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Ferroptosis is a newly discovered type of regulated cell death that is different from

apoptosis, necrosis and autophagy. Ferroptosis is characterized by iron-dependent

lipid peroxidation, which induces cell death. Iron, lipid and amino acid metabolism is

associated with ferroptosis. Ferroptosis is involved in the pathological development of

various diseases, such as neurological diseases and cancer. Recent studies have shown

that ferroptosis is also closely related to acute lung injury (ALI)/ acute respiratory distress

syndrome (ARDS), suggesting that it can be a novel therapeutic target. This article mainly

introduces the metabolic mechanism related to ferroptosis and discusses its role in

ALI/ARDS to provide new ideas for the treatment of these diseases.
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INTRODUCTION

Ferroptosis, a new form of regulated cell death that can be triggered by erastin or RSL3 [(1S,3R)-
RSL3], was first reported in 2012 by Dixon (1). Ferroptosis is characterized by the iron-dependent
accumulation of lethal levels of lipid peroxides, while the morphology, biology and genetics are
obviously different from those of apoptosis, necrosis, autophagy, and other forms of cell death (1).
Amino acid, iron and lipid peroxide metabolism and other metabolic processes are closely related
to ferroptosis (2). Studies have shown that ferroptosis, as the main cause of organ damage-related
cell death, is involved in many pathological processes, such as neurodegenerative diseases, cancer
and ischemia-reperfusion injury (2, 3).

Acute lung injury (ALI), resulting from both direct (e.g., pneumonia) and indirect (e.g.,
sepsis) pulmonary injuries, refers to pulmonary edema and atelectasis caused by diffuse alveolar-
capillary injury and is characterized by refractory hypoxemia and pulmonary infiltration (4). Acute
respiratory distress syndrome (ARDS) is a serious form of ALI and is described by the 2012 Berlin
unified definition (5). The prevalence of ARDS in intensive care units is 10.4%, and there is a high
mortality rate (35–46%) (6) but a lack of effective treatments (7).

In recent years, the role of ferroptosis in ARDS has been gradually revealed, and increasing
attention has been given to the importance of regulating ferroptosis in the treatment of ARDS.

MAJOR METABOLIC MECHANISMS OF FERROPTOSIS

Ferroptosis is a form of cell death that is regulated by multiple genes and involves multiple
metabolic processes, such as iron homeostasis, amino acid metabolism and lipid peroxidation.
The mechanism is very complex as is shown in Figure 1, and it will be better explained in the
following aspects.

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2021.651552
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2021.651552&domain=pdf&date_stamp=2021-05-07
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles
https://creativecommons.org/licenses/by/4.0/
mailto:chenwank@163.com
mailto:miaochangh@163.com
mailto:fuscc_anesthesia@yeah.net
https://doi.org/10.3389/fmed.2021.651552
https://www.frontiersin.org/articles/10.3389/fmed.2021.651552/full


Qu et al. Ferroptosis and ARDS

FIGURE 1 | Main mechanisms of ferroptosis. The Fenton reaction, LOX and PUFAs facilitate the generation of lipid ROS. Cysteine can be generated from the uptake

of cystine via system Xc- or the transsulfuration pathway. Amino acid metabolism and NAD(P)H, suppresses the synthesis of GSH and CoQ10, thus inhibiting the

reduction in lipid ROS. The accumulation of lipid ROS leads to ferroptosis. Therefore, iron homeostasis, lipid peroxidation and amino acid metabolism are the main

regulators of ferroptosis. System Xc-, cystine/glutamate transporter; GLS, glutaminase; GSH, glutathione; GPX4, glutathione peroxidase 4; LOX, lipoxygenase; FSP1,

ferroptosis suppressor protein 1; CoQ10, coenzyme Q10.

IRON METABOLISM

Iron overload is one of the key events in ferroptosis. Iron is
necessary for the accumulation of lipid peroxides, and iron
ingestion, storage and transport all affect ferroptosis (2). Iron
homeostasis is regulated by a series of iron regulatory proteins
(IRPs). Extracellular iron enters the cell through transferrin (TF)
and its receptors, and then Fe2+ can produce lipid peroxides via
the Fenton reaction or the iron-containing enzyme lipoxygenase
(LOX) (8). Most intracellular Fe2+ is stored in ferritin (FT),
and so there is very little free Fe2+ (9). The degradation of
FT increases the level of intracellular Fe2+, enhances lipid
peroxidation, and induces ferroptosis. This process is related
to autophagy and is regulated by nuclear receptor coactivator
4 (NCOA4) (8). Iron response element binding protein 2
(IREB2) (1) and other proteins related to iron metabolism (2)
(HSPB1, CISD1, etc.) can also increase the sensitivity of cells
to ferroptosis.

AMINO ACID METABOLISM

Glutathione (GSH) depletion is another key event in ferroptosis.
The cystine/glutamate antiporter System Xc-, which is mainly
composed of SLC3A2 (solute carrier family 3 member 2) and
SLC7A11 (solute carrier family 7 member 11) (10), is located
on the cell membrane and transports extracellular cystine and
intracellular glutamate at a ratio of 1:1. Extracellular cystine
and intracellular cysteine are essential for the biosynthesis of

GSH. Cystine ultimately generates GSH through a series of
enzymatic reactions, and GSH is the essential substrate for
glutathione peroxide enzyme 4 (GPX4) to degrade phospholipid
hydroperoxide (PLOOH) (11). GPX4 is at the intersection of
GSH metabolism and lipid peroxidation, both of which are
related to ferroptosis. Downregulation of SLC7A11 can also
lead to ferroptosis through a decrease in GPX4 activity (12).
In addition, methionine can transfer sulfur atoms to serine to
generate cysteine through the transsulfuration pathway, which
can be upregulated by the knockout of cysteinyl-tRNA synthetase
(CARS), thus making cells resistant to ferroptosis (13).

Under physiological conditions, a high level of extracellular
glutamate can inhibit the activity of System Xc- and prevent
the uptake of cysteine (14). Therefore, glutamate is a natural
trigger for ferroptosis and has the same effect as erastin and other
System Xc- inhibitors (8). In addition, glutamine is abundant
in tissue and plasma and can be converted into glutamate
by glutaminase (GLS1 and GLS2) catalysis. Glutaminolysis is
necessary for the tricarboxylic acid cycle and lipid biosynthesis,
and α-ketoglutarate, as the product of decomposition, is involved
in ferroptosis (15). Therefore, when glutamine is deficient
or its decomposition is inhibited, reactive oxygen species
(ROS) accumulation, lipid peroxidation and ferroptosis are
also inhibited. Furthermore, GLS2, as a target gene of the
tumor suppressor p53, is closely related to ferroptosis (16). In
summary, the metabolism of amino acids (especially glutamate
and cystine) plays an important role in the pathological process
of ferroptosis.
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LIPID METABOLISM

The most prominent feature of ferroptosis is plasma membrane
damage caused by the production of iron-dependent lipid
peroxides (lipid ROS) (8). ROS include products of oxygen
reduction, such as O2−, H2O2 and ·OH. Oxygen homeostasis
is crucial to normal cellular functions, and the abnormal
accumulation of ROS is harmful to the body (3). During
ferroptosis, the reduction reaction mediated by GPX4 and
ferroptosis suppressor protein 1 (FSP1, formerly known as
mitochondrial apoptosis inducing factor 2, AIFM2) is inhibited,
and the oxidation reaction catalyzed by Fe2+ and a series of iron-
dependent enzymes (mainly LOX) is enhanced, inducing the
accumulation of polyunsaturated fatty acids (PUFAs) (8). Then,
lipid peroxidation drove by PUFAs increases the permeability of
the cell membrane andmakes the cell more sensitive to oxidation,
which eventually leads to ferroptosis (17, 18). The inhibition of
lipid peroxidation and the consumption of PUFAs can inhibit
ferroptosis (2).

THE FSP1-NAD(P)H PATHWAY

Bersuker and Doll found that FSP1 and GPX4 had a strong
synergistic effect (19, 20). In the FSP1-NAD(P)H pathway,
coenzyme Q10 (CoQ10) can reduce lipid peroxidation by
inhibiting the accumulation of free radicals, and FSP1 catalyzes
the production of CoQ10 through NAD(P)H. iFSP1, an inhibitor
of FSP1, can induce ferroptosis in cells that overexpress
FSP1 (20). In conclusion, the FSP1-CoQ10-NAD(P)H pathway
cooperates with GPX4 and GSH to inhibit lipid peroxidation
and ferroptosis. Moreover, CoQ10 can also be generated by the
mevalonate (MVA) pathway. FIN56 can not only accelerate the
degradation of GPX4 but also consume CoQ10 by affecting the
MVA pathway, ultimately leading to excessive lipid peroxide
accumulation and ferroptosis (21).

PATHOGENESIS OF ARDS

Pathological Mechanism of ARDS
The most common cause of ARDS is bacterial or viral
pneumonia, while sepsis, severe trauma and gastric reflux and
aspiration are also common factors (22). The inflammatory
response is activated by infection, trauma, or damage to the
lung. Moderate inflammation is conducive to the clearance of
pathogens, but excessive inflammation may lead to alveolar
damage and increased permeability of the pulmonary capillary
endothelium and alveolar epithelium, after which protein-rich
fluid exudes from the alveolar cavity, leading to pulmonary
edema (22). Therefore, ARDS is the pulmonary manifestation
of systemic inflammatory response syndrome (SIRS) (23), which
involves various inflammatory cells (macrophages, neutrophils,
vascular endothelial cells, and platelets), and the inflammatory
mediators and cytokines released by these cells indirectly mediate
inflammation in the lung.

The levels of proinflammatory cytokines (IL-1β, IL-8, TNFα,
TGFβ1, etc.) are very high in the pulmonary edema fluid in
ARDS patients, and cytokines can activate the innate immune

system. Activated neutrophils can produce toxic substances such
as ROS and proteases, leading to pulmonary endothelial and
alveolar epithelial damage and even necrosiss (24). Necrosis and
the accumulation of edema fluid, in turn, trigger more severe
inflammation and immune responses. Many clinical trials have
evaluated the potential effect of anti-inflammatory therapy to
treat ARDS (25–27). In summary, excessive inflammation and
increased permeability of the pulmonary capillary endothelium
and alveolar epithelium lead to alveolar damage, which is the
main pathological mechanism of ARDS.

Iron Overload
Various cell types in the lung, including epithelial cells and
macrophages, can produce iron metabolism-related proteins to
regulate iron homeostasis and protect lung tissue from oxidative
stress (28). Iron metabolism disorders are closely related to lung
tissue damage in ARDS patients (29, 30); that is, too much iron
can generate ROS and cytotoxicity through the Fenton reaction.
Many clinical studies have shown that the severity of ARDS
is associated with the levels of iron and iron-related proteins
(31). One study indicated that iron in blood products leads to
an increase in iron in blood recipients, which promotes the
occurrence of blood transfusion-related ALI (32). Elevated levels
of Fe2+ and iron regulators, such as TF and FT, can be detected
in the bronchoalveolar lavage fluid (BALF) of ARDS patients
(28, 29, 33–35). In an oleic acid-induced ALI model in mice,
iron overload was detected in the lung tissue (36). Moreover,
supplementing mice with iron in advance exacerbates damage to
the lung (12). A recent study also showed that increased apoptosis
in mice with iron overload exacerbated ALI. However, this effect
was quite transient and did not affect the degree of inflammation
or speed of recovery in ALI (37). Ferroptosis is an iron-dependent
process, and iron overload is the driving factor of it. In ARDS,
iron overload leads to ferroptosis, which aggravates lung injury.
In other words, the cells appear to be overloaded with iron
due to ferroptosis and the disease becomes increasingly worse.
Therefore, we have enough reason to believe that ferroptosis
plays a crucial role in ARDS. And whether iron overload actually
causes lung injury or is just a byproduct of ferroptosis remains to
be confirmed.

Oxidative Stress
Exhaled breath analysis is expected to be clinically used for the
early diagnosis and prediction of ARDS, and most candidate
markers are related to oxidative stress (38). Oxidative stress
causes damage to the barriers of the pulmonary epithelium and
endothelium, and neutrophils accumulate in large quantities in
the alveolar fluid, producing proinflammatory cytokines and
ROS. Moreover, ROS can further increase the level of cytokines,
exacerbating tissue damage and edema. Therefore, oxidative
stress plays an important role in the pathogenesis of ARDS
(39, 40). ROS are known as important mediators of ARDS
(41–44), and enzymes related to the production of ROS (xanthine
oxidase (XOR) (45), endothelial nitric oxide synthase (eNOS)
(46), cytochrome P450 (CYP) (7), and NADPH oxidase (NOX)
(47)) have been reported to be involved in ARDS. The level
of malondialdehyde (MDA), a product of lipid peroxidation, is
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increased in the ALI mouse model (36, 48). In fact, MDA is
commonly regarded as a marker of ferroptosis. Increases in both
neutrophils and ROS can be detected in ARDS patients (49).

GSH is the most important antioxidant in the airway
epithelium and exerts antioxidant effects through the removal of
ROS (50) and the repair of cellular damage (51), thus helping
to alleviate inflammation (52). Decreased GSH and increased
oxidized GSH (GSSG) were observed in both ALI patients and
animal models (12, 36, 42). A lack of GSH in alveolar fluid made
ARDS patients more susceptible to lung injury (49). Moreover,
ROS and GSH metabolism is the main feature of ferroptosis.
Whether these metabolic processes are also involved in the
pathogenesis of ARDS by regulating ferroptosis needs to be
investigated. Inhibition of ferroptosis can inhibit the production
of these peroxides, thus reducing the severity of ARDS, which is
a potential therapeutic strategy.

Role of Ferroptosis in ARDS
Indicators related to ferroptosis were detected in ALI animal
models, including increased Fe2+, ROS, MDA and decreased
GSH. And inhibitors of ferroptosis have the potential to alleviate
lung damage. These results show that ferroptosis is indeed
associated with ARDS. However, the specific mechanism by
which ferroptosis affects the onset of ARDS is still unclear.

As a clinically common respiratory disease, the main
pathogenic mechanism of ARDS is the apoptosis of alveolar
epithelial cells and pulmonary microvascular endothelial cells
and the polarization of alveolar macrophages. Then, a large
amount of ROS and inflammatory factors trigger an imbalance
between the oxidation and antioxidant systems, and the “cytokine
storm” leads to the disturbance in the local microenvironment
of the lungs, resulting in a series of inflammatory reactions
(53). Unlike apoptosis, ferroptosis is associated with a consistent
release of damage-associated molecular patterns (DAMPs) and
inflammatory cytokines, which promote a series of inflammatory
responses. Therefore, ferroptosis is considered an immunogenic
form of cell death (54). Inflammatory cytokines further promote
ferroptosis and other forms of cell death, thus forming a
self-amplifying loop that mutually promotes organ damage
(55). Ferroptosis plays a key role in ALI in mice, and
ferroptosis inducers can exacerbate pulmonary edema and
alveolar inflammation, accompanied by high levels of cytokines
(IL-1β, IL-6, and TNF-α), while these effects can be reversed by
ferroptosis inhibitors (12, 41, 48). In the latest study (36), ARDS
animal model was prepared by injecting oleic acid into the tail
vein of mice. The results showed that the pulmonary cells of
ARDS group showed mitochondrial shrinkage and rupture of
the mitochondrial membrane. In addition, iron overload, GSH
depletion and down-regulated expression of ferritin appeared
in lung tissues. Similar results were observed in the model
of lung ischemia-reperfusion injury (56). The above results
suggest that ferroptosis is involved in the pathogenesis of lung
injury, which will provide a new theoretical basis for the clinical
treatment of ARDS. However, no clinical studies have examined
the association of these ferroptosis indicators with severity and
prognosis of ARDS.

Ferroptosis is one of the critical mechanisms contributing to
sepsis-induced injuries in mice models, including heart, liver,
intestine, and the inhibition of ferroptosis via enhancing GPX4
or nuclear factor erythroid 2-related factor 2 (Nrf2) alleviates
these injuries (57–60). It contradicts that erastin attenuates
the inflammatory response, resulting in inhibition of sepsis
development (61). So what is the real role of ferroptosis? We
know that sepsis is also an important inducer of ARDS, so it is
natural to consider the role of ferroptosis in sepsis-induced lung
injury. Furthermore, the lipid peroxidation in ferroptosis drives
pyroptosis, indicating a crosstalk between ferroptosis and other
forms of cell death in sepsis, and such interactions may also exist
in ARDS (62).

Ultimately, ferroptosis causes cellular injury primarily
through inflammation and oxidative stress, and the NOD-like
receptor protein 3 (NLRP3) inflammasome and Nrf2 are key
molecules in these processes (12, 41, 42, 63, 64). Both of them
are important regulatory molecule in ARDS and can be used
as targets for the treatment of ARDS (65–71). Of course, they
could be recognized as mediators of ferroptosis in ARDS, as
shown in Figure 2. Ferroptosis may promote inflammation and
swelling of alveolar epithelial cells via the NLRP3 inflammasome,
bringing about ARDS. NLRP3 is a key mediator in the process
of pyroptosis, so crosstalk between ferroptosis and pyroptosis
may occur in the pathogenesis of ARDS, aggravating lung injury.
Further animal experiments and clinical studies are needed to
verify these points. The regulation of the NLRP3 inflammasome
by inhibiting ferroptosis to thereby alleviate ARDS may also be a
new therapeutic strategy.

At the same time, recent studies have shown that Nrf2
inhibits ferroptosis by regulating the expression of SLC7A11
and heme oxygenase-1 (HO-1), thus alleviating lung injury (12,
64). Nrf2 activators can cause a reduction in ROS and prevent
GSH depletion and lipid peroxide accumulation. As a result,
ferroptosis is inhibited, thereby alleviating ALI and producing
the same effect as that of Fer-1 (42). In addition, inhibitor
of apoptosis-stimulating protein of p53 (iASPP) could inhibit
ferroptosis andALI by upregulatingNrf2. Furthermore, the levels
of a variety of proinflammatory cytokines (TNF-α, IL-1β, and
IL-6) were also decreased (41).

In balance, most studies have not directly focused on the
relationship between ferroptosis and ARDS. Therefore, the direct
relationship between them needs to be explored, together with
more treatments targeting ferroptosis.

Ferroptosis Applications in ARDS Therapy
Disorders of iron homeostasis, the depletion of GSH, and
oxidative stress are the key points leading to ferroptosis and could
be used as targets for the treatment of ARDS (Figure 3).

Iron Chelators
Iron chelators (deferoxamine, deferiprone, and deferasirox),
especially deferoxamine (DFO), have been approved by the
FDA for the treatment of iron overload (72). In various
animal models of infection, DFO has immunomodulatory effects
to resist pathogens such as bacteria, viruses, and fungi, in
addition to chelating iron (73). DFO can reduce the levels
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FIGURE 2 | Possible relationship between ferroptosis and ARDS. Here is an ARDS lung. DAMPs, ROS, and iron overload contribute to ARDS, and they can activate

the NLRP3 inflammasome, which promotes the maturation and secretion of inflammatory factors, forming a self-amplifying loop with ferroptosis. Nrf2 inhibits the

generation of ROS and iron to negatively regulate ferroptosis. However, the direct link between ferroptosis and ARDS is unclear. DAMPs, damage-associated

molecular patterns; ROS, reactive oxygen species; NLRP3, NOD-like receptor protein 3; Nrf2, nuclear factor erythroid 2-related factor 2.

FIGURE 3 | Treatments for ARDS. Therapeutic targets for ARDS associated

with ferroptosis, such as iron chelators, antioxidants and anti-inflammatory

treatments.

of inflammatory cytokines and ROS in vitro, exerting anti-
inflammatory effects (74). DFO inhalation was shown to improve
pulmonary fibrosis and prevent a decline in pulmonary function
in mice (75). Simultaneous perfusion of DFO and FT could
attenuate leakage syndrome in isolated mouse lungs (76). In
summary, iron chelators may also be effective in treating

ARDS, and the mechanism may be related to the suppression
of ferroptosis.

Antioxidants
Antioxidants can reduce the severity of ARDS (7). Several
kinds of drugs decrease the levels of lipid peroxidation
and ROS, attenuate inflammation and oxidative stress, and
ultimately alleviate ARDS in mice and improve gas exchange
(77–80). GSH supplementation could significantly alleviate
mitochondrial dysfunction and oxidative damage in the LPS-
induced ALI model (81). Animal experiments and clinical
studies have shown that regulating the level of GSH (82)
via N-acetylcysteine (NAC) could promote the production
of GSH and alleviate ALI (7). NAC treatment resulted in
increased pulmonary compliance and reduced pulmonary edema
(83). In New York, two patients with ARDS caused by
COVID-19 showed significant relief of dyspnea after oral and
intravenous GSH supplementation, demonstrating that this is
indeed a new treatment strategy for ARDS (52). Given the
importance of GSH in ferroptosis, it is also worth investigating
whether GSH plays a role in the treatment of ARDS by
inhibiting ferroptosis.

Anti-inflammatory Treatments
Inhibiting inflammation is an important treatment
strategy for ARDS. Combined inhibition of ferroptosis
and inflammation has been reported to treat a variety
of diseases, such as stroke, myocardial infarction, and
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pancreatitis (54, 55). In ALI mouse models, ferroptosis
inhibitors reduced inflammatory cytokines and pulmonary
edema to treat ALI (41, 48). The exact mechanism of
ferroptosis and inflammation needs to be confirmed by
additional experiments, and ways to modulate inflammation by
controlling ferroptosis also need to be further explored. These
studies will provide new strategies for the clinical treatment
of ARDS.

Perspective
Ferroptosis is a newly discovered form of cell death, and
ferroptosis regulators provide new therapeutic directions for
many refractory diseases (84). Ferroptosis is an abnormal
metabolic process involving iron, lipids and amino acids, and
the metabolism of these substances plays a key role in cell
proliferation and differentiation. Ferroptosis is characterized by
metabolic imbalances and disturbances in redox homeostasis,
in which the metabolic process is not independent, but a
part of a complex metabolic network. The results of animal
experiments and clinical trials preliminarily show that a variety
of diseases and pathological processes are closely related to
ferroptosis, and intervention in ferroptosis can effectively
delay the progression of the disease and improve clinical
symptoms to a certain extent. However, research on ferroptosis
is still in its infancy. Studies on ferroptosis and lung cancer
have made some progress, and ferroptosis inducers as new
adjuvants based on traditional treatments have shown their
effectiveness. The development of new ferroptosis inducers
and the application of multiple forms of combined treatment
strategies may be expected to provide new ideas for the treatment
of lung cancer.

Recent studies have shown that ferroptosis is closely related
to ALI/ARDS, making it a potential target for the treatment of
ALI/ARDS. The current studies are based on animal models,
while there is a lack of clinical studies. In this context, it
is worth noting that the precise role of ferroptosis in the
development of ALI/ARDS, and the pharmacological inhibition
of ferroptosis, but not necroptosis or apoptosis, protects lung
tissues from injury, which remains to be fully elucidated.
Considering that ferroptosis was proposed as a brand new
concept, there are still large gaps that need to be filled.
Clinically, whether the key molecules of ferroptosis can be
used as biomarkers to predict the severity of ARDS are
needed to investigate. Also, it is necessary to prove whether
ferroptosis is the core mode of cell death in ARDS and their
crosstalk mechanism.
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