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1  | INTRODUC TION

Securing live birth with no chromosomal abnormality is considered to 
be the preferable ultimate goal in assisted reproductive technology. 
Failure of embryo development, or miscarriage, results in loss of time 
and cost. Moreover, in order to avoid ongoing aneuploid gestations, it 
is preferable to distinguish euploid embryos from aneuploid or mosaic 
embryos when possible. Reliable selection of embryos prior to em-
bryo transfer has been investigated.

Morphological structures such as meiotic spindles, zona pelluci-
dae, vacuoles or refractile bodies, and polar body shapes have been 

investigated, but none of these features have been conclusively 
assessed as having prognostic value for the further developmental 
competence of oocytes.1 Conventional morphological evaluation 
has had limited success at identifying aneuploid embryos .2-6 Several 
observational studies have proposed time-lapse parameters as pre-
dictive of aneuploidy, though these have had diverging conclusions. 
Researchers have generally concluded that aneuploidy is reflected 
in cell cycle parameters up to day 2 of development because euploid 
embryos have been found to display more tightly clustered timings 
compared with aneuploid embryos .2,7-9 However, it is well-doc-
umented that embryos of good morphological quality may well be 

 

Received: 16 November 2018  |  Revised: 1 January 2019  |  Accepted: 28 January 2019

DOI: 10.1002/rmb2.12267

O R I G I N A L  A R T I C L E

Feasibility of artificial intelligence for predicting live birth 
without aneuploidy from a blastocyst image

Yasunari Miyagi1,2  |   Toshihiro Habara3 |   Rei Hirata3 |   Nobuyoshi Hayashi3

This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in 
any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
© 2019 The Authors. Reproductive Medicine and Biology published by John Wiley & Sons Australia, Ltd on behalf of Japan Society for Reproductive Medicine.

Clinical Trial Registry: This study is not a clinical trial.

1Medical Data Labo, Okayama City, Japan
2Department of Gynecologic 
Oncology, Saitama Medical University 
International Medical Center, Hidaka City, 
Japan
3Okayama Couple’s Clinic, Okayama City, 
Japan

Correspondence
Yasunari Miyagi, Medical Data Labo, 
Okayama City, Okayama Prefecture, Japan.
Email: ymiyagi@mac.com

Abstract
Purpose: To make the artificial intelligence (AI) classifiers of the image of the blasto-
cyst implanted later in order to predict the probability of achieving live birth.
Methods: A system for using the machine learning approaches, which are logistic 
regression, naive Bayes, nearest neighbors, random forest, neural network, and sup-
port vector machine, of artificial intelligence to predict the probability of live birth 
from a blastocyst image was developed. Eighty images of blastocysts that led to live 
births and 80 images of blastocysts that led to aneuploid miscarriages were used to 
create an AI‐based method with 5‐fold cross‐validation retrospectively for classifying 
embryos.
Results: The logistic regression method showed the best results. The accuracy, sen-
sitivity, specificity, positive predictive value, and negative predictive value were 0.65, 
0.60, 0.70, 0.67, and 0.64, respectively. Area under the curve was 0.65 ± 0.04 
(mean ± SE). Estimated probability of belonging to the live birth category was found 
significantly related to the probability of live birth (P < 0.005).
Conclusions: Classifiers using artificial intelligence applied toward a blastocyst image 
have a potential to show the probability of live birth being the outcome.

K E Y W O R D S

artificial intelligence, blastocyst, live birth, machine learning

www.wileyonlinelibrary.com/journal/rmb
mailto:
https://orcid.org/0000-0003-0962-033X
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:ymiyagi@mac.com


     |  205MIYAGI et Al.

aneuploid and suboptimal embryos may be euploid .2,10,11 The mor-
phological classification of aneuploidy or euploid, however, is not es-
tablished. Strict evidence may still be too weak to justify introducing 
time lapse in routine clinical settings .2

Preimplantation genetic testing for aneuploidy (PGT‐A) 12,13 is 
another method for examining chromosomal profiles. Performed on 
a small embryo biopsy prior to transfer, PGT‐A is an invasive tech-
nique for the embryo, which brings with it considerable ethical argu-
ments. Transfer of the embryo after the biopsy is prohibited in some 
countries, including Japan. Moreover, the chromosomal profiles are 
not always uniform and differ at the blastocyst sites. The chromo-
somal profile of the biopsy specimen does not always represent the 
profile of the rest of the embryo because of this genetic heterogene-
ity. A mosaicism in the trophectoderm (TE) is observed much more 
than has been appreciated, and a single TE biopsy apparently may 
not be representative of the complete TE .14 A global Internet‐based 
survey indicated more randomized controlled trials are needed to 
legitimize use of PGT‐A .15

There is now clear need for a means of noninvasively predicting 
live birth of euploid or not. We therefore created a system apply-
ing the machine learning approach of artificial intelligence (AI) and 
applied it to blastocyst images to seek a solution for this challenge 
as a pilot study. Our image analysis via AI was able to detect and 
recognize information that the conventional methods could not. 
We studied comparisons of six types of machine learning methods 
on blastocyst images and then made a classifier program that ret-
rospectively shows the probability of live birth. Confidence score 
that is the estimated probability of belonging to the live birth cate-
gory can be viewed in terms of ranking of blastocysts; thus, it will be 
easier for embryologist to select superior blastocysts for transfer. 
Herein, we present the feasibility of using the classifier in our system 
for predicting the probability of live birth.

2  | MATERIAL AND METHODS

2.1 | Blastocyst images

This study used fully de-identified data and was approved by the 
Institutional Review Board (IRB) at Okayama Couples’ Clinic (IRB 
no. 18000128‐04). This study carried out with explanation to the 
patients and a Web site with additional information and including 
an opt‐out option was set up for the study. After blastocyst forma-
tion followed by fertilization from May 2008 to January 2017 in 
Okayama Couples’ Clinic, an image of the incubated blastocyst was 
captured approximately 115 hours after insemination and saved on 
a USB storage device in JPEG format containing no data that could 
be used to identify the individual. The de-identified image data were 
transferred to the AI system off‐line. Eighty images of blastocysts 
that led to live births and 80 images of blastocysts that led to ane-
uploid miscarriages were used to create a machine learning based 
method for classifying embryos. These were respectively defined as 
in the normal category or abortion category. In other words, blasto-
cysts in the normal category in this study would become live birth 

with unknown chromosomal status and those in the abortion cat-
egory would result in abortion due to chromosomal abnormalities 
confirmed with genetic testing of chorionic villus samples. Then, this 
algorithm was applied to a random sampling of embryos that led ei-
ther to live birth or to aneuploid miscarriage.

2.2 | Preparation for AI

All de‐identified images stored off‐line were transferred to our AI‐
based system. Each image that had the artifacts outside the blasto-
cyst deleted to the greatest possible extent was cropped as a square 
and then saved in 100 × 100 pixel size. One-fifth of images from 
each category were randomly selected as test dataset and the rest 
used as training dataset. In this way, the test dataset could poten-
tially be used for validation, as the training dataset contained no test 
data. The number of training dataset items could be augmented as 
often seen in computer science because the blastocyst image pro-
cessing of the arbitrary degrees’ rotation led to being in the same 
category of the different vector data. For example, if an image was 
rotated at intervals of 90 degrees, four images with different vectors 
were generated.

2.3 | AI classifier

We developed a classifier program using machine learning with 
L2regularization 16,17 to categorize blastocyst images as either in 
the normal or abortion category and to obtain the mathematical 
probability for predicting normal category (as well as abnormal cat-
egory). The analysis used supervised machine learning methods: 
logistic regression ,18 naive Bayes ,19 nearest neighbors ,20 random 
forest ,21 support vector machine ,22 and neural network 23 with au-
tomatic option for hyper-parameters to find best classifier in each 
method. The automatic option of the neural network included ac-
tivation function to use between layers, the parameter multiplying 
the L2 term, the type of network module to use, the depth of the 
network, the total number of the network's trainable parameters, 
and the optimization method such as ordinary stochastic gradient 
descent with momentum or stochastic gradient descent using an 
adaptive learning rate that is invariant to diagonal rescaling of the 
gradients. We applied cross‐validation ,24-26 a powerful method 
for model selection, to identify the optimal method of machine 
learning. The suitable number of images for the training data was 
investigated by evaluating accuracy and variances using the 5‐fold 
cross-validation method, in which test data were analyzed using the 
training data, as follows. First, the test data were the initial one-
fifth of the images of each category's collection. Then, the test data 
were changed to the next one-fifth of the images. This procedure 
was repeated five times to encompass all images as potential test 
data. The number of augmented training images was analyzed until 
the accuracy and variance were likely to show the maximum and 
minimum value, respectively (Figure 1). When the optimal number 
of training data was obtained, the histogram of the probability for 
prediction was investigated.
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2.4 | Development environment

The development environment used in the present study was as fol-
lows: a Mac (CPU; 2 x 2.8 GHz Quad‐Core Intel Xeon, RAM; 20 GB) 
running OS X 10.11.6 (Apple, Inc, Cupertino, CA, USA); Mathematica 
11.3.0.0 (Wolfram Research, Champaign, IL).

2.5 | Statistics

Mathematica 11.3.0.0 (Wolfram Research, Champaign, IL, USA) was 
used for statistical analysis.

3  | RESULTS

3.1 | Logistic regression as machine learning

The preliminary calculations revealed logistic regression was the 
best among the abovementioned machine learning methods. The 
accuracy by six types of machine learning methods (logistic regres-
sion, naive Bayes, nearest neighbors, random forest, neural network, 
and support vector machine) is shown in Figure 2, respectively. As 
the number of the training data became larger, the average of the 

accuracies showed the maximum and the standard deviation (SD) 
of the accuracies showed the minimum simultaneously in each 
method. The best accuracy of all with small SD was 0.650 ± 0.075 
(mean ± SD) when the number of the training data was 640 in logis-
tic regression. Therefore, the logistic regression should be selected 
as the best method among the machine learning methods and the 
results for both accuracy and SD suggested 640 as the suitable num-
ber of training images and selected as the number for this study. 
Consequently, further investigations were carried out with logistic 
regression.

3.2 | AI classifier

Table 1 shows the results of the best classifier. The accuracy, sensitiv-
ity, specificity, positive predictive value, and negative predictive value 
were 0.650 ± 0.075, 0.600 ± 0.105, 0.700 ± 0.103, 0.669 ± 0.085, 
and 0.638 ± 0.069 (mean ± SD), respectively. Classifying an image 
took only less than one second on average. A probability of 0 or 1 
meant the image was categorized in the abortion category or normal 
category, respectively. When the probability was ≥0.5, the image 
was put in the normal category; otherwise, it was in the abortion cat-
egory. The histogram of the confidence score is shown in Figure 3. 

F I G U R E  1   The flow chart of making classifiers for blastocysts that were implanted and led to live birth or aneuploid miscarriages
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The confidence score increased, while the incidence of becoming 
live birth increased. A significant relationship was seen between the 
confidence score by the AI and the probability of incidence derived 
from the histogram (P < 0.005 by Cochran‐Armitage test). The linear 
regression model that fits the incidence are constructed as follows: 

y = 0.822 (±0.224) x + 0.128 (±0.129) (mean ± SE), x; the confidence 
score by the AI, y; the probability of incidence of becoming live birth. 
The area under the curve (AUC) of the receiver operating curve was 
0.6594 ± 0.043 (mean ± SE), and the 95% confidence interval ranged 
0.575‐0.743 as shown in Figure 4.

F I G U R E  2   The relationship of the number of training files and accuracy in regard to resulting in live birth or abortion by machine learning 
with logistic regression method, naive Bayes method, nearest neighbors method, neural network method, random forest method, and 
support vector machine method as shown in each panels. Mean ± SD of accuracy at the number of the training data is shown in each panel. 
Accuracy is likely to approach a maximum of 0.65 with the minimum of the standard deviation of 0.075 when there are 640 files in the 
logistic regression method
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4  | DISCUSSION

We obtained the classifier of the machine learning program using 
logistic regression with L2 regularization to classify blastocyststhat 
were implanted and led to live birth or aneuploid miscarriages. The 
best classifier with 640 selected training images showed the ac-
curacy, sensitivity, specificity, positive predictive value, and nega-
tive predictive value for predicting live birth were 0.650 ± 0.075, 
0.600 ± 0.105, 0.700 ± 0.103, 0.669 ± 0.085, and 0.638 ± 0.069 
(mean ± SD), respectively (Table 1). One study found the live birth 
rate per transfer was 0.668, by using clinical factors such as age and 
body mass index .27 Another study reported that the grading of the 
TE was the only statistically significant independent predictor of live 
birth outcome, and the live birth probabilities of grade A, B, or C of 
the TE were 0.499, 0.339, and 0.080, respectively .28 These reports 
cannot be directly compared with our results because all of the mis-
carriage causes were not aneuploidy. But they suggest a classifier 
with no harm inflicted, owing to the use of AI in this study, is supe-
rior to those clinical factors and the examinations of conventional 
morphology.

There are several reports of AI29 with using machine learn-
ing, which is mainly deep learning 30 with the convolutional neural 

networks for medicine .31 The deep learning required a lot of data 
such as more than several thousands to make a classifier. Because 
there are 160 images in this study, we studied machine learn-
ing except deep learning. The accuracies with the deep learning 
have been reported such as 0.997 for histopathological diagno-
sis of breast cancer ,32 0.90-0.83 for the early diagnosis of the 
Alzheimer's disease ,33 0.83 for urological dysfunctions ,34 0.72 ,35 
and 0.50 36 for the colposcopy, 0.83 for the diagnostic imaging of 
orthopedic trauma .37 In practical sterility, there are some clinical 
disincentives for the embryo to achieve live birth; the uterine fac-
tors 38—(intrauterine adhesions ,39,40 uterine myomas ,41 and en-
dometrial polyps),42 endometriosis ,43 ovarian function ,44 oviduct 
obstruction ,45,46 female diseases such as diabetes mellitus ,47 
immune disorder ,48,49 and uterine microbiota .50 Because these 
factors cannot be detected by the AI classifier from the image of 
the blastocyst, the accuracy, the sensitivity, and the specificity for 
live birth cannot reach to 1. These clinical characteristics of the 
blastocyst prevent the accuracy to predict live birth by any means 
from as close to 1. But we think the accuracy of 0.650 by the AI for 
predicting live birth distinguishing from abortion or miscarriage is 
feasible.

In our repeated calculations, the logistic regression continually 
showed the best result among the six machine learning methods ex-
amined. In short, the logistic regression models the log probabilities 
of each category with logistic functions of a linear combination of 
numerical features. However, further investigation in the future may 
prove other machine learning methods superior. Though we prelim-
inarily tested the deep learning method of the convolutional neural 
networks with training data increased to 20 000, this did not show 
better accuracy than logistic regression. However, the deep learning 
might be able to provide better accuracy if a greater number of train-
ing images can be obtained.

TA B L E  1   Discrimination ability of the best classifier. A classifier 
using a logistic regression method with L2 regularization with 640 
selected images as the training data showed the best results

Mean ± SD Median

Accuracy 0.650 ± 0.075 0.656

Sensitivity 0.600 ± 0.105 0.625

Specificity 0.700 ± 0.103 0.750

Positive predictive value 0.669 ± 0.085 0.647

Negative predictive value 0.638 ± 0.069 0.667

F I G U R E  3   The histogram of confidence score; the probability 
that is likely to be live birth class of blastocyst images of which the 
outcome had reveled as either live birth or abortion with aneuploid. 
The probability of 1 and 0 means that the image is very likely to 
belong to the live birth class and the abortion class, respectively

F I G U R E  4   The area under the curve of the best classifier for 
predicting live birth by the logistic regression method. The value 
of the curve is 0.659 ± 0.043 (mean ± SE), and the 95% confidence 
interval ranged 0.575‐0.743
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We found 640 to be a suitable number for the training data be-
cause the maximum value of accuracy was obtained, while the error 
was close to the minimum value, as shown in Figure 2. L2 regular-
ization seemed to sufficiently control over-fitting for reducing the 
error. This was a key process in that the smaller size of both error and 
bias may yield a good classifier. Only a few seconds were needed to 
finish calculation for an image once the classifier was established. 
We therefore can envision the classifier being applied for clinical use.

In one report, embryos categorized using a model in which the 
two morphokinetic variables are applied to predict chromosomal 
content by blastomere biopsy on day 3, followed by array-compre-
hensive genomic hybridization, showed a significant decrease in the 
percentage of chromosomally normal embryos for each decreasing 
category (A, 35.9%; B, 26.4%; C, 12.1%; D, 9.8%; P < 0.001) .51 Our 
method appears more viable than this because the classifier in this 
study induces no harm, and it shows a wider range of percentage for 
category prediction.

The receiver operating curve of the classifier shows the AUC 
value is 0.659 ± 0.043 (mean ± SE). Regarding the AUC of preim-
plantation genetic screening, a study reported a prediction model 
to classify embryos into high-, medium-, or low-risk categories, with 
an AUC of 0.72 .52 The model could be useful for ranking embryos 
and for prioritizing them for PGT‐A. However, it does have limited 
predictive value for patients undergoing IVF in general .53 In terms 
of the discriminative ability of an examination, the classifier using 
AI seems inferior to PGT‐A; therefore, the classifier in this study 
may need to be improved. Though the ability of the classifier in this 
study shows viability for classifying blastocysts, the histogram of 
the probability of live birth and abortion categories suggests correct 
assigning to the classifier was difficult for some images. More pre-
cise recognition of atypical images would improve our classifier and 
increase accuracy.

There are further potential ways of improving the classifier. 
First, more images for both the normal and abortion categories may 
be needed. In this pilot study, the analysis is restricted to simply 
evaluating a pregnancy once it has been detected. As the blasto-
cysts images are required prior to transfer, a further study with 
blastocyst images including images failed to implant is required in 
order to classify all embryos suitable for transfer by AI following 
this pilot study. It may also be important to statistically investigate 
the relationship of the probability given by the classifier with other 
clinical and morphological information, such as maternal age, body 
mass index, and TE grading. The data in this pilot study were not 
big and not stratified by such as maternal age or cycle history. The 
further investigation including the statistical stratification with 
more number of data might result in better results. Though we 
used images of blastocyst on only day 5 in order to reduce bias in 
this pilot study, the further investigation might be considered to 
prepare dataset by adding images of day 6 blastocyst that seem to 
grow late. Predictive ability could be improved for when the image 
and certain information are combined, and the outcome is inves-
tigated by statistical analysis. The proper conditions of capturing 
images should also be investigated and a standard determined so 

the classifier can be easily implemented at any institute. Blastocyst 
images showing chromosomal mosaicism or aneuploids confirmed 
by the PGT‐A were not included in this study. In further work, we 
would be able to develop an advanced classifier that can classify 
blastocyst images into three or more categories such as live birth, 
aneuploid, mosaic, and abortion.

Biologically, this method shows capabilities at least as good as 
other modes of examination. Ethically speaking, it inflicts no harm on 
the blastocyst. It offers economic savings for patients and/or clini-
cal institutes, gives quick and efficient diagnosis of the classification, 
and permits examination over distances when the image is trans-
ferred via the Internet.

We applied machine learning in the realm of AI to develop a clas-
sifier for predicting from an image of the blastocyst that was im-
planted. The classifier can predict the probability of becoming live 
birth with the accuracy of 0.65. The further validation to test the 
feasibility of a classifier by machine learning using the data of the 
images and conventional methods might be conducted. Only less 
than one second are needed to complete analysis of each image. This 
method does not harm the embryo, which can be transferred after 
establishing the prediction. Though further study may be required 
to validate the classifier, the system showed a possibility that the 
AI would be feasible for clinical use and may bring benefits to both 
patients and medical personnel.

The contents in this manuscript were approved as a patent in 
Japan; patent 6422142.
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