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1 |  INTRODUCTION

Infectious diseases not only reduce the productivity of 
farm animals, but also cause considerable losses related 
to disease control and cure measures (Ifende et al., 2014). 
Next to disease control measures such as vaccination and 
treatment, genetic selection of the host population can be 
used to combat infectious diseases in livestock (Davies 

et  al.,  2009; Deb et  al.,  2012; Jovanović et  al.,  2009). 
Many studies on host resistance or susceptibility to par-
ticular diseases have shown that host genetic variance can 
be successfully manipulated by use of selection and breed-
ing techniques (Bishop & MacKenzie,  2003; Bishop & 
Stear, 2003; Guy et al., 2009; Neibergs et al., 2014; Råberg 
et al., 2007). Anacleto et al. (2015) argue that selection and 
breeding are a proactive preventive measure, which may be 
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Abstract
The purpose of this study was to investigate the origin of the genetic variation in 
the prevalence of bovine digital dermatitis (DD) by comparing a genetic analysis of 
infection events to a genetic analysis of disease status. DD is an important endemic 
infectious disease affecting the claws of cattle. For disease status, we analysed binary 
data on individual disease status (0,1; indicating being free versus infected), whereas 
for infections, we analysed binary data on disease transmission events (1,0; indicat-
ing becoming infected or not). The analyses of the two traits were compared using 
cross- validation. The analysis of disease status captures a combination of genetic 
variation in disease susceptibility and the ability of individuals to recover, whereas 
the analysis of infections captures genetic variation in susceptibility only. Estimated 
genetic variances for both traits indicated substantial genetic variation. The GEBV 
for disease status and infections correlated with only 0.60, indicating that both mod-
els indeed capture distinct information. Together, these results suggest the presence 
of genetic variation not only in disease susceptibility, but also in the ability of indi-
viduals to recover from DD. We argue that the presence of genetic variation in re-
covery implies that breeders should distinguish between infected individuals versus 
infectious individuals. This is because epidemiological theory shows that selection 
for recovery is effective only when it targets recovery from being infectious.
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longer in duration of effect and in the long term less eco-
nomically eventful than other interventions. Thus, in addi-
tion to measures such as vaccination and treatment, genetic 
selection is an important tool to combat infectious diseases 
in livestock (and plants).

Disease traits in livestock are typically recorded as a bi-
nary disease status of an individual, indicating absence (0, 
non- infected) or presence (1, infected) of the disease in the 
individual (Gianola, 1982). Because the population average 
value of individual disease status is equal to the prevalence of 
the disease in the population (i.e. the fraction of individuals 
having the disease), models of binary disease status implicitly 
also address the prevalence of the disease. In applied animal 
breeding, disease status data are often analysed using simple 
linear mixed models, where the binary record of the individ-
ual is linearly related to its breeding value. Generalized linear 
mixed models, such as threshold models, are also used and 
are statistically much more appropriate (Gianola, 1982), but 
benefits over the simpler linear models are often found to be 
small in practice especially without adequate Bayesian priors 
(Hadfield & Nakagawa, 2010; Sorensen & Gianola, 2007).

However, neither linear models nor the commonly used 
generalized linear models consider the underlying dynamics 
of the transmission of infectious diseases in the population 
(Diekmann et al., 2012). Infectious diseases are fundamen-
tally different from non- communicable diseases, because 
the probability that an individual becomes infected depends 
on the other individuals in the herd. As a consequence, the 
prevalence of an infectious disease in a group of individ-
uals is a property of the entire group. For this reason, ep-
idemiologists believe that it is essential to consider the 
transmission dynamics when the aim is to predict the con-
sequences of interventions, such as vaccination (De Jong 
& Kimman, 1994) or genetic selection (Anche et al., 2015; 
Bishop & Woolliams, 2014; Diekmann & Heesterbeek, 2000; 
Nieuwhof et al., 2009).

1.1 | A sketch of the objective

The fact that infectious disease prevalence depends on the 
transmission dynamics in the population raises the question 
of how to interpret the breeding value of a traditional linear 
model applied to individual disease status (0/1; disease status 
model, DSM) which ignores these transmission dynamics. 
For example, whether such a breeding value would be differ-
ent from a breeding value based on epidemiological models, 
and whether or not it is predictive of response to selection 
(Hulst et al., 2021). This study is a step towards answering 
that question. Throughout, we will ignore variation among 
individuals in “infectivity”, that is the propensity of indi-
viduals to infect others, which is beyond the scope of this 
manuscript.

In the Appendix  S1, we summarize some basic epide-
miological theory. This appendix shows that the prevalence 
of an endemic infectious disease is determined by the basic 
reproduction number (R0). The R0 depends on the suscepti-
bility of individuals to become infected, and on their ability 
to recover from being infectious. Note, we allow for a dis-
tinction between being infected (i.e. having disease status 1) 
versus. being infectious (being able to infect others). Because 
a disease status of 1 usually means that an individual is in-
fected, the breeding value of a DSM is a function of both the 
susceptibility of the individual, and of its ability to recover 
from being infected (See also Bijma, 2020; Eqn 4.4). Hence, 
disease prevalence depends on the rate at which individuals 
recover from being infectious, whereas the usual breeding 
value from the DSM depends on the rate at which individuals 
recover from being infected. Hence, there is a discrepancy 
between common breeding values and the epidemiological 
factors that determine prevalence. (In the Appendix S2, we 
provide a numerical example showing that the prevalence 
is unaffected when individuals recover sooner from an in-
fected, but non- infectious, disease status, as is well- known 
in epidemiology especially in case of seasonality (Aron & 
Schwartz, 1984; Dietz, 1976) and vaccination (Anderson & 
May, 1982)).

The distinction between infected versus infectious disease 
statuses, as discussed in the previous paragraph, would be 
irrelevant for livestock genetic improvement when recovery 
would show no genetic variation. In other words, if the full 
heritable variation in binary disease status would originate 
solely from genetic variation in susceptibility, then there 
would be no need to distinguish between infected versus in-
fectious individuals, and an analysis of disease status may 
suffice (apart from other issues such as infectivity, and indi-
rect genetic effects due to susceptibility; Anche et al., 2015; 
Bijma,  2020). Hence, to optimize genetic selection against 
infectious diseases, we need to know whether genetic vari-
ation in binary disease status originates solely from genetic 
differences in disease susceptibility, or whether other factors 
such as recovery also play a role.

To address the question of whether or not the full her-
itable variation in binary diseases status originates solely 
from genetic variation in susceptibility, we compare results 
of a conventional analysis of binary disease status to those 
of an analysis of infection events. For the analysis of binary 
disease status, we will use a linear mixed model, hereafter 
referred to as a disease status model (DSM). For the anal-
ysis of infection events, we will use a generalized linear 
mixed model, hereafter referred to as infection model (IM; 
following Biemans et al., 2019). Hence, in the IM, the de-
pendent variable indicates whether (y = 1) or not (y = 0) 
a previously non- infected individual has become infected 
in a time interval. The DSM captures genetic variation in 
both susceptibility and recovery (Bijma, 2020), while the 
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IM captures genetic variation in susceptibility only. Thus, 
a difference between results of both models suggests the 
presence of genetic variation in recovery. To address this 
issue, we will use longitudinal data on digital dermatitis 
(DD), an endemic infectious claw disease in cattle, col-
lected in Dutch herds of dairy cattle. Our focus is on the 
differences in estimates of genetic parameters and breeding 
values for both traits, and on the interpretation of those dif-
ferences. Hence, our aim is not to find a superior statistical 
modelling strategy, but to understand the biological mean-
ing of the differences between an analysis of disease status 
versus an analysis of infection events (i.e. disease transmis-
sion) which are two distinct traits.

1.2 | Digital dermatitis

Biemans et al. (2018) developed a generalized linear mixed 
model for bovine digital dermatitis (DD). Bovine DD is an 
endemic infectious claw disease, found predominantly in the 
hind feet of dairy cattle and was first documented by Cheli 
and Mortellaro (1974). It can cause lameness and considera-
ble losses in terms of milk production (Frankena et al., 1991; 
de Jesús Argáez- Rodríguez et  al.,  1997; Rodríguez- Lainz 
et al., 1996; Somers et al., 2005). Van der Linde et al. (2010) 
estimated the cost per case for DD to be € 68. Animals that 
recover from DD are immediately susceptible again, and the 
disease can recur numerous times. The main transmission 
route is via pathogens shed into the environment by infected 
animals. This transmission often goes undetected (Biemans 
et al., 2018).

Since DD status is heritable, the prevalence of DD can 
be reduced by selective breeding (Van der Linde et al., 2010; 
Van der Waaij et al., 2005). Heritability estimates for DD sta-
tus (0/1) from linear- threshold models and logistic models (li-
ability heritability) range from 0.05 (low) to 0.29 (moderate) 
(Schöpke et al., 2015; Van der Waaij et al., 2005). Oberbauer 
et al. (2013) reported higher estimates of heritability of risk 
for DD along with other foot wart disorders of 0.30– 0.40. 
Van der Linde et al. (2010) pointed out that, because the re-
peatability of phenotypic measures on claw disorders is low, 
the accuracy of EBV can be increased by taking repeated 
observations. Based on results of conventional models, they 
argued that an annual genetic response of −0.2 per cent point 
in the prevalence of DD is possible.

1.3 | Aim

Here, we compare an analysis of disease status to an anal-
ysis of infection events for DD in Dutch dairy cattle, aim-
ing to better understand the origin of the genetic variation 
in DD. We will use GEBV and cross- validation to study the 

differences in both traits. As argued above, the analysis of 
disease status captures a combination of genetic variation in 
individual susceptibility and in the recovery of individuals 
from being infected. The analysis of infection events cap-
tures genetic variation in susceptibility only and is founded 
in epidemiological theory. The comparison of results for both 
traits, therefore, gives insight into the origin of genetic vari-
ation in disease status (i.e. susceptibility versus recovery), 
which has received very little attention in livestock genetic 
improvement.

2 |  MATERIALS AND METHODS

2.1 | Data sampling

The data used in this study were collected from November 
2014 to April 2015. The cows were just moved indoors be-
fore the start of this observation period. Observations on the 
DD- status of the hind feet of individual cows were recorded 
during that period from 12 dairy farms from across the 
Netherlands, which previously had been reported endemic 
for DD with mean herd- level prevalence of at least 20%. The 
number of cows per farm ranged from 88 to 189, and DD 
status of cows was recorded (in principle) at 11 observation 
moments per farm (Table 1). These 11 observation moments 
correspond to 10 observation intervals, during which cows 
could become infected or recover. The 11 observation mo-
ments were spaced bi- weekly to accurately document the 
changes in DD- status over time.

T A B L E  1  Number of animals enrolled, number of observations 
and intervals between observations in the study per farm

Farms

No. of 
cows on 
farm

No. of observations/
farm

Average Δt 
(days)¶ 

A 134 11 14

B 105 11 14

C 159 11 14

D 118 11 14

E 102 11 13.6

F 133 10 15.6

G 100 11 14

H 189 11 14

I 104 11 14

J 88 11 14

K 130 9 14

L 151 11 13.9

Total 1513 129 - 
¶Standard deviation of interval between observations averaged over all farms 
was ±1 day.
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The disease status of both hind feet was recorded prior to 
milking in the milking parlour. The detailed protocol for this 
procedure can be found in Biemans et  al.  (2018). In short, 
DD- status was recorded using the M- scoring technique, 
named after Mortellaro, following Cheli and Mortellaro 
(1974); see also (Berry et al., 2012; Döpfer et al., 2012; Relun 
et al., 2011). This system has 6 levels, M0 through M4.1. M0 
is when clinical DD is absent, M1 is an acute form with a le-
sion <2 cm, M2 is a late acute form with a lesion larger than 
2cm, M3 is an intermediate stage with a scab covering the le-
sion, M4 is a chronic stage with irregular skin (dyskeratosis) 
or superficial proliferation on top of an old lesion, and M4.1 
is a special case of M4 where in addition to dyskeratosis there 
is another M1 like acute lesion.

Each animal had on average 8.7 records on DD status, 
with a target of 11 observations per animal throughout the 
data collection period. (The average number of observations 
per cow is smaller than the target of 11, because DD status 
was not recorded for dry cows.) Other factors that may affect 
the prevalence of DD on farm were recorded also (Table 2). 
These included the herd of the animal, animal ID, pedigree 
in the form of dam ID and sire ID, the genotype of the an-
imal, birth date of the animal, coat colour of animal, breed 
of animal, parity, most recent date of calving, regular foot-
bath strategy at the farm (present/absent), manure scraper 
(present/absent) and days in milk (DIM) at the moment of 
DD- recording. Out of the 1513 animals that had phenotypic 

records, 1,401 animals were genotyped by the Dutch- Flemish 
cattle breeding cooperative (CRV). Genotyping was done 
with the Eurogenomics™ 10 k SNP chips. The 10 k geno-
types were imputed to ~80 k by CRV, using their standard 
imputation protocol. All cows were of the Holstein Friesian 
breed.

2.2 | Data restructuring and editing for the 
analysis of disease status

For the analysis of disease status, we used all records on 
disease status available in our data set, resulting in 12,195 
records on 1,401 cows at 12 farms. M- scores per foot were 
converted to binary format (0/1), where an M0 score was 
converted into 0, while feet with M1, M2, M3, M4 or M4.1 
were converted into 1. Next, the scores of the two- hind feed 
at an observation moment were averaged, so that animals 
were scored as yDSM  =  0, 0.5 or 1, 0 indicating two non- 
infected feet, 0.5 indicating one infected foot and 1 indicating 
two infected feet. Thus, an animal had up to 11 observations, 
one for each of the 11 observation moments (“time of obser-
vation”, TO). Parity was expressed in 5 classes: 1 through 4, 
and greater than or equal to 5. Days in milk was converted to 
months in milk (MIM). All the above data restructuring were 
done using the R programming software R- studio (R Core 
Team, 2013) and VBA macros for MS- Excel 2013.

2.3 | Data restructuring and editing for the 
analysis of infection events

For the analysis of infection events, only data on individuals 
that had at least one non- infected foot at the beginning of an 
observation interval are informative (only those individuals 
can become infected). Hence, while we used all informative 
records from the full original data set, the number of records 
is smaller for the analysis of infection events than for the 
analysis of disease status. Thus, only animals with at least 
one non- infected foot at the previous observation moment 
were included in the dependent variable for an observation 
interval. The resulting total number of records for the IM was 
6,099, which is only half of that for the DSM. The M- scores 
were converted to cases per foot. These cases (C) were con-
sidered as “successes” in binomial trials, with binomial total 
F = 1 or 2 non- infected feet at the start of the observation in-
terval. Hence, the resulting phenotypic measure (yIM = C/F) 
was either 0, 0.5 or 1, with a binomial total of F = 1 or 2 sus-
ceptible feet. For example, an animal with two non- infected 
feet at the previous observation moment (TO) and a single 
infected foot at the current observation moment had a y- value 
of 1 infected foot/2 feet = 0.5, and F = 2. Parity was defined 
in the same way as for the DSM but with fewer factor levels.

T A B L E  2  Phenotypic data in 2014– 2015*

Data header Description Levels

Animal Official ID/tag number, for example 
NL882123242

1513

Farm Farm code (A- L) 12

Sire ID Tag/ID of Sire 52

Dam ID Tag/ID of Dam 128

Breed Breed and its percentage, for example 
HF6ONB2 (meaning 6/8 HF)

18

Birth- Date Date of Birth - 

Colour Colour of cow 4

Foot Hind feet (left and right) 2

Manure 
scraper

Present/Absent (1/0) 2

Grazing Present/Absent (1/0) 2

Footbathing Present/Absent (1/0) 2

Genotyped Done/not Done (1/0) 2

Lactation Parity/Lactation number 11

Calving Date Date of last calving - 

Score 1−11 M scores for observation moments 
1– 11 (10 intervals)

6

PH Proliferative/Hyperkeratotic lesion 2

*Collected by Biemans et al. (2018).
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Genotype data were filtered as described in detail in 
Biemans et  al.  (2019). Only SNPs with a minor allele fre-
quency >0.025, and deviation of frequency from HW equi-
librium <0.15, and a missing rate less than 5% were included. 
The remaining 75,904 SNPs (post- filtering) were used to 
construct the genomic relationship matrix, which was used in 
both the DSM and the IM.

2.4 | Disease status model (DSM)

To identify the fixed effects to be used in the DSM, we first 
fitted a univariate linear model without random effects for 
farm, parity, months in milk (MIM), time of observation 
(TO) and breed of the animal. We included fixed effects with 
a p- value < 0.10 (Table 3).

Interactions between significant fixed effect terms from 
Table 3 were tested, but had p- value > 0.10, and were thus 
omitted from the model, except for the Farm*TO interaction 
which was included as a random effect (see below).

The final model was built with stepwise addition of fixed 
and random effects. Random effects of farm by observation 
interaction and farm by parity interaction were included to 
correct for the random variation from sampling duration and 
state of animals from particular farms due to their manage-
mental protocols. A random non- genetic animal effect (a 
so- called permanent effect of the individual) was included 
to account for the repeated measures on same animal and its 
biological disposition. A random genetic effect was included 
with a genomic relationship matrix (G) constructed accord-
ing to method 1 of (VanRaden, 2008), calculated using the 
calc_grm software (Calus and Vandenplas (2013). The final 
DSM was

yDSM is a vector of observations on the disease status/
score of both feet of the animals, yDSM,i  =  0, ½ or 1, X is 
the known design matrix for all fixed effects found signifi-
cant (Table 3) in univariate analysis including farm, parity, 

months in milk (MIM), TO (time of observation) and breed, 
β is the unknown vector of fixed effects, Z1 and Z2 and Z3 
are known design matrices for the animal, farm*TO and 
farm*parity, respectively,u1, u2and u3 are unknown vectors 
of independent random effects of the animal (non- genetic), 
farm*TO and farm*parity, respectively, and a is the unknown 
vector of random animal genetic effects (genomic breeding 
values), with �2

a
is the additive genetic variance. � is the vector 

of independent residuals. The total number of observations 
for the DSM was 12,195.

We also fitted the DSM with a pedigree- based (based on 
4 generations) relationship matrix (A), using a ∼ N(0, A�2

a
)

, to compare the additive genetic variance and heritabil-
ity between models with genomic versus pedigree- based 
relationships.

The variance components and GEBV were estimated 
using the ASREML- w software (Gilmour et al., 2008). The 
GEBV from the DSM were interpreted as the change in the 
probability of an animal (i) to be infected (yDSM,i = 1) due to 
its genotype. For example, an animal with a GEBV of 0.1 will 
have a 10 per cent point higher probability of being infected 
due to its genotype than the average cow. The fixed effects 
and random non- genetic effects are interpreted in the same 
way.

2.5 | Infection model (IM)

We used the generalized linear model with mixed effects of 
Biemans et al. (2019) as the infection model (IM). The key 
difference between this IM and the above DSM is in the y- 
variable. While the DSM fits individual disease status, the 
IM fits whether or not a non- infected individual becomes in-
fected during an observation interval. Hence, with the IM, we 
model disease susceptibility, the propensity of an individual 
to become infected given that it was non- infected at the pre-
vious observation moment.

To account for variation in exposure of non- infected feet 
to infected feet of herd mates (“infection pressure”) between 
farms and periods (intervals between two observations), the 
fraction of infected feet in the farm*period was included in an 
offset in the IM. The IM was

where <cloglog> is the complementary log- log link function 
(McCullaugh & Nelder, 1989), Piklt (t) is the probability that a 
foot gets infected between time t- 1 and t, c0 is an intercept, Farm 
is the fixed effect of the farm, Parity is the fixed effect of parity 
with three levels with 1, 2 > 2. c1 is the regression coefficient of 
MIM, Periodt is the fixed effect of time period with 10 periods 

(1)yDSM = X� + Z1u1 + Z2u2 + Z3u3 + Z1a + �

(2a)

cloglog
(

Piklt (t)
)

= c0+Farmk + Parityl+ c1MIM+ Periodt

+Farmk ∗Periodt + PEi+Ai + log

(

E (t)+ Itot (t)

N (t)
Δt

)

T A B L E  3  Univariate analysis of Significant factors of the disease 
status model (DSM)

Factor F- statistic p- Value± 

Farm 39.553 <2.20E- 16

Parity 299.43 <2.20E- 16

MIM* 7.5075 0.006153

Time of Observation (TO) 7.2816 1.36E- 11

Breed 7.0391 <2.20E- 16

*Months in milk was evaluated along with its quadratic and cubic form.
±p- values in this table were tested against p = .1 for univariate analysis. All 
values were highly significant.
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(intervals) resulting from 11 times of observation, 
Farmk ∗ Periodt is the random interaction term of farm and pe-
riod, PEi is the random non- genetic animal effect accounting 
for repeated observations on the same animal (also known as 
“permanent environment”), and Ai is the random genetic animal 
effect, and the last term is the known offset. The offset 

log
(

E(t)+ Itot(t)

N(t)
Δt

)

 was included to account for the infection 

pressure coming from the infected cows at the start of the obser-
vation interval, for the effect of infectious material accumulated 
in the environment, and for the length of the observation inter-
val (Δt; Itot(t) is the total number of infected claws at the start of 
the observation interval, and E(t) represents the infection pres-
sure from the environment (see Biemans et al. (2019) for de-
tails). Note that Equation 2a does not include genetic effects of 
herd mates on the record of the individual, meaning we ignored 
potential genetic variation in infectivity.

Because the y- variable in the IM measures whether or 
not an individual becomes infected given exposure, the PEi 
and Ai in the IM are measures of the susceptibility of the 
animal. Specifically, Biemans et al. (2019) show that the IM 
yield predictions on the log scale of susceptibility, so that the 
breeding value of individual i for susceptibility follows from

The A� ,i from Eq. 3 is the genetic component of the sus-
ceptibility � i of individual i, as defined in Equation 3 of 
Appendix S1. This breeding value can be interpreted as an 
odds ratio. For example, an animal with A� ,i = 3 is 3 times 
more likely to get infected compared to an average animal 
(which has A� ,i  =  1) given the same exposure in both. To 
calculate this heritability, we used a residual variance of π2/6 
on the liability scale, which is the variance of the standard 
Gumbel distribution. We took this approach because a gen-
eralized linear model such as the IM with a complementary 
log- log link function is equivalent to threshold model with a 
Gumbel distribution of the residual on the underlying scale 
(Nakagawa et al., 2017). This equivalence is similar to that 
of a generalized linear mixed effects model with a probit- link 
function and a threshold model with a normally distributed 
residual.

The above model was fitted in ASREML-  w (Gilmour 
et al., 2008) with generalized linear mixed models procedure. 
The generalized linear mixed model procedure in ASREML- w 
uses the PQL algorithm (Penalized Quasi- Likelihood, Breslow 
and Clayton (1993)) which is known to give biased estimates 
for the variance parameters (See Discussion). The difference 
between the DSM and the IM is summarized in Table 4.

2.6 | Differences in DSM and IM

For the comparison of the results for the two traits, we fo-
cussed on four variables, the two GEBV from both models 
and the two y- variables from both models. Hence, to com-
pare and interpret differences between the analysis of the two 
traits, we considered all six pair- wise correlations.

For the comparison of GEBV and y- variables, we con-
ducted 12- fold cross- validation (Kohavi, 1995). The 12 farms 
were the subset factor for both the DSM and the IM. In each of 
the 12 cycles, phenotypes of animals on one farm (test set) were 
left out from the analysis and the models were trained on the 
remaining 11 farms (reference set). Phenotypes of the test set 
where then predicted and compared to the actual observations 
for this set. For both the DSM and IM, we measured accuracy 
as the weighted correlation between predicted phenotypes and 
corrected phenotypes, weights being the number of observed 
records for an individual. We measured bias as the weighted 
regression coefficient of observed on predicted records.

For the DSM, the observed phenotypes were corrected for 
non- genetic effects by fitting a linear model with only the 
fixed effects of Eq. 2; y = FE + e. The residuals of this model 
were averaged over the 11 times of observations (TO), and 
the average was used as the corrected phenotype,

The predictive ability of the DSM was measured by the 
correlation between yobs and the predicted GEBV,

(3)A� ,i = eAi .

(4)yc = −y−FE

(5)rGEBV , yc
=

�GEBV , yc

√

�2
GEBV

�2
yc

T A B L E  4  Differences between the disease status model (DSM) and Infection model (IM)

Model Characteristics Y- variable

Disease status model (DSM) Linear mixed model for disease status at an 
observation moment

Disease status score of 0, 0.5, 1 for disease 
present in no feet, 1 foot and 2 feet respectively

Infection Model (IM) Generalized linear mixed model for new infection 
during an observation interval

New cases per foot (0,1)
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For the IM, the cross- validation procedure is not straight 
forward because the correlation between predicted and ob-
served records depends on the value of the fixed effects 
(Biemans et  al.,  2019). This dependency occurs because 
the cloglog link function is non- linear. For this reason, the 
GEBV from the IM were not directly compared with the 
phenotypes of the test set, but both predicted and observed 
records were transformed to a “standard herd”, following 
Biemans et  al.  (2019). Correlations between predicted 
and observed records were calculated using these trans-
formed records. This procedure is described in full detail 
in Biemans et al. (2019).

3 |  RESULTS

3.1 | Descriptive statistics

We calculated the mean prevalence of DD for each farm aver-
aged over times of observations (Table 5) and for each scor-
ing time of observation (TO) averaged over farms (Table 6). 
The overall average prevalence was 62.88% (±6.8), with a 
range of 49.38% (±2.8) to 77.7% (±5.4) between farms.

3.2 | Disease status

The estimated additive genetic variance was 0.052 (±0.008), 
phenotypic variance was 0.19 (±0.006), and heritability 
(σ2

a/σ
2
p) was 0.268 (±0.036; Table  7a). All random ef-

fects were significant (σ2/SE  >  2), except for farm*parity. 
The fixed effects of TO, lactation levels and months in milk 

were significant, but farm and breed did no longer have a 
significant effect on the disease status in the model including 
random effects (Table 7b). The GEBV from the DSM were 
between −0.50 and 0.37, with a mean of 0. Hence, they cover 
87% of the 0– 1 range, indicating very large genetic differ-
ences among individuals (Figure 1).

In the analysis of the model based on pedigree, the esti-
mated additive genetic variance was 0.0514 (±0.011), phe-
notypic variance was 0.192 (±0.0056), and heritability was 
0.268 (±0.05). There was no significant difference in the 

T A B L E  5  Average prevalence by farm (at least 1 foot infected±)

Farm Prevalence (%) SD* (%P)

A 77.70 5.4

B 55.81 7.5

C 49.38 2.8

D 58.70 5.0

E 63.64 5.0

F 59.35 10.0

G 65.30 8.0

H 63.80 6.0

I 60.37 5.0

J 66.07 10.7

K 63.66 9.6

L 70.82 7.1

Average 62.88 6.8
±An animal was counted as infected when at least one of its hind feet was 
infected.
*SD is the standard deviation of Prevalence among the 11 scoring observations.

T A B L E  6  Average prevalence by time of observation±

Times of observation (TO) Prevalence (%)* SD (±%)

1 56.93 4.59

2 60.79 4.95

3 63.48 4.88

4 60.37 4.89

5 65.57 4.75

6 69.67 4.60

7 64.63 4.78

8 60.62 4.89

9 60.55 4.89

10 64.64 4.78

11 63.63 4.81

Average 63% 4.83
±At least 1 foot infected per animal (total 2 hindfeet).
*Point prevalence is averaged over all 12 farms for each observation.

T A B L E  7 A  Variance components of DSM model

Model term Variance SE Var/SE

Animal genetic variance 0.0518 0.008 6.51

Animal (non- genetic) 0.0725 0.006 11.82

Farm*observation 0.0033 0.0005 6

Farm*Parity 0.0039 0.002 1.93

Residual 0.0641 0.0009 73.07

Phenotypic variance 0.192 0.0059

Heritability 0.268 0.0362

T A B L E  7 B  Fixed effects of DSM

Model term Df# F- stat* p- value

Farm 11 1.96 0.053

Observation 10 5.07 <0.001

Breed 12 0.89 0.562

Parity 4 17.76 <0.001

MIM 1 11.75 <0.001
#Df stands for degrees of freedom for approximate F test.
*F- stat stands for approx. F statistic.
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heritability estimates between the model based on genomic 
relationship and the model based on pedigree.

3.3 | Infection events

The estimated heritability from the IM was 0.16. Note that the 
heritability estimate of 0.16 is on the liability scale, similar as 
“underlying heritability” in the threshold model of Dempster 
et al. (1952). For the complementary log- log link function, the 
transformation of underlying heritability to observed heritabil-
ity is unknown to our knowledge. Hence, we cannot translate 
the estimate to the observed binary scale. The fixed effects of 
Parity (p < .001), months in milk (MIM) (p < .001) and period 
(p = .039) were significant (Table 8). Farm was not a signifi-
cant fixed factor, probably because the offset accounted for 
most of the variation among farms. From the random compo-
nents, farm by period interaction, animal genetic component 
and animal non- genetic component were all significant.

Variance components from the IM analysis are known to 
be biased, because the IM is fitted using the PQL- algorithm 
which uses the BLUEs and BLUPs in the iteration. The bias 
depends on the number of fixed effects and on the number of 
records per random effect. For simple models, the bias it is 
approximately −1/nrecords. We had an average of 8.7 observa-
tion periods per cow, and in ~60% of cases, a cow had at least 
one susceptible foot, yielding ~5.22 records per cow. Hence, 
this would suggest a bias of about −19%. However, because 
of genetic relationships between cows, the bias is probably 
less than −1/nrecords (Engel et al. (1995); Bas Engel, personal 
communication).

The GEBV estimates from the IM represent the loga-
rithm of the animal genetic effect on relative susceptibility 
(Biemans et al. 2019). These estimates were exponentiated to 
obtain the GEBV on relative susceptibility (A�). The resulting 
values were centred around 1 and ranged from 0.26 and 3.43 
(Figure 2). These GEBV can be interpreted as relative risk. 
For example, the cow with 3.43 GEBV has 3.43 times higher 
probability (per unit time) to become infected than an aver-
age cow with average risk of 1. So, in general, the top (3.43) 
and the bottom (0.26) individuals differ by a factor of ~13 in 
probability to get infected. Hence, similar to the DSM, results 
from the IM suggest very large genetic differences among 
individuals.

3.4 | Differences in DSM and IM

3.4.1 | DSM

The Pearson's weighted correlation coefficient between cor-
rected phenotypes per animal and its GEBV (predicted) was F I G U R E  1  GEBV estimates of animals from DSM [Colour 

figure can be viewed at wileyonlinelibrary.com]

T A B L E  8  Results of IM model for fixed and random effects

Model term df^ F- stat¹ p- value

mu 1 2065.83 <0.001

Parity 2 26.49 <0.001

MIM 1 38.57 <0.001

Period 9 2.08 0.039

Farm 11 1.09 0.371

Model term Variance SE Var/SE

Farm*Period 0.261 0.05 5.22

Animal genetic variance 0.555 0.141582 3.92

Animal (non- genetic 0.949 0.13 7.3

Heritability (approx.) 0.16 - 

Residual* π2/6 NA NA

^Df: Degrees of freedom for approximate F- test
*Residual variance on liability scale is π2/6
¹F- stat stands for approx. F statistic.

www.wileyonlinelibrary.com
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0.28 (Figure 3), and Spearman's rank correlation coefficient 
was 0.27. The regression coefficient of corrected phenotypes 
on GEBV predictions was 0.87, indicating that the GEBV 
overpredict the differences in true breeding value by ~15%. 
The approximate accuracy of GEBV was calculated as 
r

ÂA
= r

ÂP
∕hP, where Â is the GEBV, A is the true breeding 

value, P is the corrected phenotype, h is the square root of the 
heritability of the corrected phenotype, and r is Pearson's cor-
relation coefficient. The corrected phenotype was an average 
of on average n ≈ 8.7 records on an individual. The heritabil-
ity of the corrected phenotype was calculated as

In the denominator of this expression, we did not apply 
averaging to �2

u3
 because most records on an individual came 

from the same parity. The resulting accuracy was 
0.28/√0.381 ≈ 0.45. This means that the DSM- based GEBV 
predict the true breeding value for an individual's disease 
state with an accuracy of ~45%.

3.5 | IM

The weighted Pearson's correlation (ρ) coefficient between 
corrected phenotypes and predicted probabilities was 0.20 
(Figure 4). Note that observation and predictions of IM refer 
to whether (1) or not (0) a susceptible individual becomes 
infected, not to the disease status as seen in the DSM. The 
weighted regression coefficient of the corrected phenotypes 
on the predicted probabilities was 0.81, indicating an over-
prediction of differences in true breeding value by ~23%. We 
cannot calculate an approximate accuracy here, because the 
heritability of the trait on the observed scale is unknown (see 
Methods).

Table 9 shows the correlations between the predicted and 
observed (corrected) phenotypes of both the DSM and the 
IM.

The phenotypes used in the DSM versus IM correlated by 
0.753, indicating that disease status (the DSM y- variable) is 
positively correlated with, but clearly different from, becom-
ing infected or not (the IM y- variable). Similarly, the GEBV 
from both models are positively correlated (0.629), but the 
correlation is clearly different from 1. Hence, both models 
capture different traits. Overall, the correlation for DSM pre-
dictions is higher than for IM predictions, which probably re-
flects the substantial difference in the number of informative 
records. The IM better predicts disease transmission than dis-
ease status (0.20 versus 0.09), while the DSM better predicts 
disease status than disease transmission (0.28 versus 0.22).

4 |  DISCUSSION

4.1 | Brief summary

The main purpose of this study was to present and compare es-
timated genetic parameters and breeding values for the binary 
disease status and infection events. Disease status was analysed 
with a linear mixed model (DSM), while infection events were 
analysed with a generalized linear mixed model. For both traits, 

h2

P
=

�2
a

�2
a
+ �2

u1
+ �2

u2
∕n + �2

u3
+ �2

�
∕n

= 0.381

F I G U R E  2  GEBV estimates from IM 
on observable scale [Colour figure can be 
viewed at wileyonlinelibrary.com]

F I G U R E  3  Corrected Phenotypes and GEBV predictions from 
DSM model. The y- axis shows phenotypes corrected for fixed effects 
and x- axis GEBV from Cross- validation. ρ is a weighted correlation 
coefficient [Colour figure can be viewed at wileyonlinelibrary.com]

y = 0,8683x - 0,0076
R² = 0,0767

= 0.2769
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we used all informative records from a data set on the endemic 
claw disease DD in dairy cattle. Both traits showed significant 
and substantial additive genetic variance and a significant cor-
relation between the GEBV of the two traits and observed phe-
notypes in the cross- validation. These results demonstrate the 
presence of heritable variation, both in DD disease status and 
in susceptibility to become infected with DD.

4.2 | Results for disease status

The estimated heritability of binary disease status from the 
DSM was 0.27, which is in the upper range of values found 
in the literature (0.05– 0.29; (Schöpke et al., 2015; Van der 
Linde et al., 2010; Van der Waaij et al., 2005)). This relatively 
high value may reflect the selection of farms that were known 
to be endemic for DD, and the fact that our y- variable was 
the average of the disease status of both hind feet of a cow, 
rather than a single binary record. In our data, prevalence was 
63%, which is higher than in the studies of Van der Waaij 
et al. (2005; 21.7%) and Schöpke et al. (2015; 17%). Hence, 
this difference in prevalence may explain the relatively high 
heritability found here (Dempster & Lerner, 1950).

Lactation level significantly affected DD status, and 
the estimates increased from lactation level 1– 4, but then 
dropped for 5 or later lactations. This was in contrast with 
results of de Jesús Argáez- Rodríguez et  al.  (1997) and 
Frankena et al. (1991), who found an increased risk for the 
1st and 2nd parity, but lower risk in subsequent parities. The 
times of observation (TO) were also a significant fixed effect, 
and the 6th observation had a 14% higher estimate than the 
1st observation. Since the data were collected in the winter of 
2014 and the spring of 2015, we hypothesize that the absence 
of grazing has contributed to this pattern, in line with find-
ings of Frankena et al. (1991) and Read and Walker (1998).

The cross- validation of DSM resulted in a weighted cor-
relation of ~0.28 between corrected phenotypes and predicted 
phenotypes based on GEBV. From the cross- validation proce-
dure, the accuracy of DSM- GEBV was approximately 45%, 
which is reasonable. However, this result might be specific 
for our data set, which consisted of farms with a high prev-
alence of DD. The regression coefficient of corrected phe-
notypes on predicted breeding values in the cross- validation 
was 0.87, which shows that the breeding values were slightly 
overestimated. Nevertheless, when removing bias by multi-
plying GEBV by 0.87, the range of GEBVs in Figure 1 is still 
substantial. Hence, despite some overestimation of GEBV, 
results of the DSM suggest large genetic variation in DD sta-
tus of dairy cattle in the Netherlands.

4.3 | Model assumptions and 
interpretation: DSM

In the DSM, the phenotype and the genetic factor have a 
linear relationship, and random effects follow a normal dis-
tribution. These assumptions are clearly violated given the 
binomial nature of the data with binomial total being 1 or 2. 
However, the practical relevance of this violation may be lim-
ited as benefits of using threshold models over linear models 
are relatively small for the estimation of breeding values (e.g. 
see Ramirez- Valverde et al.  (2001)). More importantly, the 
DSM disregards the transmission and recovery dynamics of 
infectious diseases, which hampers the biological interpreta-
tion of GEBV from the linear model. Bijma (2020; Equation 

F I G U R E  4  Weighted Correlation ρ (weights = #period animal 
was susceptible) between Corrected phenotypes of IM and GEBV 
predictions from cross- validation [Colour figure can be viewed at 
wileyonlinelibrary.com]

y = 0,8152x + 0,151
R² = 0,0362

= 0.2003
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T A B L E  9  Pearson's correlation between cross- validation outcomes of two models±

IM_predicted IM_phenotype DSM_predicted
DSM_
phenotype

IM_predicted 1 0.20 0.63 0.09

IM_phenotype 1 0.22 0.75

DSM_predicted 1 0.28

DSM_phenotype 1
±IM_predicted, predicted probabilities from IM cross- validation; IM_phenotype, corrected phenotypes from IM cross- validation; DSM_predicted, predicted 
probabilities (based on GEBV) of DSM cross- validation; DSM_phenotype, corrected phenotype from DSM cross- validation.
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4.4) argues that, for the simplest model of an endemic disease 
in which there is no distinction between infected and infec-
tious individuals, the breeding value of the DSM is a function 
of the rate at which an individual recovers from being in-
fected (α), the transmission rate parameter for the individual 
(β), and the prevalence of the disease,

The numerator of this expression (Equation 6) is the aver-
age time individual i stays in the infected state (1) while the 
denominator is the average duration of a full cycle from sus-
ceptible to infected and back to susceptible. This expression 
relates the breeding value from the linear model to epide-
miological parameters and shows that an individual's breed-
ing value for disease status includes the genetic component 
of its susceptibility (� i) and its ability to recover from being 
infected (�i), where the relative contribution of both com-
ponents depends on the prevalence of the disease. Note that 
the GEBV from the DSM predict individual disease status 
in a population where the prevalence (and thus the “infec-
tion pressure”) is the same as in the population from which 
the GEBV are estimated. The GEBV do not predict response 
to selection at the population level, because the DSM may 
capture recovery from infected but non- infectious states and 
because it ignores indirect genetic effects originating from 
transmission dynamics (Bijma, 2020).

4.4 | Results for infection events

The IM developed by Biemans et al. (2019) was re- applied 
in this study for comparison with the DSM. This particular 
model had fixed effects, a genetic effect of the animal, and 
non- genetic random effects for farm, animal and period of 
observation. The variance components in the IM are biased 
due to the PQL algorithm implemented in ASREML. Based 
on findings for simple models, this bias is expected to be 
smaller than 19%, but precise quantification would require 
stochastic simulations (personal communication Bas Engel). 
Heritability was estimated to be 0.16. This value is difficult 
to compare with literature results, since we are not aware of 
any other estimates for the heritability of susceptibility based 
on a IM with a complementary log- log link function.

4.5 | Model assumptions: IM

To preserve the model developed by Biemans et al. (2019) 
for the analysis of infection events, the number of lev-
els in the model factor for parity was different compared 
to DSM. The IM was fitted to the number of cases (feet 

getting infected) over the number of feet that were suscep-
tible at the start of a particular observation period. Because 
of this, the number of records for the IM differed from the 
DSM. The GEBV of the IM is an estimate of the suscep-
tibility of an animal; in contrast to the DSM, it does not 
include a component due to recovery. However, even with 
variation in susceptibility only, there will still be some dif-
ference in GEBV between the two models, since they have 
different assumptions for the distribution of the data and 
include different model terms. The GEBV from the IM are 
on the log scale and were exponentiated to obtain GEBV 
on the scale of susceptibility (γ). The resulting GEBV are 
the approximate odds for a susceptible animal to become 
infected, relative to the average animal which has γ = 1. 
Hence, in contrast to the DSM, the IM does not capture ge-
netic variation in the ability of individuals to recover from 
being infected (α).

Moreover, both the DSM and the IM did not consider po-
tential genetic variation in the propensity of (infected) herd 
mates to infect the focal individual. The IM accounted for the 
number of infected herd mates by including a known offset 

equal to log
(

E(t)+ Itot(t)

N(t)
Δt

)

. Fitting of an offset is common in 

GL(M)M in epidemiology, but might have removed some ge-
netic variation, because an offset is treated as a known effect, 
and thus not estimated simultaneously with the genetic ef-
fects. While the DSM does not explicitly account for the 
number of infected herd mates, their effect is captured by the 
fixed Farm effect and the random farm*period effect, at least 
partly.

The IM used here is fundamentally different from the clas-
sical threshold model (Dempster et al., 1952; Gianola, 1982). 
While both models connect an observed binary y- variable to 
an underlying linear predictor using a link function, the IM 
used here is founded in epidemiological principles and yields 
estimates for the susceptibility of individual to become in-
fected given it was non- infected at the previous observation 
moment, whereas the ordinary threshold model specifies an 
underlying normally distributed liability without reference 
to disease transmission dynamics. Specifically, we analysed 
transmission events (i.e. animals becoming infected), whereas 
the ordinary threshold model is typically used to analyse the 
binary disease status observed at any time point.

4.6 | Time- dependent GEBV from IM

Anacleto et  al.,  (2015) argued that repeated observations 
on the disease status of animals may improve the accuracy 
of GEBV for susceptibility derived from the IM. In this 
case, the GEBV for susceptibility depends on the amount 
of time in between two observations relative to the duration 

(6)Ai =
1∕�i

1∕�i + 1∕(� iP)
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of a disease status. When observations are far apart in time, 
changes in disease status may be missed, resulting in re-
duced accuracy and potential bias in GEBV. Moreover, 
IM does not include the time of infection (1/recovery rate) 
parameter and the true duration of infection is unknown 
(Biemans et al., 2019).

To account for the systematic changes in the probability 
of a susceptible foot to get infected in the given observation 
interval (period) and on the given farm, a random effect for 
farm X period was included in the model (see Material and 
Methods). This systematically controlled for effects of the pe-
riod (duration) on the given farm from which the animal (and 
subsequently the susceptible hind foot) originates.

4.7 | Breeding against Infected 
versus Infectious

The relevance of a distinction between infected individuals 
(having disease status 1) and infectious individuals (being 
able to infect others) was a key motivation for this study. In 
the Introduction, we stated that the prevalence of an infec-
tious disease depends on the duration that individuals are in-
fectious, while the duration that they are infected is irrelevant. 
In Appendix S2, we illustrate that, with respect to recovery, 
selection against infected but non- infectious individuals does 
not change the prevalence of an infectious disease. Hence, 
with respect to genetic selection for recovery, this example 
illustrates that such selection should target recovery from 
being infectious, rather than from being infected. Both may 
of course overlap to a larger or smaller degree, which will 
depend on the specific disease.

5 |  CONCLUDING REMARKS

The above comparison of the DSM and the IM shows that 
the DSM captures both the disease susceptibility of an 
individual and its ability to recover from being infected, 
whereas the IM captures susceptibility. The difference in 
GEBV of both models suggests that genetic variation in 
disease status for DD originates not only from genetic vari-
ation in susceptibility, but also from genetic variation in 
recovery. With genetic variation in recovery, the distinc-
tion between infected individuals and infectious individu-
als becomes relevant for response to selection if selection 
is focused on recovery along with susceptibility. Hence, a 
genetic analysis of recovery events would be interesting, 
particularly when data are available on the infectiousness 
of the infected individuals. A joint analysis of susceptibil-
ity (e.g. with the IM used here) and recovery of individu-
als from being infectious would provide insight into the 
genetic effects underlying the prevalence of an infectious 

disease, and thus in potential response to combined selec-
tion on susceptibility as well as recovery.
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