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A B S T R A C T

Population-based computational approaches have been developed in recent years and helped to gain insight into
arrhythmia mechanisms, and intra- and inter-patient variability (e.g., in drug responses). Here, we illustrate the
use of multivariable logistic regression to analyze the factors that enhance or reduce the susceptibility to cellular
arrhythmogenic events. As an example, we generate 1000 model variants by randomly modifying ionic
conductances and maximal rates of ion transports in our atrial myocyte model and simulate an arrhythmia-
provoking protocol that enhances early afterdepolarization (EAD) proclivity. We then treat EAD occurrence as a
categorical, yes or no variable, and perform logistic regression to relate perturbations in model parameters to the
presence/absence of EADs. We find that EAD formation is sensitive to the conductance of the voltage-gated Na+,
the acetylcholine-sensitive and ultra-rapid K+ channels, and the Na+/Ca2+ exchange current, which matches our
mechanistic understanding of the process and preliminary sensitivity analysis.
The described technique:

� allows investigating the factors underlying dichotomous outcomes, and is therefore a useful tool improve our
understanding of arrhythmic risk;

� is valid for analyzing both deterministic and stochastic models, and various phenomena (e.g., delayed
afterdepolarizations and Ca2+ sparks);
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� is computationally more efficient than one-at-a-time parameter sensitivity analysis.

© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).
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Method details

Population-based approaches have been widely adopted in the recent years in the field of
computational cardiac electrophysiology [1–8]. The classical analysis performed with a single action
potential (AP) model has been extended to the study of the properties emerging in a broad group of
models (called “population”). Each individual in the population is obtained from the same parent
model (called “baseline”) by randomly perturbing several parameters. These differences in model
parameterization reflect the natural variability among cells in a tissue (intra-subject variability) or
among different individuals (inter-subject variability). Thus, by investigating a more realistic and
comprehensive scenario, this approach allows obtaining new insights in several aspects of myocyte
function in health and disease, including arrhythmia mechanisms and responses to drugs [9].
Moreover, the assessment of sensitivity of model predictions to parameter perturbations ensures
enhanced robustness of the results of computational studies [10]. However, the choice of appropriate
mathematical and statistical tools is fundamental when performing sensitivity analysis on a
population of hundreds or thousands AP models. Here, we illustrate the use of multivariable logistic
regression to analyze the factors underlying the occurrence of a dichotomous outcome (such as the
development of cellular arrhythmogenic events).
Explanation of the methodology

Regression analysis is a statistical process used to estimate relationships among variables in a
system [11,12]. It is usually applied to correlate modifications in independent variables (called
“predictors”) to the consequent effect on dependent variables. The result of regression analysis is a
function of the independent variables (called “regression function”), which is used to predict the
values of the dependent variables (e.g., to estimate a certain outcome after changes in fixed system
properties). More specifically, the result of this analysis is the set of regression coefficients used in the
regression function. The general principles of regression analysis are formalized in the following
equation: [32_TD$DIFF]

X * B =Y��Y

where X and Y are the matrices of the independent and dependent variables, respectively. Based on X
and Y, this technique allows the determination of the regression coefficients (in the matrix B), which
can be used to estimate Y (Y�) given X.

In the field of computational cardiac electrophysiology, sensitivity analysis of population of AP
models is usually performed to assess how variations in model parameters (e.g., conductances of ion
channels) affect model outputs, such as AP duration (APD) or Ca2+ transient amplitude. In this case,
when the outputs of interest are continuous variables, linear multivariable regression analysis can be
performed, and the resulting regression function allows predicting how these outputs change (in a
continuous range) upon modifications in model parameters [1]. In a population of nm AP models,
obtained by varying np parameters in a baselinemodel, the size of thematrix of the predictorsX is nm x
np (rows x columns). The matrix Y reports different outputs (no) identified in each model of the
population (size nm x no). In general, the matrix B contains a coefficient describing the effect of
perturbation in each parameter on each output (size np x no).

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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A different statistical process, the multivariable logistic regression, can be used instead when the
outputs of interest are described as Boolean variables (i.e., yes/no, true/false, presence/absence) [2,8].
This analysis allows estimating how perturbations in model parameters affect the probability that a
certain dichotomous outcome will occur. A typical example (described in the next section) is the
occurrence of cellular arrhythmogenic events such as early afterdepolarizations (EADs). The
regression function used here is the logistic curve, an S-shape (sigmoidal) curve with values between
0 and 1. These extremes represent, respectively, low and high probabilities of occurrence of a certain
event.

Logistic regression analysis correlates perturbations to model parameters (used to determine the
matrix of the predictors X as described below) to the values in Y, which consist of binary variables
corresponding towhether or not the outcome of interest has occurred. The resultingmatrix B contains
a set of np + 1 regression coefficients (array b) for each output studied (Fig. 1). Each set includes np
coefficients (b1-bnp) corresponding to the effect induced by perturbations in the np parameters, and an
additional coefficient b0 (called “intercept term”). In the genericmodel configuration (described by the
array x), values in b are used to assess the probability P of occurrence of the desired output as follows:

P(x,b) = 1/(1 + exp (–(b0 + x1*b1 + x2*b2 + . . . + xnp*bnp)))

In the next sectionwe describe how logistic regression is applied to the study of EAD formation and
how its results can be interpreted. We will also explain how this analysis is implemented with
MATLAB (The MathWorks, Natick, MA, USA). Our codes, generated with the MATLAB version R2016a,
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Fig. 1. Schematic representation of predictor, coefficient, and output matrices in logistic regression analysis. In the example
presented in this paper, thematrix of the predictorsX contains information about the scale factors used to generate a population
of 1000 AP models (only 100 cases are shown here for the sake of simplicity) by perturbing the baseline value of 19 parameters
(defined in Table 1). The same proarrhythmic protocol is simulated with all the models in the population, and the presence of
EADs is assessed in each case, thereby obtaining the binary elements of the matrix of the outputs Y. The result of logistic
regression analysis is the matrix of the coefficients B, used to estimate the effect of perturbations in model parameters on the
probability of arrhythmogenesis. Here both Y and B are arrays because only one output (i.e., EAD development) is evaluated in
this example. Values in X (obtained from the scale factors via log-transformation and conversion into z-scores, see text) and B
(regression coefficients, shown also in Fig. 4) are dimensionless quantities, while elements of Y are Boolean variables.
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are freely available for download at the following webpages: somapp.ucdmc.ucdavis.edu/Pharmacol-
ogy/bers & elegrandi.wixsite.com/grandilab/downloads.

Example of application

An application of the described methodology is the evaluation of the factors influencing
arrhythmia proclivity. In the example presented here, we apply logistic regression to study the
mechanisms responsible for the development of EADs, treated as a Boolean variable.

In a recent computational study [13], we used our establishedmodel of AP and Ca2+ handling in the
human atrial myocyte [14] to describe a novel mechanism for phase-3 EADs. In canine atrial
preparations, Burashnikov and Antzelevitch have shown that phase-3 EADs arise after termination of
atrial fibrillation (AF), and are the trigger for re-induction of fibrillation [15]. Analogous triggered
phenomena have been described in canine pulmonary veins with autonomic nerve stimulation [16],
or combined acetylcholine (ACh) and epinephrine challenge [17]. These protocolsmimic simultaneous
sympathovagal discharges that commonly precede AF onset [18–20]. Experimental studies have
shown that initiation of these EADs occurs secondary to APD shortening by ACh (via ACh-sensitive K+

current, IK,ACh), potentiated sarcoplasmic reticulum (SR) Ca2+ release, and enhanced Na+/Ca2+

exchange (NCX) [16]. We demonstrated that these allow for cardiac Na+ current (INa) recovery and
non-equilibrium reactivation, which ultimately drives the EADs [13]. Based on data from models of
acute AF, and data describing the early electrophysiological changes in AF [21], we speculated that
EADs are a likely source of ectopy early in disease progression (e.g., paroxysmal AF), particularly in the
pulmonary veins,where the short AP and late AP plateau (at negativemembrane potential) induced by
autonomic challenge can facilitate non-equilibrium INa reactivation. The same phenomenon was
previously observed in mouse ventricular myocytes [22].

The described arrhythmogenic process involves many elements that are important regulators of
myocyte electrophysiologyand Ca2+ handling (such as INa, NCX and SERCA activity, and cholinergic and
adrenergic signaling cascades). Thus, the use of logistic regression analysis is particularly useful in this
context to assess the impact of each ion current or transporter on arrhythmia mechanisms, thereby
providing potentially useful insight for the identification of therapeutic targets.

Here we use our published model [13] as a baseline to build a population of 1000 elements
(nm =1000) by randomly modifying 19 parameters (np =19) corresponding to conductances (G) of ion
currents and maximal rates (v) of ion transports (see parameter definition in Table 1). We follow the
approach described by Sobie [1]: for each individual, we modify the baseline value of each parameter
Table 1
Definition of the perturbed model parameters.

Parameter Definition

GNa Conductance of the Na+ current
GNaB Conductance of the background Na+ current
vNKA Rate of the Na+/K+ pump
Gto Conductance of the transient outward K+ current
GKr Conductance of the rapidly activating K+ current
GKs Conductance of the slowly activating K+ current
GKur Conductance of the ultra-rapidly activating K+ current
GKp Conductance of the plateau K+ current
GK1 Conductance of the inward rectifier K+ current
GK,ACh Conductance of the acetylcholine-sensitive K+ current
GCl(Ca) Conductance of the Ca2+-dependent Cl� current
GClB Conductance of the background Cl� current
GCa Conductance of the L-type Ca2+ current
GCaB Conductance of the background Ca2+ current
vPMCA Rate of the plasmalemmal Ca2+ pump
vNCX Rate of the Na+/Ca2+ exchanger
vSERCA Rate of the SERCA pump
vRyR Rate of the SR Ca2+ release via ryanodine receptors
vleak Rate of the SR Ca2+ leak via ryanodine receptors
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by multiplication for a log-normally distributed random scale factor k. We obtain these factors using
the following MATLAB command:

k = exp(s*randn)

[33_TD$DIFF]where randn is a function that generates normally distributed pseudorandom numbers, and s is the
parameter that determines the degree of variability. More specifically, s is the standard deviation of
the set of scale factors k generated for each parameter (around themean valuem =1). We use here the
same value ofs (0.1) for all the parameters. Alternatively, different standard deviations can be used to
reproduce the degree of variability experimentally determined for each parameter [6,7,23]. Note that
while this choice does not alter the subsequent steps of this analysis, when increasing the range of
variability of the model parameter, one needs to (i) discard non-physiological models; and (ii) ensure
representative coverage of the parameter space (convergence of sensitivity coefficients upon stable
values) by increasing the number ofmodel variants [2]. All scale factors are allocated into the 1000�19
matrix K, and used to simulate the different models in our population. Because of the relatively small
s chosen here for simplicity, APs and Ca2+ transients in our population fall within the normal range of
experimental variability (Fig. 2), and sensitivity coefficients converge upon stable values with
population sizes as small as 100 variants (not shown, see also [4]).

We repeat the proarrhythmic protocol described in [13] with our 1000 AP model variants to
evaluate the occurrence of EADs in each simulation.We start all the simulations from the steady-state
conditions obtained by pacing the baseline model at 1Hz in [34_TD$DIFF]the presence of ACh (0.1mM). Then, we
simulate instantaneous administration of isoproterenol (ISO,1mM) at the beginning of a 20-s phase at
10-Hz pacing, followed by 5 s at 1Hz to mimic spontaneous termination of tachyarrhythmia (Fig. 3A).
Presence of EADs is assessed during the 5 beats at 1-Hz pacing, thereby creating the array y with
1000 Boolean variables (0 for absence and 1 for occurrence of at least one EAD). EADs are detected as
positive deflections of the membrane potential derivative during AP repolarization.

We perform logistic regression using the MATLAB command mnrfit, which fits a nominal
multinomial logistic regression model for the predictor matrix X and the output matrix Y (Fig. 1):

B =mnrfit(X, Y)

The matrix X is here derived from the matrix K containing the scale factors. First, K is
log-transformed to obtain the matrix KL:

KL = log(K)

In our case, since each column in K (i.e., 1000 scale factors for the same parameter) has m =1 and
s = 0.1, each column inKL hasm = 0 ands = 0.1. To obtainX,KL is converted into z-scores by subtracting
[(Fig._2)TD$FIG]
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the mean across all models and dividing by the standard deviation. More specifically, we perform the
following operation for each column:

x = (kL�mkL)/skL

where kL and x are generic columns in KL and X, and mkL and skL are mean and standard deviation
computed on the column kL, respectively. Therefore, the scale factor k corresponding to x, a generic
element of X, can be determined with the following formulation: [35_TD$DIFF]

k = exp(skL�x�mkL)

The resulting matrix of the predictors X has the same size of K (1000�19) and m = 0 and s =1 for
each column, independently of the properties of K, which facilitates interpretation of the results, as
described below. In fact,Kmay contain either the scale factors (as in this example, where each column
has [36_TD$DIFF]m =1) or the actual parameter values used in each model of the population (where the mean of
each column corresponds to the parameter value in the baseline model). The degree of variation can
also be different for each parameter. Since each column in K may have different m and s values, log-
transformation and following conversion into z-scores ensure that each column inX has samem ands
(0 and 1, respectively). Since herewe are interested in only one output (no=1), thematrix Y is reduced
to one column (1�1000), containing the binary information about presence/absence of EADs. In this
case, the input ofmnrfitmust contain positive integer category numbers, thuswemodify the array y to
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indicate the presence of EADs with 1 and absence of EADs with 2 (rather than 0). Also B, the output of
mnrfit, consists of only one column (hence called array b) of size 1�20, containing the intercept term
b0 and the 19 coefficients corresponding to the perturbed parameters.

When simulating the proarrhythmic protocol with our baseline model, we obtained EADs in the
first 3 beats in the 1-Hz phase (Fig. 3A, see asterisks) [13]. Different behaviors are observed within the
population, as shown in Fig. 3B and C. The overall analysis shows that our protocol induced EADs in
563 out of 1000 model variants (Fig. 3C, inset). In this sub-population of EAD-positive cells, only one
episode (see yellow example in Fig. 3B) or multiple EADs (black example) are predicted. In
18 simulations, a delayed afterdepolarization develops between the last beat at 10-Hz and the first
stimulated beat at 1-Hz (not shown). In these cases, included in the analysis, EADs are observed in 9
out of 18 models.

The 20 coefficients obtained with the logistic regression analysis are reported in Fig. 4A. The use of
X (rather than K) allows easily interpreting these coefficients to assess changes in the probability that
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the cell will develop EADs (PEAD). Except for b0, the values of all the other regression coefficients reflect
the effect of 1-standard deviation increase from the (log-transformed) baseline value of the
corresponding model parameter. Hence, all these coefficients can be directly compared, even if the
related parameters are characterized by different variability ranges around different mean values [2].
Augmenting the parameters associated with positive coefficients increases PEAD. This probability
increases also when reducing the parameters associated with negative coefficients. The largest bars
correspond to model parameters that mostly influence the development of EADs, namely GNa, GK,ACh,
vNCX, and GKur. In Fig. 4Bwe quantify the effect of modulation in these parameters (and in GKs) on PEAD.
These traces are obtained by assuming changes in one parameter at the time (with respect to the
baseline value), using the following equation:

PEAD(x, b) = 1/(1 + exp (–(b0 + x*b)))

[33_TD$DIFF]where b is the regression coefficient corresponding to the perturbed parameter, and x is the degree of
variation (log-transformed and converted into z-score). Herewe show the effects of [37_TD$DIFF]�50%modulation
in these model parameters (i.e., corresponding to variations of the scale factors between 0.5 and 1.5).
Note that, given a scale factor for a certain parameter, the corresponding x is obtained using the values
of mkL and skL estimated for the same parameter in the population, as described before. In absence of
perturbations (i.e., when x=0), PEAD depends only on b0. In this case, which corresponds also to the
probability calculated for the baseline model (where the array x is null), PEAD is high (�0.86). Indeed,
we obtain EADs in this condition (Fig. 3A).

As described in our previous paper, these phase-3 EADs are a consequence of non-equilibrium
reactivation of INa, and [38_TD$DIFF]their occurrence can be prevented by blocking INa with ranolazine [13]. In our
preliminary sensitivity analysis (see Supplementary data in [13]) we also showed that the same result
can be obtained with 5% reduction in GNa, but not with�5% modulation in other model parameters.
Thus, finding that GNa is the most important parameter (largest bar in Fig. 4A, and steepest
relationship in Fig. 4B) is not unexpected. Fig. 4B shows that also changes in GK,ACh and vNCX have
important and opposite effects on PEAD: increased GK,ACh (negative coefficient) and decreased NCX
activity (positive coefficient) are protective. The involvement of NCX is also to be expected. Indeed, our
proposed mechanism involves INa reactivation, which is favored by NCX-mediated AP plateau
prolongation. NCX enhancement is induced by Ca2+ augmentation upon re-establishment of normal
pacing frequency. Decreased vNCX shortens the AP, thereby hindering INa reactivation. The same effect
is also obtained when the repolarizing ACh-sensitive and ultra-rapid K+ currents are enhanced (i.e.,
increased GK,ACh and GKur). Thus, while IK,ACh-induced APD shortening is required to hasten INa
recovery from inactivation, excessive IK,ACh prevents EADs by shifting the balance between
repolarizing and depolarizing currents. Indeed, we had previously observed that increasing [ACh]
prevents EADs in the model, primarily by increasing the repolarization rate [13].

We compare the scale factor values relative to these parameters in the two EAD-positive and EAD-
negative sub-populations. Fig. 4C shows the results of a statistical analysis performed (and plotted)
with the MATLAB command boxplot. The distributions of the scale factors of the most influential
Table 2
Properties of the scale factor distributions in the two sub-groups.

Parameter EAD Median Notches (low/high) Mean Standard deviation

GNa Yes 1.0466 * 1.0384/1.0548 1.0519 0.0948
No 0.9439 0.9359/0.9519 0.9482 0.0815

GK,ACh Yes 0.9567 * 0.9495/0.9639 0.9589 0.0803
No 1.0672 1.0588/1.0756 1.0723 0.0906

vNCX Yes 1.0193 * 1.0102/1.0284 1.0206 0.1007
No 0.9667 0.9571/0.9763 0.9744 0.0948

GKur Yes 0.9982 0.9898/1.0067 0.9991 0.0962
No 1.0101 1.0006/1.0195 1.0100 0.0990

GKs Yes 1.0002 0.9925/1.0079 1.0012 0.0902
No 1.0067 0.9960/1.0174 1.0100 0.0989

*Asterisks indicate “strong evidence” (95% confidence) that the medians differ [25].
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parameters (GNa, GK,ACh, and vNCX) are markedly different in the two sub-groups (Fig. 4C). This simple
analysis shows that the median values are different with a significance level of 0.05 (Fig. 4C and
Table 2). Instead, there are no differences between the median values for GKur, despite this parameter
is shown to be important for PEAD (see Fig. 4A). For completeness, we also report an example relative to
a parameter that does not play a significant role in EAD formation in this context, such as GKs, i.e., the
maximal conductance of the slowly activating K+ current. The low regression coefficient associated to
this parameter (Fig. 4A)makes PEAD insensitive to perturbations in GKs (see flat relationship in Fig. 4B).
Accordingly, also the distributions of the scale factors associated to GKs in the two sub-populations are
not different (Fig. 4C and Table 2).

Conclusions

Multivariable logistic regression analysis, applied here to investigate the factors responsible for
arrhythmia development, is suitable for studying any process characterized by dichotomous outcome
in both deterministic and stochastic models of myocyte electrophysiology and Ca2+ handling. For
example, this predictive method has been applied successfully to analyze a stochastic model of Ca2+

sparks in the ventricular cell [2], and to investigate the drug-induced loss of automaticity in a
deterministic model of the sinoatrial myocyte [8]. By using receiver operator characteristic analysis,
Lee et al. [2] showed that logistic regression has the same predictive power of support vectormachine,
an established method for classifying binary data [24]. They also determined that this methodology is
computationally more efficient than one-at-a-time parameter sensitivity analysis [2]. Therefore,
application of logistic regression to populations of mathematical models is an efficient and effective
technique that allows gaining novel biological insight and generating experimentally testable
hypotheses, thereby improving our understanding of cardiac function in health and disease.
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