows the AUC values using the original network (org.), the critical AUC values (crit.) and the AUC values using perturbed networks (perm.; 50% of interactions
permuted, del.; 50% of interactions deleted) for each pathophenotype. Tolerant pathophenotypes are highlighted with bold case.
doi:10.1371/journal.pone.0094686.t001

Robustness of Network-Based Disease-Gene Prioritization Methods
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with lowest AUC. These interactions potentially caused that breast

cancer phenotype was classified as tolerant. The network

consisting of these interactions was named differential network

(see Figure 5a). One key observation in this network was that the

largest connected component (referred as module hereafter) of the

differential network contained one third of the seed genes and this

included proteins encoded by BRCA1, TP53, ESR1, AR, AKT1.

This is an interesting result, because the networks from which the

differential network was obtained contained only one out of five of

the original interactions. Moreover, the GO terms enriched in this

module covered 65.7% of all 35 seed GO terms of breast cancer

(see Tables S4 and S5). Next, we checked the GO terms enriched

using only non-seeds in this module. Among 312 GO terms

enriched with these genes, 22 were seed GO terms yielding a

highly significant enrichment of seed GO terms (p = 5.97e-7). This

confirmed that the enrichment was not originated solely from the

10 seeds of the component. Figure 5b shows the seed GO terms

covered by seed and non-seed genes of this module. We concluded

that the observed prioritization tolerance was due to i) redundan-

cy, being difficult to disconnect seed proteins with the random

deletion of interactions and ii) functional diversity, the existence of

a large connected module involving genes with the characteristic

functions of the disease.

Figure 4. Comparison of tolerant and non-tolerant pathophenotypes. With respect to (A) known disease annotations associated with
disease, (B) the connectivity of these seeds (assessed by the average shortest path length between seeds), (C) the ratio of the number of seed GO
terms to the number of seeds associated with the diseases, and (D) the number of GO terms enriched within the high scoring subnetwork of the
diseases.
doi:10.1371/journal.pone.0094686.g004

Robustness of Network-Based Disease-Gene Prioritization Methods
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Implications of this study and future directions
In this study, we have analyzed the robustness of several disease-

gene prioritization algorithms using known gene-disease associa-

tions and protein-protein interaction networks. Our analysis on

randomly perturbed interaction networks pointed to the existence

of backup circuits within the PPI network constituting a fail-safe

mechanism. Strikingly, the performance of the methods might

tolerate up to 50% of interactions being removed, the point at

which methods using alternative paths start suffering from low

prediction performance. NetZcore and NetShort showed to be

consistently effective in ranking genes when interactions were

removed, while PageRank was more robust against the introduc-

tion of false interactions (we have to note that though it was more

robust than NetShort, its overall performance was worse).

Furthermore, NetShort, the method that calculated the distance

to another gene in the network taking into account number of

known disease-genes included in the path, yielded better

prioritization performance when the known disease-gene infor-

mation was noisy.

We categorized diseases with respect to their prioritization

tolerance based on the performance of a network-based prioriti-

zation method under the perturbation of the network. Interest-

ingly, pathophenotypes with high prioritization tolerance included

many diseases with high prevalence in society. We further

investigated whether there were characteristic differences between

diseases involved in these categories. Neither the number of seeds,

nor the average length of the shortest paths between them were

significantly different between tolerant and non-tolerant diseases.

On the other hand, the number of GO-terms enriched among

seed genes (known disease-genes) per seed stood out as the most

important factor in defining prioritization tolerance of a

pathphenotype. That is, a disease was more likely to be tolerant

to noise in the interaction network if the genes involved in that

pathophenotype were functionally more diverse. Futhermore,

tolerant diseases showed a higher tendency to share functions with

other pathophenotypes. Such common features at the functional

level might be useful for understanding the etiology of complex

genetic disorders [25]. We have presented a way of systematically

assessing the prioritization tolerance of pathophenotypes emerging

from the underlying protein-interaction network. Although the

robustness of a disease cannot possibly be explained only by the

topology of the network, intuitively the prioritization tolerance of a

disease could imply its robustness. Previous studies have argued

that cancer [26] and diabetes [27] are robust diseases through a

holistic analysis pointing out the redundancy and feedback

mechanisms in these diseases. These studies are in agreement

with our results on several diseases with high prioritization

tolerance such as breast cancer, diabetes and leukemia. Further-

more, in addition to functional redundancy and decoupling, two

key features mediating robustness of biological systems [26,28],

functional diversity (i.e. involving multiple pathways) may be

related to the robustness of diseases. On the other hand, we did

not find lung and prostate cancers as bearing high prioritization

tolerance. Considering the heterogeneity among different cancer

types, it is not very surprising to see such differences with respect to

prioritization tolerance for various types of cancer. In fact, even

within a certain type of cancer, such as breast cancer, a certain

level of heterogeneity is expected at the patient level. In this sense,

the genes involved in the pathophenotype and the underlying PPI

network might be significantly different compared to another

Figure 5. Differential network of protein-protein interactions for breast-cancer. (A) The network containing interactions common to the
two pruned networks with which the NetScore obtained the best prediction performance for breast cancer but did not exist among the common
interactions in the worst performing two pruned networks. The red nodes are seeds. (B) The seed GO terms that are covered in the largest connected
component of this differential network via using only seed genes (red) and only non-seed genes (blue) in the component.
doi:10.1371/journal.pone.0094686.g005
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patient [29–31]. Therefore, the major limitations of our study are

the incompleteness and inaccuracy of the disease-gene associations

and protein-protein interactions. Nonetheless, the developments in

high throughput genomics and proteomics screening, as well as

experimental and computational efforts in identifying context-

specific interaction networks (e.g., tissue-specific) [32,33], will help

to build more comprehensive models explaining the plasticity of

diseases.

The findings presented here may help developing novel

network-medicine approaches that try to characterize the inter-

connected pathways implicated in diseases and possibly suggest

points of action to compensate the changes induced by the disease

[34]. Functional diversity can explain why polypharmacological

approaches, which typically target many gene products simulta-

neously via administration of multiple drugs [35], may work better

on some diseases such as cancer [36–38].

Methods

Gene–phenotype associations
Genes and their associated disorders were taken from Online

Mendelian Inheritance in Man (OMIM) database [21]. OMIM is

one of the most comprehensive and reliable repositories of genes

with Mendelian mutations and the disorders associated with them.

Phenotypic associations for genes were extracted from the

OMIM Morbid Map (ftp://ftp.ncbi.nih.gov/repository/OMIM/

morbidmap retrieved August 27, 2009) by searching for keyword

entries associated with the disorders given in Table S1. A disorder

was considered if at least 25 genes were associated with it in the

Morbid Map after merging several diseases under the same

keyword (e.g., for Alzheimer’s disease we collected Alzheimer’s

disease types 1, 2, etc. using the keyword ‘‘alzheimer’’). Table S1

summarizes all diseases used under the context of this study, the

number of genes associated with them and number of protein

products these genes encode in the PPI network. Asthma,

neuropathy and spastic paraplegia also satisfied the criterion of

having at least 25 genes, however they were excluded from the

robustness analysis since the AUCs using the original network

were lower than 50% (see below).

Genes associated with a disorder were mapped to their products

(proteins) in the PPI network and assigned an initial score for their

phenotypic relevance. Thus, proteins translated by genes known to

be involved in a particular pathology were termed seeds and have

the highest score (1.0) in the network. All other proteins in the

network were assigned a non-seed score (lowest score in the network:

0.01). The correspondence between genes and their products

(proteins) was determined using the data integration protocol of

BIANA [39].

Protein–protein interaction network
We used the human PPI network presented in our recent work

[15]. The interaction network was compiled from publicly

available major interaction data repositories using BIANA

integration tool (Table S6). First, protein-protein interactions from

different sources were integrated with BIANA [39] to obtain a

human interactome. High throughput pull down interaction

detection methods introduce many indirect relationships (such as

being involved in the same complex) in addition to direct physical

interactions. Thus, we removed the subset of interactions obtained

by tandem affinity purification and called this network as the bPPI

(binary protein-protein interaction) network. We also used the

human interactome from Goh et al. [23] (referred to as the Goh

network), which combined two high quality yeast two-hybrid

experiments [40,41] and protein-protein interactions obtained

from the literature.

Network-based prioritization of disease-genes
To assess the tolerance of a given phenotype to the noise in the

underlying network or in the seeds, we used five network-based

prioritization algorithms available in GUILD software package.

GUILD (Genes Underlying Inheritance Linked Disorders) is a

network-based disease gene prioritization framework [15,42]. The

prioritization methods rank the nodes of the network according to

their implication in the pathopheontype. The network-based

prioritization approaches obtain this rank by disseminating the

information of seeds through the network. GUILD framework

provides several methods that use known disease-genes and their

interactions to rank the relevance of genes in a disease or disorder.

The basic hypothesis is that genes whose proteins interact with

each other tend to exhibit similar features, such as function and/or

phenotype. These methods require an initial set of genes

associated with a particular phenotype (e.g., a Mendelian disorder)

and interactions between the products of these genes. We chose

three topology-based ranking algorithms: NetShort, NetZcore,

and NetScore (see Supplementary Methods in Text S1 for details);

and two state-of-the-art algorithms PageRank with priors [43] (as

used in ToppNet [11]) and Functional Flow [22]. PageRank with

priors has recently been proven its success in network-based

disease-gene prioritization [11,12,14].

To evaluate the prioritization methods, we used five-fold cross

validation and calculated area under ROC curve (AUC). The

AUCs were averaged over all folds. The details of the evaluation

has been described elsewhere [15].

Dependency of prioritization methods on network
features and gene associations

We evaluated the dependencies of the methods by modifying

the input data using three tests: 1) permuting interactions at

random, 2) randomly removing interactions of the network, and 3)

permuting the seeds at random. We tested the effect of the

modifications on the bPPI and Goh networks using OMIM gene-

phenotype associations. The degree of modifications ranged from

10% to 80% for each network and seed set. Ensembles of 100

random networks and random seed-sets were used to assess

average prediction performance for each perturbation level. For

the first test, nine groups of 100 networks were generated by

swapping the edges of the original network (randomly creating

new edges and removing old ones), and each group contained a

different number of random permutations corresponding to the

10% to 80% of the number of edges. For the second test, the edges

were randomly deleted to create nine groups of 100 networks in

which the number of deletions varied between 10% and 80% of

the number of edges. For the third test, a varying percentage of

seed nodes (10% to 80%) was replaced with non-seed nodes 100

times, yielding nine groups of seed-sets and the percentage of non-

seeds in each group ranged between 10 and 80. The prioritization

methods were applied to these modified data sets and for each

group, the AUC was averaged over the 100 randomly modified

networks or seed sets. That is, for each level of perturbation p (%),

the average AUC over an ensemble of randomly perturbed

networks of size n can be written as follows;

AUCperturbed pð Þ~
Pn

k~1 AUC N p,kð Þð Þ
n

where N(p,k) is kth instance of the network with a perturbation level
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of p in a random ensemble of networks for a given perturbation

type

Functional enrichment analysis
GO terms enriched among genes corresponding to high scoring

proteins in a network (top 5% nodes in the network with respect to

their prioritization score) were identified using the FuncAssoci-

ate2.0 [44] web service. Proteins in the network were mapped to

the genes using the gene symbols provided by UniProt, and these

symbols were fed to the web service. All genes in the network were

used as the background gene list. A GO term was associated with

the gene set, if and only if, the adjusted p-value associated with the

term was less or equal to 0.05. Similarly, seed GO terms of

pathophenotypes (or disease GO terms) were defined as the GO

terms enriched among the seeds used in the prioritization method

for that disease. For the comparison analysis of tolerant and non-

tolerant pathophenotypes, the semantically non-redundant GO

terms that belonged to biological process ontology were taken into

consideration. GoSemSim R package [45] used to calculate the

semantic similarity based on the metric proposed by Wang et al.

[46] and semantically non-redundant GO terms were identified by

removing the term that had at least 90% similarity to another term

and that was closer to the root of the ontology (in case of a tie, one

of the two terms was taken randomly). In the differential network

analysis of breast cancer, a p-value was calculated assuming a

hypergeometric distribution and using 1320 GO biological process

terms enriched among all the genes in the original network as the

set of all possible GO terms (all human genes were used as

background in this case).

Defining network-centric tolerance of a pathophenotype
For the analysis of network-centric tolerance, we used the

NetScore method of the GUILD package since 1) it had the

highest prediction performance, 2) it produced clusters that are

functionally more relevant to the disease compared to the rest of

the prioritization methods, and 3) the method itself was not robust

against perturbations (Figure 2 and Figure S2). We defined

network-centric tolerance based on the amount of interaction

perturbation required to cause a ‘‘critical AUC change’’ in

network-based prioritization of a disease. For each disease, the

‘‘critical AUC change’’ was set as half of the AUC difference and

the expected AUC that would be obtained by random predictions

(i.e. 0.5). That is, for each pathophenotype, the ‘‘critical AUC

change’’ was calculated using the following formula:

AUCchange~
AUCperturbed 0ð Þ � 0:5

2

and accordingly the ‘‘critical AUC’’ of a pathophenotype was

given by:

AUCcrit~AUCperturbed 0ð Þ{AUCchange

Figure S6 gives a schematic explanation of the critical AUC

change. A disease phenotype was called tolerant if the amount of

interaction perturbation (both interaction swapping and removal)

required to cause a ‘‘critical AUC change’’ was lower than 50%.

Similarly we called a disease phenotype non-tolerant if the amount

of interaction perturbation for ‘‘critical AUC change’’ was higher

than 50%. This can be formulated as follows:

category~
tolerant,AUCperturbed 50ð Þ§AUCcrit

non{tolerant,otherwise

� �

For testing the significance of differences in the distribution of

values between robust and non-robust diseases we used Wilcoxon

rank-sum test. Alpha values were set to 0.05. R software (http://

www.r-project.org) was used to compute the statistics.

Supporting Information

Figure S1 Robustness of the methods against the
perturbation of the edges of the Goh network. Plot of the

average AUC (shown in bars) and confidence interval (shown with

error lines) calculated for the prediction of gene-disease associations

by NetScore (red), NetZcore (yellow), NetShort (green), Functional

Flow (blue), and PageRank (purple). The interactions of Goh

network were perturbed (A) by swapping the links in order to make

false interactions or (B) by removing interactions. The percentage of

interactions swapped or removed varied between 0 and 80%. (C)

Plot of the average AUC and confidence intervals calculated for the

prediction of gene-disease associations as the percentage of mis-

annotated seeds goes from 0% to 80%.

(EPS)

Figure S2 Module-based functional enrichment analysis
of prioritized subnetworks. (A) Number of modules identified

in the neighborhood of known disease associations (N.hood) and in

high scoring subnetworks identified by NetScore (N.Score),

NetZcore (N.Zcore), NetShort (N.Short), Functional Flow (F.Flow)

or PageRank with priors (P.Rank) prioritization methods. (B)

Percentage of seed GO terms (GO terms significantly enriched in

the set of genes associated with the disease) among all GO terms

significantly enriched in the identified modules.

(EPS)

Figure S3 AUC change at different levels of perturba-
tions in the network. (A) Tolerant and (B) non-tolerant

pathophenotypes. Solid lines correspond to AUC of the disease

when NetScore prioritization method is applied to the interaction

network whose edges are randomly swapped (averaged over all

such networks) and dashes correspond to AUC of the disease when

the prioritization method is applied to the interaction network

whose edges are randomly deleted.

(EPS)

Figure S4 Heatmap representation of Jaccard indices
calculated for every pair of pathophenotypes. We used GO

terms in the high scoring (top 5%) modules identified by NetScore

prioritization method. Tolerant pathophenotypes are on the top of the

heatmap (green), whereas non-tolerant pathophenotypes are at the

bottom (orange). No overlap is represented with gray color and the

degree of overlap increases as color gets darker (from white to blue).

(EPS)

Figure S5 GO terms shared in the high scoring modules
of at least 4 diseases. Tolerant pathophenotypes are on the left

of the heatmap (green) and non-tolerant pathophenotypes are on

the left (orange).

(EPS)

change.

(EPS)

Table S1 The number of genes associated with the
diseases used in this study and the number of gene
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Figure S6 Schematic explanation of the critical AUC
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products corresponding to these genes in the interaction
networks.
(XLS)

Table S2 The number of seed connecting and non-seed
connecting edges in the interaction networks for each
disease.
(XLS)

Table S3 The number of shortest paths connecting
pairs of seeds in each disease.
(XLS)

Table S4 GO term enrichment of the genes in the
largest connected component of the differential network
for breast cancer.
(XLS)

Table S5 Seed GO terms (GO terms enriched by the
seed genes) for all diseases.

(XLS)

Table S6 The interaction sources used to create the
human protein-protein interaction network.

(XLS)

Text S1

(DOC)
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