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T-cell receptors (TCRs) play a critical role in the immune re-
sponse by recognizing specific ligand peptides presented by ma-
jor histocompatibility complex (MHC) molecules. Accurate pre-
diction of peptide binding to TCRs is essential for advancing im-
munotherapy, vaccine design, and understanding mechanisms
of autoimmune disorders. This study presents a novel theoret-
ical method that explores the impact of feature selection tech-
niques on enhancing the predictive accuracy of peptide bind-
ing models tailored for specific TCRs. To evaluate the uni-
versality of our approach across different TCR systems, we
utilized a dataset that includes peptide libraries tested against
three distinct murine TCRs. A broad range of physicochemical
properties, including amino acid composition, dipeptide com-
position, and tripeptide features, were integrated into the ma-
chine learning-based feature selection framework to identify
key features contributing to binding affinity. Our analysis re-
veals that leveraging optimized feature subsets not only simpli-
fies the model complexity but also enhances predictive perfor-
mance, enabling more precise identification of TCR-peptide in-
teractions. The results of our feature selection method are con-
sistent with findings from hybrid approaches that utilize both
sequence and structural data as input as well as experimental
data. Our theoretical approach highlights the role of feature se-
lection in peptide-TCR interactions, providing a powerful tool
for uncovering the molecular mechanisms of the T-cell response
and assisting in the design of more advanced targeted therapeu-
tics.
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Introduction
The host adaptive immune response, primarily driven by the
activation of T cells, orchestrates a precise and targeted de-
fense by recognizing and responding to specific antigens (1,
2). T-cell receptors (TCRs) interact with peptide-major histo-
compatibility complex (MHC) through low-affinity, transient
contacts, allowing them to identify the correct antigen while
remaining sensitive to subtle molecular differences (3, 4).
This low-affinity binding also allows for TCR cross-reactivity
with diverse peptide sequences, broadening their recognition
potential (2, 5). Accurately predicting peptide binding to
specific TCRs is crucial for advancing immunotherapy and
vaccine development, and for clarifying the underlying mi-
croscopic picture of immune response (5–8). However, this
task remains very complex due to the immense variability
of TCRs and peptides, in addition to the intricate nature of

molecular mechanisms governing their binding affinities (9–
12).

There are multiple experimental techniques available for in-
vestigating TCR-peptide interactions, including crystallogra-
phy (13), surface plasmon resonance (14), and yeast display
systems (15–17). Compared to other methods, yeast dis-
play offers a unique high-throughput advantage, allowing the
screening of a large number of peptide variants simultane-
ously, which enables the rapid identification of high-affinity
interactions. In a recent study, a yeast surface display system
was developed to screen highly diverse libraries of peptides
presented by MHC molecules, identifying those capable of
binding specific TCRs (5). By coupling this approach with
deep sequencing, the sequence diversity of peptides recog-
nized by different TCRs was mapped, which helped to un-
cover critical binding motifs and interactions. After multiple
rounds of selection, their dataset was refined to include hun-
dreds of high-affinity peptide-TCR interactions. This com-
prehensive experimental dataset opened opportunities for fur-
ther computational techniques to clarify better the pertinent
molecular features of TCR-peptide interactions.

The use of machine learning methods for predicting TCR-
peptide interactions is a promising direction of studies that
has the potential to overcome the limitations of traditional
methods (18–23). By leveraging large datasets and incor-
porating structural, physicochemical, and sequence informa-
tion, these models can learn the underlying principles that
govern TCR specificity and binding affinity (24). Developing
machine learning models to predict strong binder peptides for
specific TCRs, however, involves several key challenges (24).
A major one is the TCR cross-reactivity phenomenon when
a single TCR can recognize and bind to multiple peptides
(24–26). This property complicates the identification of true
strong binders versus weaker ones, as a peptide that strongly
binds to one TCR may bind weakly to another. One initial
step for addressing this issue is to develop context-specific
models to identify features that drive specificity in distinct
functional scenarios, such as TCRs restricted to a common
MHC allele that bind diverse peptide antigen sets. Addition-
ally, quantification of such features in the context of the di-
versity to which strong binders are themselves identified, rep-
resents an important quantification of cross-reactivity within
a given TCR system.
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Recent computational frameworks (27–33), have made no-
table advancements in predicting TCR-peptide binding affini-
ties. The Rapid Coarse-grained Epitope TCR (RACER)
model is one particular example of a hybrid structural and
sequence-based approach that uses a pairwise energy model
trained on deep sequencing and crystallography data to iden-
tify strong and weak TCR-peptide binders. While RACER
provides useful predictions, it relies on the availability of
a relatively sparse set of experimentally determined TCR-
peptide structures. Furthermore, RACER and other similar
predictive models aim to benefit from leveraging biophys-
ical features to subsequently require a reduced number of
positive (1) and negative (0) examples in training. These
models are trained on a collection of TCR-peptide systems
and can handle variations in either the TCR or peptide. In
our study, RACER was employed to analyze datasets re-
stricted to the same MHC allele (all IEk), where it was pre-
viously used to resolve strong and weak TCR binding pro-
files. However, these models do not comprehensively eval-
uate all of the variability within a given binding class when,
for example, we have a fixed TCR and a large number of
confirmed strong and weak binding peptide sequences cor-
responding to that single TCR. Incorporating an ML-based
classifier could complement models like RACER by extract-
ing more nuanced, context-specific features that confer bind-
ing specificity. This synergistic approach could improve pre-
dictive accuracy within specific binding classes, enhancing
our understanding of TCR-peptide interactions.

Our study aims to apply machine learning techniques with
feature selection to improve the accuracy of TCR-peptide
specificity prediction to identify motifs that most highly re-
solve strong and weak binders given available large-scale
binding datasets. By identifying the most relevant features,
among a comprehensive set of physicochemical features that
determine binding interactions, our model effectively distin-
guishes between strong binders and weak binders. We ap-
ply various feature extraction techniques and examine the ro-
bustness of each approach. To test our theoretical method,
the analysis is applied to three distinct peptide pools. The
model’s ability to account for meaningful peptide variations
that drive specificity is evaluated for each case, based on suc-
cessful predictions of strong- and weak-binding TCR-peptide
pairs.

Table 1. Summary of selected peptide datasets associated with each TCR. Data
obtained from Ref. (5). The thresholds for partitioning the data into strong (1) and
weak (0) binders after five rounds of affinity-based selection were obtained using
RACER model (27) (see text for details).

TCR Threshold Peptides (0/1)

2B4 13 98/98

226 6 987/987

5cc7 23 234/234

Materials and methods

Dataset and data preprocessing. We employed a highly
diverse set of peptide-MHC complexes derived from yeast-
displayed peptide-MHC libraries, which includes three dis-
tinct types of murine TCRs: 2B4, 226, and 5cc7 (5). These
TCRs were selected due to their distinct mechanisms of pep-
tide recognition, which arise from variations in their struc-
ture, cross-reactivity, and interactions with MHC molecules
(34). The peptide libraries for each TCR were subjected to
multiple rounds of selection to enrich for TCR-binding pep-
tides, which were subsequently analyzed using deep sequenc-
ing. The final dataset consisted of hundreds of unique pep-
tide sequences, each characterized by specific TCR recogni-
tion motifs. In each dataset, each peptide sequence is char-
acterized by a “Round 5" value, which refers to the fifth and
final iteration in this selection process, where peptides that
bind strongly to the TCR are identified. During each round
of selection, the weaker binding peptides are gradually fil-
tered out, and the frequency of peptides with stronger TCR
affinities increases. Five rounds of affinity-based selection
ultimately yield a list of sequences with their corresponding
abundance, which indicates how many times that particular
peptide was detected during sequencing and is proportional
to their binding affinity.
Since the frequencies observed in Round 5 give a direct mea-
sure of how strongly and frequently each peptide binds to the
TCR, we can classify peptides into strong binders (class 1)
and weak binders (class 0) based on Round 5 selections by
setting a threshold value calculated from the RACER model.
To calculate the threshold value of Round 5 for separating
strong binders from weak binders, a subset of 500 cases
was selected from each dataset (5), with 140 instances des-
ignated as strong binders for training purposes. For each
strong binder, a set of 1000 decoy sequences was generated
by randomizing the peptide sequence and pairing it with the
corresponding TCR structure as a comprehensive negative
dataset that balanced the strong binders as was done pre-
viously (28), resulting in a total of 140,000 decoy binders.
The remaining cases were allocated for testing. We then
applied RACER to compute thresholds that effectively sep-
arate the distributions of strong and weak binders for each
TCR-pMHC case. The RACER model calculates binding en-
ergies by integrating high-throughput data from previously
confirmed TCR-peptide interactions and crystal structures to
train a residue-specific energy matrix. This energy matrix,
combined with available structural templates, is used to quan-
tify TCR-peptide binding affinities. For our peptides of inter-
est, we utilized crystal structures with PDB IDs 3QIB, 3QIU,
and 4P2R corresponding to 2B4, 226, and 5cc7 TCRs, re-
spectively.
We predicted the binding energies and corresponding Z-
scores for training and testing cases. To determine the thresh-
old separating strong and weak binders, we analyzed his-
tograms of the Z-scores for all 500 cases to identify the peaks
of the distributions for both classes (Fig. 1). Fig. S1 presents
the histograms for peptide libraries targeting 2B4, 226, and
5cc7 TCRs. The threshold was defined as the midpoint be-

2 | bioRχiv

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 13, 2024. ; https://doi.org/10.1101/2024.10.11.617901doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.11.617901
http://creativecommons.org/licenses/by-nc-nd/4.0/


tween the peaks of the strong and weak binder distributions.
Finally, we ranked all 500 cases in the dataset based on their
Z-score values which are obtained by the RACER model, and
mapped these thresholds to the corresponding values reported
in Round 5 of the dataset (5). The specific thresholds for each
case are listed in Table 1. Using the calculated threshold val-
ues for each dataset, all peptides were partitioned into class
1 (strong binder) and class 0 (weak binder) cases. Since the
dataset was highly imbalanced, with far more weak binders
than strong binders, we performed controlled undersampling
of the weak binders, which consisted of randomly selecting a
subset of weak binders equal in size to the number of strong
binders. This method helped mitigate the effects of class im-
balance to improve the performance of the machine learning
classifiers (35).

Extraction of physicochemical features for peptides.
To capture the physicochemical properties of peptides that
are crucial for their interaction with TCRs, we extracted mul-
tiple features using primary amino acid sequence informa-
tion. This is a critical step for implementing machine learning
models. To evaluate the robustness of our feature selection
technique, we employed three different methods for extract-
ing physicochemical features from the sequence data.

propy package. First, we extracted a comprehensive set of
physicochemical features from the amino acid sequence of
each peptide using the propy package (36). These features are
broadly categorized into different groups, including charge,
amino acid composition, dipeptide composition, autocorre-
lations, chemical composition features, and sequence order
information. The physicochemical features generated using
propy package have been utilized in a wide range of ma-
chine learning models, including classification of antimicro-
bial peptides (37, 38) and predicting protein-protein interac-
tions (39).
Among the features extracted by propy, amino acid compo-
sition and dipeptide composition are particularly important
for understanding the interactions between TCRs and various
peptides, as they provide insights into how specific residues
and their combinations influence binding affinity (24). For a
peptide of L residues, amino acid composition, which repre-
sents the fraction of each amino acid type, reads as

fi = Ni

L
, i = 1,2,3, ...,20 (1)

where Ni is the number of amino acids of type i. Since there
are 20 amino acids, the amino acid composition comprises 20
features among the propy features.
Similarly, the dipeptide composition represents the fraction
of each possible dipeptide within the peptide, calculated as:

fi,j = Ni,j

L−1 , i, j = 1,2,3, ...,20 (2)

where Ni,j is the number of dipeptides consisting of amino
acids of type i, j. Consequently, the dipeptide composition
contributes 202 = 400 distinct features to the set of propy
features.

Tripeptide Composition. Tripeptide composition represents
the fraction of each possible tripeptide (formed by three con-
secutive amino acids) within a peptide sequence. The tripep-
tide composition is calculated as:

fi,j,k =
Ni,j,k

L−2 , i, j,k = 1,2,3, ...,20 (3)

where Ni,j,k is the number of tripeptides containing amino
acids of type i, j,k. Tripeptide composition, which comprises
203 = 8000 features, provides deeper insight into the pep-
tide’s structure by capturing the frequency of every unique
combination of three consecutive amino acids. Since the
propy package does not provide tripeptide composition fea-
tures by default, we extracted these features separately.

N -gram language model. A sequence of amino acids,
whether forming a short peptide or a large protein, can be
viewed as a text document, where amino acids function as the
fundamental units, analogous to words (40). Text mining and
natural language processing have been previously employed
for bioinformatics applications such as protein clustering
and classification, protein-protein interaction (PPI) predic-
tion, protein folding analysis, and non-coding RNA identi-
fication (41, 42).
To analyze amino acid sequences using natural language pro-
cessing methods, we can use the N -gram language model,
which is a probabilistic model used to predict the next item in
a sequence based on the preceding items. A N -gram is a con-
tiguous sequence of N items from a given sequence of text.
In our context, each amino acid represents an item (analogous
to a word), and a N -gram would be a sequence of N amino
acids. While propy can efficiently compute the frequency of
single amino acids and dipeptides, the resulting dipeptide fre-
quencies tend to be sparse, as many dipeptides may not ap-
pear in a given peptide. By incorporating common N -grams
including unigrams (single amino acids), bigrams (pairs of
amino acids), and trigrams (triplets), the model goes beyond
mere composition analysis and captures the sequential order
and local motifs within peptides (43). Moreover, the robust-
ness of the overall predictive model can be enhanced by com-
bining different types of amino acid composition, including
unigrams, bigrams, and trigrams. This approach ensures that
if one feature set fails to capture critical patterns, the other
can compensate, leading to a more comprehensive and accu-
rate analysis of peptide-TCR interactions.
Since all peptides are composed of 20 standard amino acids,
the maximum vocabulary sizes for unigrams, bigrams, and
trigrams are 20, 202 = 400, and 203 = 8000, respectively.
This creates a fixed-size vocabulary that can be represented as
a numerical feature vector, where each element corresponds
to the frequency or presence of a specific N -gram in the se-
quence. The process of vectorizing a peptide sequence using
the N -gram approach begins by breaking down each peptide
into unigrams, bigrams, and trigrams, which serve as the fun-
damental building blocks of the sequence. Next, a complete
vocabulary is composed of all possible N -grams that can oc-
cur within the sequence. Once the vocabulary is established,
the sequence is vectorized by converting the frequency of
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propy package Tripeptide composition N-grams

AAQVAFLKAATKA AAQVAFLKAATKA

LASSO Feature Selection

Peptide-TCR 

Interaction Sites

Fig. 1. Schematic summary of the feature selection process for predicting peptide binding to T-cell receptors (TCR).

each N -gram into a numeric vector. The resulting vector-
ized transformation, which has lower sparsity compared to
features generated by propy, enables efficient processing of
peptide sequences by machine learning algorithms.

Data Normalization. For each peptide, the quantitative val-
ues of the physicochemical properties extracted from the
methods described above have different numerical scales. It
is important to initially re-scale all these values to fall be-
tween 0 and 1 so that every property is considered with a
similar weight. To normalize this quantity to be in the range
0 and 1, we use the following re-scaling expression,

ẑ = (z −zmin)
(zmax −zmin) , (4)

where z is the original value of the physicochemical prop-
erty, zmin and zmax are limiting values for this property for
all considered proteins, and ẑ is the normalized one that is
specifically utilized in the analysis. It is important to note
that to prevent leakage from the training set to the test set, we
performed data normalization only after splitting the datasets
into training and test sets.

Feature Selection. In studying TCR-peptide interactions,
our primary goal is to identify which specific physicochemi-
cal features – such as amino acid properties or sequence mo-
tifs – are most important for distinguishing between strong
and weak binders. However, the extracted feature set often
consists of high-dimensional data, meaning the number of
features may exceed the available data, with some being ir-
relevant or highly correlated. Using all these features with-
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Fig. 2. Comparative significance of various physicochemical features in differentiating strong and weak peptide binders of the 2B4 TCR. LASSO feature selection was
performed using features generated using (a) propy (including dipeptide composition), (b) tripeptides composition, (c) N-gram language model (incorporating unigram,
bigram, and trigram). In each case, the LASSO hyperparameters were set to be λ = 0.005.

out selection can result in overfitting, where the model learns
noise rather than meaningful correlations, reducing its pre-
dictive performance (37). To mitigate this issue, we employ
LASSO (The Least Absolute Shrinkage and Selection Oper-
ator) techniques that mathematically assign zero weights to
irrelevant or redundant features (37, 44). The overview of
our feature selection procedure is presented in Fig. 1.

Results
The relative significance of various physicochemical features
distinguishing strong binders from weak binders in 2B4, 226,
and 5cc7 peptide libraries are presented in Figs. 2, 3, and 4,
respectively. We performed feature selection using three cat-
egories of properties: propy features, tripeptide composition,
and N-gram language model (unigram, bigram, and trigram).
This multi-faceted feature generation approach enabled us to
extract key patterns and properties that significantly influence
TCR binding behavior.

Features Selection for 2B4 data. Our feature selection
method for 2B4 data yields different but in many aspects
overlapping selected features that contribute to strong binder
peptides. Among features generated from the propy tool, the
most important dipeptide compositions such as ‘AF’, ‘FF’,
‘TK’, and ‘LK’ likely represent amino acid pairs that signifi-
cantly enhance peptide stability or affinity to the TCR [see
Fig. 2 (a)]. Similar motifs are predicted when tripeptide

compositions are utilized in the feature selection method, as
shown in Fig. 2 (b). Specifically, the tripeptide motif ‘AFF’
can be broken down into two dipeptides ‘AF’ and ‘FF’, both
of which are captured by the propy method. The N-gram
method also yields similar results, although selected features
do not fully overlap with the results of other methods [see
Fig. 2 (b)].
This observation is strongly supported by the experimental
data, which highlights the amino acid preferences at key TCR
contact positions (P3, P5, and P8) during peptide-MHC in-
teractions (5). Notably, positions like P3 show a clear pref-
erence for aromatic residues such as phenylalanine (F) and
tyrosine (Y), aligning with the dipeptides ‘AF’ and ‘FF’, and
the tripeptide ‘AFF’, identified in our study. The overlap
between dipeptides ‘AF’, ‘FF’ and tripeptides ‘AFF’, ‘AFL’
across different feature selection methods demonstrates that
these motifs are important for strong binders. This consis-
tency is also reflected in the N-gram results, where motifs
such as ‘AF’ dominate, highlighting the key structural pat-
terns that underlie strong TCR-peptide interactions.

Features Selection for 226 data. For the 226 TCR dataset,
our feature selection method also identified several key
physicochemical features that distinguish strong binders
from weak binders, as presented in Fig. 3. Among the fea-
tures generated by the propy tool [see Fig. 3(a)], dipeptide
compositions such as ‘TK’, ‘FF‘, ‘AF’ emerged as the most
important contributors to peptide-TCR affinity. These mo-
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Fig. 3. Comparative significance of various physicochemical features in differentiating strong binder and weak binder for peptides targeting 226 TCR. LASSO feature selection
was performed using features generated using (a) propy (including dipeptide composition), (b) tripeptides composition, (c) N-gram language model (incorporating unigram,
bigram, and trigram). For LASSO the hyperparameters were set to be λ = 0.015, λ = 0.015, and λ = 0.01, respectively.

tifs likely play critical roles in stabilizing peptide-TCR in-
teractions by complementing specific amino acid residues on
the TCR. Structural analysis of the 226 TCR-pMHC (PDB
ID:3QIU) reveals that the ‘TK’ motif contributes to electro-
static interactions, and ‘FF’ and ‘AF’ reinforce hydropho-
bic interactions that enhance the stability of the peptide-
MHC complex. Definitions of other selected propy features,
including PolarityD2075, GearyAuto_Hydrophobicity5, and
QSOSW12 are presented in Table S1 in the supplementary
information.
Specifically, in the ‘TK’ motif, the weakly acidic threonine
residue (‘T’ at P8) can interact via hydrogen bonding with as-
paragine on the TCR’s CDR3β loop. This interaction is iden-
tified through the contact map generated from the 3QIU crys-
tal structure with a maximum distance (rmax = 8.5 Å) (Fig.
S5(c),(d)). Moreover, for the ‘FF’ and ‘AF’ motifs, which do
not exhibit these features in the original peptide, the RACER-
derived pairwise amino acid energy matrix (Fig. S4(b)) pre-
dicts a favorable interaction between phenylalanine (‘F’) and
alanine (‘A’). Similarly, alanine is predicted to favorably in-
teract with proline (‘P’), methionine (‘M’), and phenylala-
nine (‘F’). These findings suggest that the ‘F’ residues in the
peptide engage in favorable interactions with ‘A’ and other
hydrophobic residues on the TCR. These hydrophobic inter-
actions contribute to the stability of the peptide-TCR com-
plex, underscoring the importance of the ‘FF’ and ‘AF’ mo-
tifs in facilitating binding through hydrophobic contacts.
Tripeptides such as ‘ATK’, ‘AFF’, and ‘FFK’ were identi-
fied as highly significant for distinguishing strong binders
(see Fig. 3(b)). These tripeptides can be deconstructed

into dipeptides like ‘TK’, ‘FF’, and ‘AF’, which contain
residues that are also prominent in the dipeptide analysis.
The similarity between the tripeptide and dipeptide results
reinforces the importance of these specific motifs, suggest-
ing that key residues such as lysine (‘K’) and phenylalanine
(‘F’) play central roles in facilitating hydrogen bonding and
electrostatic interactions with the TCR’s complementarity-
determining regions (CDRs). For example, lysine (‘K’) in
the ‘ATK’ and ‘FFK’ motifs likely contributes to salt bridge
formation, enhancing electrostatic interactions between the
peptide and TCR. Similarly, phenylalanine (‘F’) in the ‘AFF’
and ‘FFK’ motifs strengthens binding through hydrophobic
interactions, which help stabilize the peptide-TCR complex
within the MHC groove.
Furthermore, feature selection based on the N-gram lan-
guage model [see Fig. 3(c)] revealed a strong overlap with
the amino acid patterns identified in both the dipeptide and
tripeptide analyses. The most important features included
‘TK’, ‘ASK’, ‘AFF’, and ‘ATK’, which closely correspond
to amino acids found at critical TCR contact points. This
consistency across different feature selection methods rein-
forces the importance of these motifs in contributing to strong
peptide-TCR interactions. The recurrence of ‘TK’, in par-
ticular, highlights the role of lysine in driving strong elec-
trostatic interactions, while ‘AFF’ and ‘FFK’ emphasize the
contribution of hydrophobic residues like phenylalanine (F)
in maintaining binding affinity and structural stability.

Features Selection for 5cc7 data. Our feature selection
approach, trained using features generated from propy tool,
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Fig. 4. Comparative significance of various physicochemical features in differentiating strong binder and weak binder for 5cc7 peptides. LASSO feature selection was
performed using features generated using (a) propy (including dipeptide composition), (b) tripeptides composition, (c) N-gram language model (incorporating unigram,
bigram, and trigram). For LASSO the hyperparameters were set to be λ = 0.01 for all cases.

predicts that ‘PY’, ‘FL’, ‘FK’, and ‘FR’, are crucial in de-
termining peptide stability and TCR binding affinity [see
Fig. 4(a)]. These dipeptides are likely involved in stabiliz-
ing peptide-MHC interactions, with ‘FL’ and ‘FK’ contribut-
ing to hydrophobic and polar interactions, respectively. Hy-
drophobic residues such as phenylalanine (F) are known to
form important nonpolar contacts that help to stabilize the
peptide in the TCR binding groove, enhancing binding affin-
ity. Definitions of the acronyms for other selected propy fea-
tures — QSOgrant5 and NormalizedVDWVC2 — are pre-
sented in Table S1 of the supplementary information.

When the tripeptide compositions are considered [see Fig.
4(b)], motifs like ‘VAF’, ‘LKA’, and ‘FLK’ emerged as
highly significant. These tripeptides suggest a combination
of hydrophobic, polar, and charged interactions, which en-
hance the binding potential by promoting stable contacts of
different natures with the TCR. For instance, ‘LKA’ features
a combination of leucine (‘L’) and alanine (‘A’), hydropho-
bic residues, and lysine (‘K’), a positively charged residue,
both of which are known to interact favorably with the TCR’s
(PDB ID: 4P2R) binding pocket through hydrophobic and
electrostatic interactions. Notably, the ‘LKA’ motif does not
appear in the original peptide contact map generated with
a maximum distance (rmax = 8.5 Å) (Fig. S5(e),(f)). How-
ever, analysis of the energy matrix (Fig. S4(c)) reveals that
leucine (‘L’) has high affinity for proline (‘P’), alanine (‘A’),
and phenylalanine (‘F’), suggesting potential hydrophobic in-
teractions with these residues on the TCR. Similarly, lysine
(‘K) shows high affinity for tryptophan (‘W’), alanine (‘A’),
phenylalanine (‘F’), and leucine (‘L’), indicating possible fa-

vorable interactions with these residues. Furthermore, ala-
nine (‘A’), due to its small side chain, provides structural flex-
ibility, allowing optimal positioning of neighboring residues
for interaction. These findings suggest that the ‘LKA’ motif
may enhance peptide-TCR interactions through hydrophobic
and electrostatic interactions, as indicated by the energy ma-
trix analysis, even though these interactions are not apparent
in the contact map.
The N-gram language model (Fig. 4(c)) further enlightened
the importance of these motifs by identifying similar patterns.
Features like ‘VAF’, ‘LKA’, ‘RS’, and ‘KA’ were among the
most important for distinguishing strong binders, reflecting
the same key interactions seen with the dipeptide and tripep-
tide compositions. The prevalence of hydrophobic residues
such as valine (V), phenylalanine (F), and leucine (L) in these
motifs emphasize the critical role in stabilizing the peptide-
MHC-TCR complex.

Prediction of strong vs weak binders using selected
features. After selecting the essential physicochemical fea-
tures from each peptide dataset, we aim to leverage these at-
tributes to accurately and reliably predict strong and weak
binders for each TCR type through logistic regression mod-
els. Table 2 summarizes key performance metrics, includ-
ing Accuracy, Recall, F1 Score, Matthews Correlation Coef-
ficient (MCC), and AUC (Area Under the ROC Curve), av-
eraged over 10 cross-validation sets with an 80/20 train/test
split for each fold.
For the 2B4 dataset, all three selected feature categories
(propy, tripeptide composition, and N-gram) performed ex-
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Table 2. Performance comparison of feature selection methods for three TCR data sets. Metrics include Accuracy, Recall, Matthews Correlation Coefficient (MCC), F1 Score,
and AUC for trained baseline models (Logistic Regression) using selected features from LASSO. Values reflect the average across 10 cross-validation sets, with an 80/20
train/test split for each fold.

TCR Data Feature Category Accuracy Recall F1 Score MCC AUC

2B4 propy 0.94 0.94 0.93 0.87 0.96

tripeptide 0.96 0.96 0.96 0.92 0.97

N-gram 0.96 0.96 0.96 0.93 0.98

226 propy 0.77 0.77 0.79 0.55 0.78

tripeptide 0.74 0.74 0.76 0.49 0.66

N-gram 0.73 0.73 0.76 0.48 0.7

5cc7 propy 0.82 0.82 0.83 0.65 0.83

tripeptide 0.85 0.85 0.86 0.71 0.87

N-gram 0.85 0.85 0.85 0.79 0.84

ceptionally well, with predictive accuracy ranging from 0.94
to 0.96 and an AUC reaching up to 0.98. These findings in-
dicate that for this dataset, the selected features were highly
informative, resulting in predictive models that perform well
in identifying strong binders with high precision. The strong
performance of the models for the 2B4 dataset can be at-
tributed to the lower cross-reactivity of 2B4 i.e. it binds to a
narrower range of peptides compared to more flexible TCRs,
making the binding interactions easier to model and predict.
Furthermore, a smaller dataset (98 peptides) with clear se-
quence patterns provides the machine-learning models with
less variability to account for, resulting in higher accuracy
and AUC values.

In contrast, the 226 datasets demonstrated somewhat lower
overall performance across all feature methods. Accuracy
and AUC values were notably lower, with propy yielding the
highest performance at 0.77 accuracy and 0.78 AUC, while
the tripeptide and N-gram methods scored marginally lower.
The relatively low MCC values (0.55 for propy and below
0.50 for others) suggest that the model’s predictions are less
consistent for this dataset. This result is likely due to the
existence of more complex or less distinguishable features
between strong and weak binders. The relatively lower per-
formance of the models for the 226 dataset can be attributed
to several factors related to the biological properties of the
226 TCR and the complexity of its dataset. The 226 TCR
is known for its high degree of cross-reactivity (34), mean-
ing it can recognize and bind to a much wider range of pep-
tide sequences than more specific TCRs like 2B4. This broad
recognition profile introduces greater variability in the pep-
tide sequences classified as binders and non-binders, making
it harder for machine learning models to identify clear pat-
terns that distinguish strong from weak binders. Thus, the
larger size of the 226 dataset, which includes 987 peptides,
increases the diversity of peptide sequences.

For the 5cc7 dataset, however, performance is intermediate,
with accuracy values ranging from 0.82 to 0.85 and an AUC
as high as 0.87 for the tripeptide method. Here, the MCC

values indicate that the models were relatively effective, with
the N-gram method achieving the highest MCC (0.79), sug-
gesting that it provided a more balanced prediction between
strong and weak binders compared to the other methods.
The F1 scores consistently reflect solid performance in iden-
tifying true strong binders, particularly with the tripeptide
method (F1 = 0.86). The moderate performance of the mod-
els for the 5cc7 dataset can be explained by the balance be-
tween specificity and cross-reactivity in the 5cc7 TCR and
the size of the dataset. Unlike the highly specific 2B4 TCR
or the highly cross-reactive 226 TCR, 5cc7 exhibits an inter-
mediate level of specificity. It binds to a moderately diverse
set of peptides, leading to less sequence variability than 226
but more than 2B4.
It is important to highlight that while our datasets include an
equal number of strong and weak binders, the overall pep-
tide data are highly imbalanced in favor of weak binders over
strong ones. Quantitatively, for a peptide of L residues, the
total number of possible peptide sequences are 20L, and an
overwhelming majority of these sequences are weak binders.
This discrepancy presents significant challenges in accurately
predicting peptide specificity. However, despite these chal-
lenges, the close alignment between our F1-score and recall
metrics (Table 2) indicates that the model achieves balanced
performance in handling false positives (FP) and false nega-
tives (FN). The balance between Recall and F1-score is es-
pecially critical in this context, where accurately identifying
strong binders is essential, but misclassifying weak binders
as strong could lead to a false sense of antigen coverage for a
particular therapy. The fact that both metrics are comparable
across datasets and feature selection methods indicates that
the models are balanced in their sensitivity and specificity
and are robustly selecting relevant features to resolve strong
and weak binders (39).

Comparison with the RACER model. Our feature
selection-based approach for predicting TCR-peptide bind-
ing, like several before it (30, 31, 33, 45–47), is purely
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Fig. 5. Predicted heatmaps using RACER model for (a) 2B4, (b) 226, and (c) 5cc7 peptide libraries. The sequence for the peptide is represented via outlined boxes.

sequence-based, relying on the selection of key features de-
rived from amino acid sequences. By focusing on the se-
quence characteristics of peptides, we identified key dipep-
tide and tripeptide motifs that are enriched in strong binders.
These selected motifs, without relying on detailed struc-
tural information, were essential for distinguishing between
high- and low-affinity peptide antigens for specific TCR.
In contrast, the RACER model adopts a hybrid approach
by combining sequence data with structural insights to pre-
dict TCR-peptide binding affinities (21, 27, 28, 48, 49).
RACER utilizes a pairwise energy framework, integrat-
ing residue-specific energy matrices derived from high-
throughput data on experimentally confirmed TCR-peptide
interactions, along with crystal structures of these com-
plexes. The structural templates provided by crystal data al-
low RACER to quantify the binding energy with greater pre-
cision by modeling the physical interactions at atomic reso-
lution. After identifying motifs enriched in strong binders,
we then aimed to apply RACER’s pairwise energy frame-
work to test our sequence-based approach. This allowed us
to pinpoint the specific positions within the peptide sequence
where these motifs are predicted to have the most significant
impact on binding energy.
To determine the positions of the selected features, we per-
formed in silico mutation in all two-adjacent (selected dipep-
tide motifs) and three-adjacent (selected tripeptide motifs)
amino acids at every peptide amino acid position containing
the selected features. We then used RACER to estimate the
binding energy for each mutant peptide. The binding energies
for all possible mutant peptides are plotted for selected dipep-
tides (Fig. S2) and tripeptides (Fig. S3). We then compared
the binding energy of each oligopeptide motif located at each

position to the baseline binding energy of the wild-type (WT)
TCR-peptide (WT given by the black dashed line in Figs. S2
and S3). If a mutated TCR-peptide showed increased binding
energy (above the dashed line), it indicates that the mutation
enhanced the binding affinity above that of the WT (strong)
binding peptide, suggesting that the underlying importance
of the selected dipeptide at that specific position. On the
other hand, mutation may also result in significantly lower
predicted affinities.This decrease indicates that certain sub-
stitutions disrupt key interactions necessary for strong bind-
ing, effectively identifying sequences that function as weak
binders. By recognizing these sequences, we not only vali-
date the specificity of our selected motifs but also enhance
our understanding of the structural and sequence determi-
nants that diminish binding affinity. This dual identification
of both strong and weak binders underscores the robustness
of our approach in mapping the landscape of TCR-peptide
interactions.
For example, Fig. S2(a) shows that for 2B4, dipeptide ‘AF’
at positions (2,3), (3,4), and (5,6) increased binding affinity,
with a particularly significant increase at positions (5,6). Al-
though all three TCRs retain a WT-like TCR recognition mo-
tif, each TCR exhibits some variation in positional preference
(Fig. 5). For instance, whereas 2B4 can recognize Lysine at
position P8 (P5 in Ref. (5)), 5cc7 accommodates Leucine
and Arginine at P8. The P6 (P3 in Ref. (5)) TCR con-
tact position showed the least variance across all three TCRs,
with either Phenylalanine or Valine being required for 2B4
and 5cc7, and Phenylalanine, Lysine, or Arginine being re-
quired for 226. As previously reported (5), 226 demonstrated
a greater degree of cross-reactivity, being able to recognize
897 unique peptide sequences. The larger number of peptides
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recognized was largely due to a higher tolerance for substitu-
tions at TCR-neutral and MHC-contacting residues, such as
position P9 (Fig. 5(b)).

Combining the predictions identified in our feature selection
framework with RACER-predicted position-specific infor-
mation provides an opportunity to construct heatmaps (Fig.
5) enriched in beneficial dipeptide compositions that max-
imally resolve strong and weak binding peptides. These re-
sults can be directly compared to those from the original work
by Birnbaum et al. (5), which provided a similar description
of binding motifs acquired experimentally. Notably, while
their work identified single amino acid hotspots indicative of
strong binders by analyzing the abundance of amino acids in
strong-binding peptides, our approach focuses on dipeptide
motifs, identifying them based on their enrichment in strong
binders relative to non-binders.

This methodological difference is evident when consider-
ing anchor residues like P4 and P12, which are restricted to
isoleucine, leucine, valine, and lysine, respectively.While ly-
sine is ubiquitous among all strong binders, it is similarly
present in weak binders and thus does not emerge as a distin-
guishing amino acid at P12 in our analysis (Fig. 5). This un-
derscores one way in which conserved residues might mask
a model’s discriminatory power were it to identify those fea-
tures as important for strong binding. In addition to this, in
the experimental data from (50), heatmaps are generated after
three round of selection, whereas in our approach, we gener-
ate heatmaps after five round of selection.

Despite these challenges, the key motifs identified through
our sequence-based feature selection are corroborated by
RACER’s binding energy predictions. Particularly in the case
of the 2B4 TCR, where we predict the enrichment of spe-
cific motifs such as the ‘AFF’ motif. RACER’s energy cal-
culations confirm that these motifs contribute significantly to
binding affinity (as indicated by larger interaction values with
complementary amino acids ‘WSQ’ in the 2B4 TCR CDR3β
domain, and ‘RA’ and ‘G’ in the CDR3α domain), aligning
with experimental observations. The 2B4 TCR seems well-
characterized by one important motif, as evidenced by the
peptide position curves showing a single sharp peak corre-
sponding to a small number of features (Fig. S2(a) and S3(a)).
In contrast, the 226 and 5cc7 TCRs display different bind-
ing characteristics, highlighting the unique specificity of each
TCR. For 5cc7, we observe lower intensity compared to 2B4,
with a wide and smooth peak across a larger number of fea-
tures (Fig. S2(c) and S3(c)). For 226, we observe sharp peaks
at different positions for a large number of features, which
aligns well with the high cross-reactivity we previously men-
tioned for 226 (Fig. S2(b) and S3(b)). In both 2B4 and 226,
we observe the importance of features containing phenylala-
nine (‘F’) in the first part of the peptide across positions P3
to P7. This is because the peaks for dipeptide and tripep-
tide motifs containing ‘F’ are prominent in these positions.
When considering dipeptide and tripeptide motifs, ‘F’ ap-
pears in all positions P3–P7, whereas in single amino acid
analysis, ‘F’ does not appear in all positions since only the
best location is selected. This indicates that ‘F’ can be a very

important feature when combined with other amino acids in
motifs. These findings underscore the power of our model
in identifying critical dipeptide and tripeptide motifs, which
are more informative than single amino acid motifs, thereby
enhancing predictive performance and providing deeper in-
sights into TCR-peptide interactions.

Discussion
The interaction between T-cell receptors (TCRs) and peptide-
MHC complexes is a critical component of the adaptive im-
mune system, enabling T cells to detect and respond to spe-
cific antigens. This process, however, is complicated by
the TCR cross-reactivity, where a single TCR can recognize
multiple peptide sequences. Understanding cross-reactivity
is important as many TCRs are known to confer coverage
across many distinct peptide systems, but it also presents a
major challenge in predicting specific TCR-peptide binding
affinities, which is a critical need in immunotherapy and vac-
cine design. In this study, we aim to leverage machine learn-
ing techniques with refined feature selection to improve the
accuracy and generalizability of TCR-peptide interaction pre-
dictions. Our findings show that focusing on specific physic-
ochemical features significantly enhances the model’s ability
to distinguish between strong and weak binders, offering new
insights into the molecular mechanism of TCR recognition.
The number of peptides in our final dataset reflects the vary-
ing specificity and cross-reactivity of the TCRs, which in
turn explains the differences in model performance. The
2B4 dataset, with only 98 peptides, highlights the high speci-
ficity of the 2B4 TCR, leading to clearer binding patterns and
superior model performance. In contrast, the 226 dataset,
which includes 987 peptides, highlights the TCR’s greater
cross-reactivity, making binding patterns more complex and
harder to capture with our feature selection method, resulting
in lower performance metrics. The 5cc7 dataset, with 234
peptides, demonstrates intermediate specificity and moderate
cross-reactivity, aligning with its intermediate model perfor-
mance. This variation in dataset sizes reflects the inherent
biological properties of each TCR, with more specific TCRs
resulting in smaller datasets and higher model performance.
We employed the LASSO feature selection method to ex-
tract meaningful physicochemical properties from the pep-
tide sequences to identify key features that contribute to bind-
ing affinity, including amino acid composition, dipeptide fre-
quency, and tripeptide motifs. Among these, dipeptide com-
positions and tripeptide compositions emerged as particularly
important, consistently ranking among the most predictive
for distinguishing strong from weak binders across the dif-
ferent TCR datasets. This suggests that the arrangement of
amino acids in short peptide sequences plays a crucial role in
TCR recognition. This optimized feature set provides a ro-
bust foundation for understanding peptide-TCR interactions
and highlights the importance of tripeptides in the subsequent
analysis.
The importance of selected tripeptides in TCR-peptide bind-
ing can be understood by examining the molecular interac-
tions between peptide residues and the CDR3α and CDR3β
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loops of the TCR, as illustrated in Fig 1. It is known that
a single amino acid in the peptide can simultaneously inter-
act with residues from both the CDR3α and CDR3β regions
(34). For example, if we consider a symbolic tripeptide se-
quence like ‘LTP’ the first residue, ‘L’, may form contacts
with both CDR3α and CDR3β, providing a dual interaction
site. In contrast, the second and third residues, ‘T’ and ‘P’,
may predominantly interact with only CDR3β. This picture
highlights how specific residues within a tripeptide can in-
fluence the binding strength by creating multiple interaction
points, making tripeptides like ‘LTP’ particularly important
for determining binding affinity. The ability of certain tripep-
tides to establish multiple points of contact contributes to the
overall specificity and affinity of TCR recognition.
While our sequence-based approach successfully identi-
fies key dipeptide and tripeptide motifs enriched in strong
binders, it has certain limitations. Our purely sequence-
driven model may miss rare or unconventional motifs and
struggle in cases of extreme TCR cross-reactivity. Addition-
ally, our findings are derived from a relatively limited set of
TCR-peptide interactions, which may limit the generalizabil-
ity of the identified motifs across all TCRs, particularly those
with unique binding preferences. Moreover, certain TCRs
may prioritize interactions with MHC residues over peptides,
a factor that our current model does not fully address. To
overcome these limitations, future work will explore hybrid
models that integrate structural insights, allowing for more
accurate predictions of TCR-peptide dynamics. Despite these
challenges, this approach is able to extract meaningful motifs
for resolving TCR specificity based on TCR and peptide pri-
mary sequences. Future work will be directed at using these
learned features to train a classification model for identify-
ing strong binding pairs from a variety of possible TCR and
peptide test sequences.
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