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BACKGROUND: Environmental pollution may give rise to the incidence and progression of nonalcoholic fatty liver disease (NAFLD), the most com-
mon cause for chronic severe liver lesions. Although knowledge of NAFLD pathogenesis is particularly important for the development of effective
prevention, the relationship between NAFLD occurrence and exposure to emerging pollutants, such as microplastics (MPs) and antibiotic residues,
awaits assessment.

OBJECTIVES: This study aimed to evaluate the toxicity of MPs and antibiotic residues related to NAFLD occurrence using the zebrafish model
species.

METHODS: Taking common polystyrene MPs and oxytetracycline (OTC) as representatives, typical NAFLD symptoms, including lipid accumulation,
liver inflammation, and hepatic oxidative stress, were screened after 28-d exposure to environmentally realistic concentrations of MPs (0:69 mg=L)
and antibiotic residue (3:00 lg=L). The impacts of MPs and OTC on gut health, the gut–liver axis, and hepatic lipid metabolism were also investi-
gated to reveal potential affecting mechanisms underpinning the NAFLD symptoms observed.

RESULTS: Compared with the control fish, zebrafish exposed to MPs and OTC exhibited significantly higher levels of lipid accumulation, triglycer-
ides, and cholesterol contents, as well as inflammation, in conjunction with oxidative stress in their livers. In addition, a markedly smaller proportion
of Proteobacteria and higher ratios of Firmicutes/Bacteroidetes were detected by microbiome analysis of gut contents in treated samples. After the
exposures, the zebrafish also experienced intestinal oxidative injury and yielded significantly fewer numbers of goblet cells. Markedly higher levels of
the intestinal bacteria-sourced endotoxin lipopolysaccharide (LPS) were also detected in serum. Animals treated with MPs and OTC exhibited higher
expression levels of LPS binding receptor (LBP) and downstream inflammation-related genes while also exhibiting lower activity and gene expression
of lipase. Furthermore, MP-OTC coexposure generally exerted more severe effects compared with single MP or OTC exposure.

DISCUSSION: Our results suggested that exposure to MPs and OTC may disrupt the gut–liver axis and be associated with NAFLD occurrence. https://
doi.org/10.1289/EHP11600

Introduction
Nonalcoholic fatty liver disease (NAFLD), characterized by ex-
cessive fat accumulation in hepatocytes, was suggested to be the
most common cause of chronic liver lesions.1 Recent surveys
have demonstrated that NAFLD is prevalent worldwide, specifi-
cally, ∼ 31:79%,2 30.45%,2 and 27.37%2 of the population in the
Middle East, South America, and Asia, respectively, suffered
from different degrees of NAFLD.2–3 In addition, a significantly
higher prevalence rate of NAFLD (i.e., up to 68.2% in obese chil-
dren compared with 2.1% in normal children in China) was
detected in obese individuals.4–5 Considering the growing global
epidemic of metabolic disorders, such as obesity, one group has
predicted a 178% increase in liver-related deaths among individu-
als with NAFLD by 2030.6–7 Therefore, with no effective and
specific medication currently available for NAFLD, knowledge

of NAFLD pathogenesis is particularly important for the develop-
ment of effective prevention.

In recent years, accumulating data have suggested that expo-
sure to environmental pollutants could be a tangible risk factor
for NAFLD incidence and progression.8–9 For example, it has
been shown that exposure of mice to particulate matter ≤2:5 lm
in aerodynamic diameter (PM2:5) resulted in typical NAFLD
symptoms, such as hepatic lipidosis, elevation of plasma triglyc-
erides (TGs) and low-/very-low-density lipoproteins, and liver
inflammation.10 Similar NAFLD-inducing impacts have also
been reported for a series of other environmental pollutants, such
as thiamethoxam (TMX),11 bisphenol A,12 and 2,3,7,8-tetrachlor-
odibenzo-p-dioxin (TCDD).13 However, the potential toxicity of
many emerging pollutants known to be associated with the devel-
opment of NAFLD, such as microplastics (MPs) and antibiotics,
remains unknown.

Owing to the massive production14 and use15 of plastics in
both industry and daily life (∼ 350–400million tons of plastics
are produced globally every year,16 and the annual plastics con-
sumption is predicted to surpass 1 billion tons by 205017), plastic
wastes are ubiquitously present in various environments, forming
an emerging pollution phenomenon—plastic pollution.18–19

Plastic pollution can be formed from the breakdown of larger
pieces of plastic through weathering and biodegradation20–21 or
through the manufacture of small plastics de novo22; a large pro-
portion of environmental plastics have a diameter of <5 mm and
are collectively termed as MPs.23–24 Humans may be exposed to
environmental MPs through multiple routes,25 for example, der-
mal contact,26 inhalation,27 and ingestion.28 Recently, various
types of MPs have been detected in different human tissues.29–30

For instance, particles with sizes ≥700 nm of different types of
plastics, including polystyrene (PS), polymethyl methacrylate
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(PMMA), polypropylene (PP), polyethylene (PE), and polyethyl-
ene terephthalate (PET), were detected in whole blood samples
collected from 22 healthy volunteers.29 Similarly, a case study
reported the detection of MPs (including PP and others that
remained unidentified) with sizes ranging from 5 to 10 lm in the
placenta of a pregnant woman.30 Although drawing increasing
public concern, the potential impact of MP exposure on individ-
ual health remains largely understudied.

In addition, characterized by their large specific surface area
and hydrophobicity, MPs may adsorb other environmental pollu-
tants, such as various antibiotics, through Van der Waals forces,31

pore filling,32 and electrostatic interaction.33 For example, the
Freundlich Kf value was estimated to be 425± 26 (mg=kg)
ðmg=LÞ1=n for the absorption of oxytetracycline (OTC) on the sur-
face of PS MPs.32 In addition, indirect evidence (indicated by
aggravated bioaccumulation of antibiotics in aquatic organisms in
the co-presence of MPs) supporting antibiotics absorption on MPs
surface was also increasingly documented.34–35 Although adsorp-
tion capacities varied among pollutants, plastic types, and environ-
mental conditions,36 MPs may act as vectors for secondary
pollutant internalization.37 This highlights the need to investigate
the health risks of MPs along with other common pollutants, such
as antibiotics.

Since their discovery, antibiotics have been widely used
(∼ 34:8 billion daily defined doses in 201538) for the treatment of
diseases caused by pathogenic bacteria; however, massive applica-
tion has led to the ubiquitous presence of antibiotic residues in
various environments worldwide.39–40 For example, it has been
suggested that ∼ 30%–90% of OTC prescribed to patients failed to
be degraded in vivo and ended up in the environment.41 According
to reports, the concentrations of OTC in soil, groundwater, and sur-
face water can reach as high as 287 mg=kg (Southern China),42

237:0 ng=L (Southwestern China),43 and 361:1 lg=L (Northern
China),44 respectively. Currently, in addition to consuming
antibiotic-contaminated water and taking medically prescribed anti-
biotics, we are facing a severe risk of extra-dietary antibiotic
(i.e., OTC) exposure. For instance, a significant amount of OTC
residues has been found in milk (196:6–206:9 lg=L, India),45

eggs (421:0–568:0 lg=kg, Nigeria),46 honey (89:0–92:0 lg=kg,
Turkey),47 and seafood (2:7–8:6 lg=kg, USA).48 With potential
deleterious effects, such as gut microbiota dysbiosis, environ-
mental antibiotic residues are widely regarded as a great threat to
human health.49

Owing to the gut–liver axis, gut health has been shown to be
closely related to that of the liver.50–51 Previous case studies carried
out in animal models (i.e., zebrafish52 and mice53) have demon-
strated that intestinal exposure to MPs and antibiotics may lead to
microbiota dysbiosis and physiological damages. Although it has
been stated in previous studies,50,54 comprehensive and systematic
investigations are urgently needed to assess the corresponding risk
and detail the mechanisms of action where these effects have the
potential to induceNAFLD through the gut–liver axis.

With the merits of high sequence homologies to humans and
ease of manipulation, the zebrafish (Danio rerio) has been widely
used as a model species to study NAFLD.55–56 In the present
study, the impacts of MPs and antibiotics (taking the commonly
found environmental PS MPs and OTC as representatives) on
the predisposition to NAFLD were assessed in zebrafish by
screening typical NAFLD symptoms, including lipid accumula-
tion (the size and abundance of lipid droplets, and lipid composi-
tion profiling of hepatocytes), liver inflammation (the content of
pro-inflammatory cytokine and expressions of inflammation-
related genes), and hepatic oxidative stress [in vivo content of
reactive oxygen species (ROS), degree of lipid peroxidation, and
activities of antioxidant enzymes]. In addition, gut health (the

microbiome of gut contents, histomorphological characteristics,
and oxidative injury), the level of the intestinal bacteria-sourced
endotoxin lipopolysaccharide (LPS) in the circulatory system, as
well as the gene expression of the endotoxin binding receptor in
hepatocytes and the lipid catabolic activity of liver (activity of
hepatic lipase and its gene expression) upon MP and OTC expo-
sure were also evaluated to elucidate the potential mechanisms
underlying NAFLD symptoms.

Materials and Methods

Experimental Animals, Materials, and Chemicals
Adult zebrafish (wild type, TU strain, 4 months old), commercial
PS MPs (monosphere, diameter at 490±25 nm; micrograph and
physiochemical properties are provided in Figure S1 and Table
S1), and standards of OTC (analytical grade, purity >95%) were
purchased from FishBio Co., Ltd., Regal Nano-plastic Engineering
Research Institute, and Solarbio Life Sciences (YZ130305),
respectively. All experiments were approved by the animal care
committee of Zhejiang University, and all methods were per-
formed in accordance with the Guidelines for the Care and Use of
Animals for Research and Teaching at Zhejiang University
(ETHICSCODEpermit no. ZJU20220031).

Exposure Experiments
After acclimation in dechlorinated tap water (aeration for 72 h
before use) for a week, zebrafish (480 individuals in total) were
randomly assigned to four experimental groups (three replicates
for each experimental group and 40 zebrafish for each replicate),
namely, a control group, an MP-exposure group, an OTC-
exposure group, and an MP-OTC coexposure group. According
to previous studies, to simulate environmentally realistic pollu-
tion scenarios for fish species, 0:69 mg=L (equivalent to the MP
level reported in the Miri River57) and 3:00 lg=L (equivalent to
the average level of OTC reported in the Yangtze River and Tai
Lakes58) were adopted as the exposure concentrations for MPs
and OTC, respectively.

Exposure was conducted in tanks filled with 20 L of dechlori-
nated tap water containing the corresponding designated concen-
trations. Water was filtered through a 0:45-lm membrane filter
before use to minimize potential waterborne MP contamination.
During the 28-d exposure, the temperature and pH of the experi-
mental water were maintained at 28:0± 0:5�C and 7:1±0:2,
respectively; in addition, a light cycle of 14-h light/10-h dark was
adopted. Commercial food pellets (FishBio Co., Ltd.) were pro-
vided and the experimental water was renewed daily after feeding.
After corresponding exposure, the zebrafish were anesthetized in
0.02% tricaine (E10521; Sigma-Aldrich) and sacrificed in icewater
before obtaining the tissue specimens.

Following reported methods, the background and working con-
centrations of MPs and OTC in each exposure group (Table S2)
were determined using high-performance liquid chromatography–
mass spectrometry (HPLC/MS)59 and light microscopy,60 respec-
tively. Briefly, 1 L of water sampled from each experimental tank
was filtered through a 0:7-lm glass fiber filter (GF/F; Whatman),
acidified to pH 3.0 with 40% sulfuric acid (vol/vol), and then trans-
ferred into an activated solid-phase extraction column (HLB;
6 mL, 500 mg; Waters). After methanol elution and evaporation,
pure water was added to the sample to a final volume of 1:0 mL.
The OTC concentration in the sample was then determined by
HPLC/MS (TSQ Quantum; Thermo Scientific) at the detection
limit of 11:43 ng=L. To quantify the concentration ofMPs inwater,
10 lL of water was sampled from each experimental tank and the
number of MPs in the sample was determined under a microscope

Environmental Health Perspectives 047006-2 131(4) April 2023



(BX53; Olympus) with a hemocytometer at the magnification of
1,000× .

To verify the interactions between MPs and OTC in the ex-
perimental medium, the absorption of OTC on surface of the
MPs and the effect of OTC on MP dispersing characteristics were
determined with Fourier infrared spectroscopic (FT-IR) analy-
sis61 and dynamic light scattering measurement,62 respectively
(Figures S2–S4). In brief, MP water samples with and without
OTC were injected into a closed liquid pool with a thickness of
1 mm, and the transmittance of samples were measured with a
FT-IR spectrometer (NICOLET iS50FT-IR; Thermo Scientific)
in the wavenumber range of 4,000–400=cm. The particle size and
zeta potential of MPs in water with and without OTC were deter-
mined with a Zetasizer (Nano ZS90; Malvern) at 25°C at the
detection angle of 173° with a red laser (633 nm, 4mW) and an
avalanche photodiode detector (quantum efficiency >50% at
633 nm). In this measurement, the attenuator position was set at
4:65 mm and the attenuation speed was set to be automatically
based on the size and concentration of the MPs.

Histological Observation and Biochemical Profiling of
Lipids in the Liver
Following methods previously reported,63 lipid accumulation in
zebrafish livers was assessed microscopically using Oil Red O
staining. Briefly, after the corresponding exposure, hepatic tissues
dissected from six individuals in each experimental group (n=6)
were fixed with 4% paraformaldehyde, washed with phosphate-
buffered saline (PBS), dehydrated with sucrose solution for 6 h,
and then preserved at −80�C individually. Tissue samples were
embedded in optimal cutting temperature compound (OCT;
4583; SAKURA), cryosectioned into 16-lm sections using a
cryostat microtome (CM 1950; Leica), and subsequently stained
with Oil Red O (0:5 mg Oil Red in 100 mL anhydrous isopropyl
alcohol and then diluted with 40% distilled water) according to
standard procedures. In brief, frozen sections were washed with
distilled water to remove redundant OCT and steeped with 60%
isopropyl alcohol for 2 min, followed by incubation in Oil Red
O solution for 5 min. After immediate rinsing with running
water, samples were stained with hematoxylin for 2 min, differ-
entiated with 1% alcohol hydrochloride for 2 s, and then washed
again with distilled water. Once sealed with glycerin gelatin,
the size and abundance of lipid droplets accumulated in the he-
patic tissue were examined under a light microscope (Eclipse
Ci-L; Nikon).

The triglyceride (TG), total cholesterol (TCHO), free fatty
acid (FFA), and total bile acid (TBA) levels in zebrafish livers
were determined using the corresponding commercial kits
[BC0625, BC1985, and BC0595 (Solarbio) and E003-2-1
(Njjcbio), respectively].64 Briefly, livers dissected from three
individuals from the same replicate of an experimental group
were pooled as one sample [18 individuals and six samples
(n=6) in total for each experimental group] with each parameter
investigated to meet the quantity requirements of analysis. After
homogenization and the addition of the extraction solution pro-
vided in kit, the sample was immediately centrifuged at 4°C for
10 min. The color development reaction was then conducted by
mixing the supernatant collected with the corresponding chromo-
genic reagent, following the manufacturer’s instructions. The
absorption values of the supernatants (wavelengths at 420, 500,
550, and 405 nm for TGs, TCHO, FFAs, and TBAs, respectively)
were determined using a microplate reader (Multiskan GO;
Thermo Scientific). After protein content quantification using the
Bradford method (P0006; Beyotime),65 the contents of TG,
TCHO, FFA, and TBA in zebrafish livers were calculated using

the absorption values obtained and expressed as micromoles per
milligram of protein.

Assessment of Hepatic Inflammation
The expression levels of four classic inflammation-related genes,
including myeloid differentiation primary response 88 (MyD88),
tumor necrosis factor (TNF) receptor–associated factor 6
(TRAF6), nuclear factor kappa-light-chain-enhancer of activated B
cells p105 subunit (NFkB), and TNF-a, in zebrafish livers after the
corresponding exposures were assessed using real-time polymer-
ase chain reaction (PCR). Nine zebrafish were selected from each
experimental group, and the livers of three individuals from the
same replicate were pooled as one sample (n=3 for each experi-
mental group). After RNA extraction with the EASYspin Plus
RNA extraction kit (RN2802; Aidlab) and complementary DNA
(cDNA) generation with PrimeScript RT Reagent (RR037A;
TaKaRa), real-time PCR was performed with a Bio-Rad real-time
system (CFX96; Bio-Rad) using the following program: initial
denaturation at 95°C for 5 min, followed by 40 cycles of 95°C for
10 s, 60°C for 30 s, and 72°C for 30 s, and a final step of 72°C for 5
min. b-actin was used as the internal reference, and all primer in-
formation (including both sequence and accession number of cor-
responding gene) are provided in Table S3. All PCR primers were
synthesized by Tsingke Biotechnology Co., Ltd., and relative
expression levels were analyzed using the 2−DDCT method.66

Hepatic inflammation status of zebrafish after the correspond-
ing 28-d treatments was further evaluated by quantifying TNF-a,
a pro-inflammatory cytokine, using western blotting.67 Three
individuals were selected from each experimental group (one
individual from each replicate tank and n=3 for each experimen-
tal group) and dissected on ice. Fresh individual liver tissue was
homogenized and mixed with commercial radioimmunoprecipita-
tion assay buffer (P0013B; Beyotime) supplemented with the pro-
tease inhibitor phenylmethylsulfonyl fluoride (ST506; Beyotime)
and 1× complete (11697498001; Roche), followed by centrifuga-
tion at 13,800× g at 4°C for 15 min. After protein content deter-
mination as described above, the collected supernatant was
mixed with sodium dodecyl sulfate (SDS) buffer (total protein/
SDS=1:2), heated at 100°C for 5 min, separated on a 10% SDS–
polyacrylamide gel electrophoresis system, and then electrotrans-
ferred onto a polyvinylidene fluoride membrane. The membrane
was blocked with QuickBlock Western Occluder (P0252;
Beyotime) at room temperature for 4 h and then immunoblotted
overnight at 4°C with the primary antibodies TNF-a (1:500) and
b-actin (1:1,000) (R1203-1 and R1207-1, respectively; HuaBio).
After incubation with horseradish peroxide (HRP)–conjugated
goat anti-rabbit immunoglobulin G (1:2,000) (HA1001; HuaBio)
and exposure with a gel imager (ClinxChemiScope 3400; Clinx),
TNF-a expression levels were determined using ImageJ software.68

Evaluation of Oxidative Stress in the Livers
After corresponding exposures, the in vivo ROS content in hepatic
tissue was determined in situ using ROS-specific fluorescent stain-
ing.69 Following the method described above, cryosections (20-lm
thick) were prepared from fresh hepatic tissues collected individu-
ally from six zebrafish in each experimental group (2 individuals
from each replicate and n=6 for each experimental group). After
staining with ROS-specific fluorescent dihydroethidium [DHE; dis-
solved in dimethyl sulfoxide (DMSO) to 2 mg=mL and diluted with
PBS at a ratio of 1:500] dye (D7008; Sigma) at 37°C for 30min and
three rounds of PBS washes on a decolorizing shaker (5 min each),
samples were incubated with 40,6-diamidino-2-phenylindole
(DAPI; D9542; Sigma) in the dark at room temperature for 10 min.
Images were then captured using a fluorescence microscope
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(Eclipse E100; Nikon) at excitation and emission wavelengths of
535 and 610 nm, respectively. TheROS-specific fluorescence inten-
sity of each sample was subsequently determined using ImageJ soft-
ware, according to themethod reported.70

The degree of lipid peroxidation indicated by the content of
its terminal product, malondialdehyde (MDA), and the activities
of two antioxidant enzymes, superoxide dismutase (SOD) and
catalase (CAT), in zebrafish livers were measured using the cor-
responding commercial kits (BC0025, BC0175, and BC0205,
respectively; Solarbio). For each parameter investigated, 18 indi-
viduals were selected from each experimental group (6 of each
replicate), and the livers from 3 zebrafish were pooled as one
sample (n=6 in total for each experimental group). Following
the protocols reported in our previous study,71 pooled samples
were homogenized on ice with the extraction solution provided.
The supernatant was collected by centrifugation at 8,000× g and
4°C for 10 min and used to determine the MDA content and
SOD and CAT activities. For MDA content estimation, the su-
pernatant was mixed with thiobarbituric acid at 100°C for an
hour followed by centrifugation at 10,000× g for 10 min. The
absorption values at three wavelengths (450, 532, and 600 nm)
were then recorded with a microplate reader (Multiskan GO;
Thermo Scientific). For SOD and CAT enzymatic activities, su-
pernatant was mixed with the corresponding reaction solution
(nitro-blue tetrazolium and hydrogen peroxide for SOD and
CAT, respectively) for 30 min at 37°C. The absorption value
was then determined at 560 and 240 nm for SOD and CAT,
respectively. After protein content determination as described
above, the MDA content and the SOD and CAT activities in the
sample were calculated with the absorption values obtained fol-
lowing the manufacturer’s instructions and standardized with
the protein content of the sample.

Microbiome Analysis of Gut Contents
After a 28-d exposure and a 24-h fasting period, the intestines were
dissected individually from 18 zebrafish for each experimental group
(6 individuals from each replicate), and the gut contents squeezed out
from the 6 individuals from the same replicate were pooled as one
sample (n=3 for each experimental group) to meet the minimum
amount required for analysis. Total genomic DNA of each sample
was then extracted using the cetyltrimethylammonium bromide
(CTAB) method according to the reported protocol.72 Briefly, sam-
ples were incubated with CTAB lysis buffer [100mM Tris-
hydrochloride, 100mM ethylenediaminetetraacetic acid (EDTA),
100mM sodium phosphate, 1:5 M sodium chloride, 1% CTAB] and
protease K (10 mg=mL) for 30min at 37°C. After protease treatment
and adding phenol/chloroform/isoamyl alcohol (vol:vol:vol, 25:24:1)
solution, the sample was centrifuged at 12,000× g for 10 min.
Chloroform/isoamyl alcohol (vol:vol, 24:1) was then added to the
obtained supernatant, followed by centrifugation at 12,000× g for 10
min. Isoamyl alcohol was subsequently added to the obtained super-
natant to precipitate DNA. After purification with 75% ethyl alcohol
and RNA removal using RNase solution, the DNA sample was col-
lected by centrifugation (12,000× g for 10 min) and dissolved in
double-distilled water, followed by quality verification and quantity
determination using electrophoresis (1% agarose gel) and a
NanoDrop spectrophotometer (Thermo Scientific), respectively. The
hypervariable region V4 of the bacterial 16S rRNA was amplified
using specific primers 515F (50-GTGCCAGCMGCCGCGGTAA-
30) and 806R (50-GGACTACHVGGGTWTCTAAT-30) obtained
from the Novogene Co., Ltd. Amplification was carried out in 15 lL
of Phusion High-Fidelity PCR Master Mix (New England Biolabs)
containing 2 lM of forward and reverse primers and 10 ng of tem-
plate DNA using the following thermal cycles: initial denaturation at
98°C for 1 min, followed by 30 cycles of denaturation at 98°C for

10 s, annealing at 50°C for 30 s, and elongation at 72°C for 30 s, and a
final step at 72°C for 5min. The purified PCRproductswere then sub-
jected to Illumina-based high-throughput sequencing (NovogeneCo.,
Ltd.). The obtained sequencing data were submitted to the National
Center for Biotechnology Information (NCBI) database under the
accession number of PRJNA890774.

According to methods reported previously,73 after removing
chimeric sequences, Uparse software (version 7.0.1001) was used
to analyze the sequences obtained. Sequences with≥97% similarity
were assigned to the same operational taxonomic units (OTUs), and
a representative sequence for each OTU was screened for further
annotation using the Silva database. OTU abundance information
was normalized using a standard sequence number corresponding to
the sample with the least sequences. The Firmicutes/Bacteroidetes
ratio (F/B ratio), a key indicator for obesity in both human74 and
fish75 according to previous studies, was then calculated based on
the corresponding abundance obtained.

Histopathological Examination and Oxidative Injury of the
Intestines
Following the methods reported,76 intestines dissected individu-
ally from six zebrafish in each experimental group (2 individu-
als from each replicate and n=6 for each experimental group)
were fixed with 4% paraformaldehyde for 24 h, dehydrated with
ethanol (75%, 85%, 95%, and 100% ethanol, sequentially),
transparentized with xylene solution, embedded in paraffin wax,
and then transversely sliced into 5-lm sections with a rotary
microtome (RM2016; Leica). After dewaxing and rehydration,
the samples were stained with hematoxylin for 5 min and then
differentiated with 0.1% hydrochloric acid ethanol. After
removing extra hematoxylin with distilled water, the sample
was stained with eosin for 3 min. The stained sample was dehy-
drated with ethanol as described above and then sealed with
glycerin gelatin. After the abovementioned hematoxylin and eo-
sin (H&E) staining, the sample was examined microscopically
(Eclipse Ci-L; Nikon). The number of intestinal goblet cells, an
important indicator of the intestinal barrier in zebrafish accord-
ing to previous studies,76–77 was determined and used to calculate
their density in the observed area.

After the corresponding 28-d exposure, intestines were dis-
sected individually from six zebrafish in each experimental group
(2 individuals from each replicate and n=6 for each experimen-
tal group) to estimate the intestinal accumulation of OTC and
degree of oxidative damage. Following the methods reported in
our previous study,34 the OTC concentrations in zebrafish intes-
tines (Figure S5) were determined using HPLC/MS. Briefly, after
EDTA–McIlvaine (0:1 M) ultrasonic extraction at 4°C for 30
min and centrifugation at 900× g for 5 min, the supernatant col-
lected from the intestine sample was transferred into an HLB
solid-phase extraction column, followed by elution with methanol
and ethyl acetate. The eluate was collected, dried with nitrogen,
and then redissolved in 1 mL of methanol/trifluoroacetic acid
mixture (vol:vol, 1:19). After filtration through a 0:45-lm mem-
brane, the amount of OTC in the sample was determined by
HPLC-MS (ACQUITY I-Class/Xevo TQ-S; Waters). According
to the methods described in the section “Evaluation of Oxidative
Stress in the Livers,” the level of oxidative injury was estimated
by measuring the MDA content in the intestines. In brief, after
incubating the supernatant collected from the homogenized sam-
ple with thiobarbituric acid at 100°C for an hour, the absorption
values (at 450, 532, and 600 nm) of the sample were determined
with a microplate reader (Multiskan GO; Thermo Scientific). The
MDA content in the sample was subsequently calculated with the
absorption values obtained following the manufacturer’s instruc-
tions and standardized with the protein content of the sample.
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Quantification of LPS Content in Serum and Expression
Analysis of Its Receptor in Hepatocytes
Following the reported methods,78 the content of bacteria-sourced
endotoxin LPS in zebrafish serum was measured using a commer-
cial LPS enzyme-linked immunosorbent assay kit (JL13861; Jonln
Biotechnology). To obtain sufficient serum for analysis, 54 zebra-
fish were used from each experimental group (18 individuals from
each replicate) and blood extracts from 9 individuals from the
same replicate were pooled as one sample (n=6 for each experi-
mental group in total). After clotting at 4°C overnight and centrifu-
gation at 1,000× g for 20 min, the obtained supernatant (serum)
was incubated with HRP-labeled antibodies at 37°C for an hour,
followed by 15 min of incubation (37°C) with the chromogenic re-
agent provided. Upon adding the stop solution, the absorption
value of each sample was measured at a wavelength of 450 nm
using a microplate reader (Multiskan GO; Thermo Scientific).
After quantifying the protein content of each sample as described
above, the LPS content in the serum was calculated using the
absorption value obtained and standardized with the protein con-
tent following themanufacturer’s instructions.

Following methods described in the section “Assessment of
Hepatic Inflammation,” the gene expression of LPS binding pro-
tein (LBP) in zebrafish liver (n=3 for each experimental group)
after corresponding exposures was analyzed by real-time PCR
using b-actin as an internal reference. Briefly, after RNA extrac-
tion with the EASYspin Plus RNA extraction kit (RN2802;
Aidlab) and cDNA generation with PrimeScript RT Reagent
(RR037A; TaKaRa), real-time PCR was performed with a Bio-
Rad real-time system (CFX96; Bio-Rad) using the amplification
program described in section “Assessment of Hepatic Inflammation”
and primers described inTable S3.

Determination of Lipase Activity and Its Gene Expression in
the Liver
After the corresponding 28-d treatments, the lipase activity in the
zebrafish livers was determined using a commercial lipase activ-
ity kit (BC2345; Solarbio) following the methods previously
reported.79 Eighteen zebrafish were selected from each experi-
mental group (6 individuals from each replicate) and the livers of
3 individuals from the sample replicate were pooled as one sam-
ple (n=6 for each experimental group). After homogenization on
ice and centrifugation at 4°C (12,000× g), the obtained superna-
tant was fully mixed with the reaction substrate (olive oil) at
37°C for 10 min. Once the decomposition reaction was termi-
nated by the provided stop solution, the sample was fully mixed
with copper sulfate solution for color development. The absorbance
value of each supernatant obtained was then determined at 710 nm
with a microplate reader (Multiskan GO; Thermo Scientific) and
used to calculate the lipase activity of the sample, following the
manufacturer’s instructions. One unit of lipase activity was defined
as the amount of lipase that catalyzes the release of 1 lmol of FFAs
fromolive oil permilligram of protein perminute at 37°C.

In addition, expression level of the gene encoding lipase
(LIP) in the zebrafish liver (1 individual collected from each rep-
licate and n=3 for each experimental group) after the corre-
sponding 28-d treatments was analyzed by real-time PCR
following the same method described above. Primers used for
LIP expression analysis are listed in Table S3.

Statistical Analysis
All parameters were compared among the different experimental
groups using one-way analysis of variance and Tukey’s post hoc
tests after verification of data normality and variance homogeneity
with the Shapiro–Wilk test and Levene’s test, respectively. All

analyses were conducted using OriginPro (version 8.0), and statis-
tical significancewas set at p<0:05.

Results

Hepatic Lipid Accumulation in Zebrafish
Compared with control, lipid-specific Oil Red O staining results
(Figure 1) demonstrated that zebrafish exposed to MPs, OTC,
and MP-OTC exhibited more (Figure 1B; F3,8 = 41:28, p<0:05)
and larger (Figure 1C; F3,8 = 60:11, p<0:05) lipid droplets (Lds)
accumulated in their livers. In addition, markedly higher TG
(Figure 2A; F3,20 = 38:69, p<0:05) and TCHO (Figure 2B;
F3,20 = 18:24, p<0:05) contents, whereas lower FFA (Figure 2C;
F3,20 = 34:40, p<0:05) and TBA (Figure 2D; F3,20 = 95:57,
p<0:05) contents were observed in the liver samples treated
with MPs, OTC, and MP-OTC. Among all experimental groups,
the most and largest Lds, the highest TG and TCHO contents,
and the least FFA and TBA contents were detected in MP-OTC
coexposed samples (Figures 1 and 2).

Status of Hepatic Inflammation
Compared with the control fish, the zebrafish treated with MPs,
OTC, and MP-OTC yielded significantly higher expression levels
of the four classic inflammation-related genes MyD88, TRAF6,
NFkB, and TNF-a in their livers (Figure 3A). Similarly, mark-
edly higher levels of pro-inflammatory cytokine (TNF-a) were
detected by western blotting in samples exposed to MPs, OTC,
and MP-OTC and which were ∼ 1:20, 1.42, and 1.65 times that
of the control, respectively (Figure 3B; F3,8 = 27:19, p<0:05). In
addition, compared with those treated with MPs or OTC alone,
animals coexposed to MPs and OTC showed significantly higher
expression levels of the inflammation-related genes tested and
TNF-a (Figure 3).

Status of Oxidative Stress in Liver
DHE staining (Figure 4) demonstrated that zebrafish exposed to
MPs, OTC, and MP-OTC for 28 d had significantly higher ROS-
specific fluorescent intensity in their livers, ∼ 2:40, 3.29, and 4.23
times that of the control, respectively (Figure 4B; F3,20 = 133:52,
p<0:01). Similarly, compared with the control, higher levels of
MDA content were detected in MPs, OTC, and MP-OTC groups,
∼ 1:77, 2.12, and 2.46 times that of the control, respectively
(Figure 4C; F3,20 = 39:61, p<0:05). In addition, significantly
lower SOD activity was observed in MPs, OTC, and MP-OTC
samples, ∼ 65:50%, 63.55%, and 31.96% of that of the control,
respectively (Figure 5A; F3,20 = 17:14, p<0:05). Zebrafish of the
OTC- and the MP-OTC–exposure groups also exhibited lower
CAT activity in their livers, ∼ 96:61% and 84.40% of that of
the control, respectively (Figure 5B; F3,20 = 108:34, p<0:05).
Finally, zebrafish coexposed to MPs and OTC were shown to have
markedly higher ROS-specific fluorescent intensity andMDAcon-
tent, but lower activities of SOD and CAT compared with those
singly treated withMPs or OTC (Figures 4 and 5).

Microbiome of Gut Contents
Significant differences in microbiome composition among the ex-
perimental groups were detected in the gut contents by sequenc-
ing analysis (Figure 6). At the phylum level, Proteobacteria was
the most abundant microbial found in the gut contents of zebra-
fish and accounted for ∼ 81:45%, 78.73%, 68.91%, and 76.48%
for the control, MP, OTC, and MP-OTC groups, respectively
(Figure 6A). In addition, zebrafish exposed to MPs, OTC, and
MP-OTC gave higher F/B ratios, ∼ 6:85%, 8.82, and 9.68 times
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that of the control, respectively (Figure 6B). In this study, the
highest F/B ratio was observed in zebrafish coexposed to MPs
and OTC (Figure 6B).

Physiological Fitness of Zebrafish Intestines
Compared with control, H&E staining of the intestine showed
that zebrafish exposed to MPs, OTC, and MP-OTC harbored

significantly fewer goblet cells (Figure 7A). Statistically, after
28-d treatment with MPs, OTC, and MP-OTC, the density of
goblet cells was only ∼ 74:06%, 61.59%, and 40.72% of that of
the control, respectively (Figure 7B; F3,20 = 20:36, p<0:05). In
addition, zebrafish from MPs-, OTC-, and MP-OTC–exposure
groups exhibited MDA contents in their intestines that were
∼ 2:12, 1.22, and 3.41 times that of the control, respectively
(Figure 8; F3,20 = 118:15, p<0:01). Compared with those treated

Figure 1. (A) Lipid droplet staining using Oil Red O (n=6 and randomly selected images presented as representatives), (B) numbers of lipid droplets per millimeter
squared (n=3), and (C) quantified area of lipid droplets to that of the whole tissue observed (n=3) in zebrafish livers after 28-d exposure to control, MPs, OTC, and
MP-OTC, respectively. The black arrows in (A) indicate lipid droplets (Lds) (magnification at 200× and scale bar: 100 lm). Numbers of lipid droplets were counted
manually and the percentages of lipid droplet area to that of the whole tissue observed were estimated with ImageJ in (B) and (C), respectively. The corresponding
numeric data of (B) and (C) are provided in Table S4. Data (means±SEs) with different superscripts abovewere significantly different at p<0:05 (one-way analysis
of variance and Tukey’s post hoc tests). Note:MP-OTC,microplastics and oxytetracycline;MPs, microplastics; OTC, oxytetracycline; SE, standard error.
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with MPs or OTC alone, zebrafish coexposed to MPs and OTC
possessed significantly fewer goblet cells and a higher level of
MDA content in their intestines (Figures 7 and 8).

Content of LPS in Serum and Expression of LBP in Liver
The LPS levels in serum of MPs-, OTC-, and MP-OTC–treated
zebrafish were ∼ 1:15, 1.24, and 1.33 times that of the control,
respectively (Figure 9A; F3,20 = 35:62, p<0:05). After 28-d ex-
posure of zebrafish to MPs, OTC, and MP-OTC, the expression
levels of LBP in the livers were ∼ 5:15-, 4.87-, and 10.64-fold
that of the control, respectively (Figure 9B; p<0:05). In addition,
zebrafish coexposed to MPs and OTC yielded significantly higher
levels of LPS in serum and LBP expression in liver than those
treated with MPs or OTC alone (Figure 9).

Hepatic Lipid Catabolic Activity
The activity of hepatic lipase in zebrafish exposed to MPs, OTC,
and MP-OTC was ∼ 6:67%, 9.71%, and 11.87% lower than
that of control, respectively (Figure 10A; F3,20 = 36:68, p<0:05).
Although the MP-exposure group showed an LIP expression level
that was similar to that of the control, significantly lower LIP
expression was observed in the livers of zebrafish from the OTC-

and the MP-OTC–exposure groups, ∼ 74:98% and 42.48% of that
of the control, respectively (Figure 10B; F3,8 = 27:17, p<0:05).
Compared with those treated with MPs or OTC alone, zebrafish
coexposed to MPs and OTC revealed significantly lower lipase ac-
tivity and LIP expression in their livers (Figure 10).

Discussion
Regardless of the great threat posed by NAFLD prevalence on
human health, the potential impacts of some emerging pollutants,
such as MPs and OTC, to the development of NAFLD remains
largely unknown. Data obtained in the present study demonstrate
that zebrafish exposed to MPs and OTC at the levels equivalent to
those reported by previous surveys57–58 for 28 d exhibited a series of
significant differences from control fish. This suggested the pres-
ence ofNAFLDandwas consistentwith progression of the disease.

In addition to the most common NAFLD symptom of hepatic
lipidosis [more and larger lipid droplets accumulated in hepato-
cytes (Figure 1), in conjunction with higher levels of TG and
TCHO contents (Figure 2)], zebrafish exposed to MPs and OTC
also displayed markedly higher expression levels of immune-
related genes (MyD88, TRAF6, NFkB, and TNF-a), as well as
TNF-a protein, in their livers (Figure 3). This supported the

Figure 2. The contents of (A) triglycerides (TGs), (B) total cholesterol (TCHO), (C) free fatty acids (FFAs), and (D) total bile acids (TBAs) in zebrafish livers
after 28-d exposure to control, MPs, OTC, and MP-OTC, respectively (n=6 for each experimental group). All parameters were determined using correspond-
ing commercial kits [BC0625, BC1985, and BC0595 (Solarbio) and E003-2-1 (Njjcbio), respectively] with a microplate reader (Multiskan GO; Thermo
Scientific) and standardized with the protein content of the sample. The corresponding numeric data are provided in Table S5. Data (means±SEs) with differ-
ent superscripts above were significantly different at p<0:05 (one-way analysis of variance and Tukey’s post hoc tests). Note: MP-OTC, microplastics and ox-
ytetracycline; MPs, microplastics; OTC, oxytetracycline; prot, protein; SE, standard error.
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presence of hepatic inflammation in these animals, a typical more
severe symptom that was normally detected in the severe form of
NAFLD, nonalcoholic steatohepatitis (NASH).80–81 In addition,
zebrafish exposed to MPs and OTC for 28 d revealed

significantly higher levels of ROS and MDA (Figure 4), whereas
lower activities of SOD and CAT (Figure 5) were found in their
livers, suggesting the occurrence of oxidative injury (indicated by
higher level of lipid peroxidation) probably due to an induction

Figure 4. (A) ROS-specific fluorescent staining, (B) quantified ROS fluorescent intensities, and (C) MDA contents in zebrafish livers after 28-d exposure to
control, MPs, OTC, and MP-OTC, respectively [n=6 for each experimental group, and randomly selected images are presented as representatives for (A)].
The hepatocyte and ROS were stained in blue (DAPI) and red (DHE) in (A), respectively (magnification at 400× and scale bar: 50 lm). The ROS-specific flu-
orescence intensity was determined using ImageJ and the MDA content was measured with a commercial kit (BC0025; Solarbio) using a microplate reader
(Multiskan GO; Thermo Scientific). The corresponding numeric data are provided in Table S7. Data (means±SEs) with different superscripts above in (B) and
(C) were significantly different between groups at p<0:05 (one-way analysis of variance and Tukey’s post hoc tests). Note: DAPI, 4 0,6-diamidino-2-phenylin-
dole; DHE, dihydroethidium; MDA, malondialdehyde; MP-OTC, microplastics and oxytetracycline; MPs, microplastics; OTC, oxytetracycline; prot, protein;
ROS, reactive oxygen species; SE, standard error.

Figure 3. (A) Expression levels of inflammation-related genes and (B) western blot of TNF-a in zebrafish livers after 28-d exposure to control, MPs, OTC,
and MP-OTC, respectively (n=3 for each experimental group for both gene expression and western blot analyses). Gene expressions were determined by real-
time PCR with a Bio-Rad real-time system (CFX96; Bio-Rad) and the relative TNF-a expression levels were quantified using ImageJ. The corresponding
numeric data are provided in Table S6. Data (means±SEs) with different superscripts above were significantly different at p<0:05 (one-way analysis of var-
iance and Tukey’s post hoc tests). Note: MDA, malondialdehyde; MP-OTC, microplastics and oxytetracycline; MPs, microplastics; OTC, oxytetracycline;
PCR, polymerase chain reaction; ROS, reactive oxygen species; SE, standard error; TNF-a, tumor necrosis factor-a.
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of in vivo ROS and a disruption of antioxidant enzymes. Given
that high degrees of lipidosis, extensive inflammation, and patho-
logical lesions often progress to severe liver diseases, such as he-
patocyte necrosis,82 hepatocyte fibrosis,83 and liver cirrhosis,84
our results give an indication where exposure to environmental
MPs and OTC could pose a considerable threat to liver health.

Based on the data obtained in this study, we hypothesize that the
gut–liver axis might be the target ofMPs and OTC in zebrafish with
NAFLD. First, microbiome analysis of gut contents showed that
zebrafish from the MPs-, OTC-, and MP-OTC–exposure groups
yielded a smaller relative abundance of Proteobacteria but higher
F/B ratios compared with that of the control fish (Figure 6), which

the authors postulate to be a sign of gut microbiota dysbiosis.
According to previous studies,74–75 a high F/B ratio might be an im-
portant indicator of obesity, a common complication of NAFLD,
thus the higher F/B ratios observed in zebrafish after 28-d exposure
to MPs and OTCmay suggest a higher risk of obesity and NAFLD.
In addition, it has been suggested that change in microbial composi-
tion of the gut may increase the release of intestinal endotoxins,
such as LPS.85–86 Based on the relationship between intestinal mi-
crobial composition and LPS release reported in zebrafish,87 we rea-
son that zebrafish exposed to MPs and OTC might have higher
levels of LPS in their intestines due to the reduced abundance of the
dominantmicrobial Proteobacteria in their gut contents.

In accordance with previous studies,76–77 our data showed
that zebrafish exposed to MPs and OTC for 28 d exhibited signifi-
cantly higher MDA contents and fewer goblet cells in their intes-
tines than the control fish (Figures 7 and 8). On one hand, the
higher MDA contents observed suggested the occurrence of in-
testinal oxidative injury in MPs- and OTC-treated zebrafish,
which is believed by the authors to be the potential cause for the
fewer goblet cells detected. On the other hand, given that intesti-
nal mucus (the mucosal barrier on the intestinal surface that

Figure 5. The activities of (A) SOD and (B) CAT in zebrafish livers after 28-d
exposure to control, MPs, OTC, and MP-OTC, respectively (n=6 for each ex-
perimental group). The enzymatic activities of SOD and CAT were measured
with corresponding commercial kits (BC0175 and BC0205, respectively;
Solarbio) using a microplate reader (Multiskan GO; Thermo Scientific). The
corresponding numeric data are provided in Table S8. Data (means±SEs) with
different superscripts above were significantly different at p<0:05 (one-way
analysis of variance and Tukey’s post hoc tests). Note: CAT, catalase; MP-
OTC, microplastics and oxytetracycline; MPs, microplastics; OTC, oxytetra-
cycline; prot, protein; SE, standard error; SOD, superoxide dismutase.

Figure 6. The (A) top 10 abundant microbial phyla and the (B) Firmicutes/
Bacteroidetes ratios of the gut content microbiome of zebrafish after 28-d
exposure to control, MPs, OTC, and MP-OTC, respectively (n=3 for each
experimental group). Microbiome of gut contents (under accession number
of PRJNA890774 in NCBI database) were obtained by Illumina-based high-
throughput sequencing (Novogene Co., Ltd.). Different microbial phyla are
labeled with different colors and corresponding phyla names are listed on the
right side in (A). Blue and orange colors in (B) indicate the relative abun-
dance of Firmicutes and Bacteroidetes, respectively. The corresponding
numeric data for (A) are provided in Table S9. The number above each data
column in (B) indicates the Firmicutes/Bacteroidetes ratio for the corre-
sponding experimental group. Note: F/B, Firmicutes/Bacteroidetes (ratio);
MP-OTC, microplastics and oxytetracycline; MPs, microplastics; NCBI,
National Center for Biotechnology Information; OTC, oxytetracycline.
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prevents harmful substances from entering the circulatory sys-
tem) was primarily secreted by goblet cells,88–89 we hypothesize
that MPs- and OTC-treated zebrafish with fewer goblet cells in
their intestines may have a disrupted intestinal mucosal barrier
and thus higher intestinal permeability to harmful substances,
such as endotoxins.

In this study, significantly higher levels of LPS were detected
in the serum of zebrafish after 28-d exposure (Figure 9A).
Meanwhile, MPs- and OTC-treated zebrafish exhibited higher
levels of LBP compared with the control (Figure 9B). One inter-
pretation of this finding might be the activation of the LBP by
high levels of LPS. According to the literature, once activated by
the potent endotoxin LPS, a series of immune responses will be

triggered,78,90 offering a probable explanation for the inflamma-
tory symptoms detected. Specifically, we found higher levels of
MyD88, NFkB, TRAF6, and TNF-a, as well as TNF-a in the liv-
ers of zebrafish exposed to MPs and OTC, suggesting that LPS
binding to its receptor, LBP, may activate MyD88, triggering the
downstream NFkB-signaling pathway and the release of pro-
inflammatory TNF-a.

According to previous studies,63,91 both inflammation and oxi-
dative injury of the liver induced by exposure of zebrafish to MPs
and OTC could lead to hepatic lipid metabolism disorders, which
may give rise to hepatic lipidosis. For instance, it has been demon-
strated that lipid peroxidation caused by oxidative stress could
damage hepatocytes and inhibit normal hepatic lipid metabolism
in zebrafish.92 In addition, it has been shown that zebrafish lipase
was sensitive to oxidative stress and inflammation.92–93 In accord-
ance with these previous studies, our data illustrated that zebra-
fish exposed to MPs and OTC for 28 d produced significantly
lower activity of hepatic lipase and LIP expression than that of
the control fish (Figure 10). In addition, MPs- and OTC-treated
zebrafish harbored markedly less FFA and TBA (catabolites for
TG and TCHO, respectively) in their livers (Figure 2C,D). We
believe that the observation of low levels of FFAs and TBA under
high levels of TG and TCHO in the livers of MPs- and OTC-
treated zebrafish indicates a significant reduction in lipid catabo-
lism, which may partially account for the excessive accumulation
of lipids in the liver. Furthermore, it has been suggested that the
pro-inflammatory factor TNF-a could interfere with insulin sig-
naling and lead to insulin resistance,94 which might be not only
the primary cause of diabetes but also closely related to obesity
progression95–96 and NAFLD.97–98 Thus, in addition to disrupt-
ing hepatic lipid metabolism, we believe that interfering with in-
sulin signaling could be another route for the incidence and
progression of NAFLD observed in MPs- and OTC-treated
zebrafish.

Figure 8.MDA contents in the intestines of zebrafish after 28-d exposure to
control, MPs, OTC, and MP-OTC, respectively (n=6 for each experimental
group). The MDA content was measured with a commercial kit (BC0025;
Solarbio) using a microplate reader (Multiskan GO; Thermo Scientific) and
standardized with the protein content of the sample. The corresponding
numeric data are provided in Table S11. Data (means±SEs) with different
superscripts above were significantly different at p<0:05 (one-way analysis
of variance and Tukey’s post hoc tests). Note: MDA, malondialdehyde; MP-
OTC, microplastics and oxytetracycline; MPs, microplastics; OTC, oxytetra-
cycline; prot, protein; SE, standard error.

Figure 7. (A) Histological images of intestines and (B) quantified intestinal
goblet cell densities in zebrafish exposed to control, MPs, OTC, and MP-
OTC, respectively [n=6 for both analysis for each experimental group, and
randomly selected images are presented as representatives for (A)]. The
images of intestines presented in (A) were stained with H&E. The magnifi-
cation and scale bar were 200× and 100 lm for (A), respectively. Goblet
cells are indicated by black arrows in (A). The corresponding numeric data
for (B) are provided in Table S10. Data (means±SEs) with different super-
scripts above were significantly different at p<0:05 (one-way analysis of
variance and Tukey’s post hoc tests). Note: H&E, hematoxylin and eosin;
MP-OTC, microplastics and oxytetracycline; MPs, microplastics; OTC, oxy-
tetracycline; SE, standard error.
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Complementing previous studies carried out in other species
(i.e., the thick-shell mussel99 and the blood clam71), our study
found coexposure of zebrafish to MPs and OTC generally exerted
more severe effects on the parameters investigated compared with
single treatments. On one hand, this may be due to the summation
of adverse impacts on shared common targets (i.e., almost all the
physiological parameters investigated in this study) of MPs and
OTC. On the other hand, according to the intestinal OTC accumu-
lation (Figure S2) and the FT-IR results (Figure S3) of the present

study and those reported previously,32,36 MPs could also absorb
OTC residues from the environment (the aqueous environment in
the present study). Therefore, we hypothesized that MPs may con-
dense environmental OTC and act as vectors to facilitate the inter-
nalization of OTC, which could be another explanation for the
more severe impacts detected.

Due to the frequent detection of MPs and OTC in food materi-
als,100–101 sauces,19 and drinking water,28,58 ingestion through
contaminated food and drinking water has been suggested to be the
primary exposure route in humans.102–103 For example, it has been
demonstrated that the average MPs in five frequently consumed

Figure 9. (A) LPS contents in serum (n=6 for each experimental group)
and (B) expression levels of LBP in the livers (n=3 for each experimental
group of zebrafish after 28-d exposure to control, MPs, OTC, and MP-OTC,
respectively). The LPS content in the sample was measured with the com-
mercial LPS ELISA kit (JL13861; Jonln Biotechnology) using a microplate
reader (Multiskan GO; Thermo Scientific), and LBP expression was deter-
mined by real-time PCR with a Bio-Rad real-time system (CFX96; Bio-
Rad). The corresponding numeric data are provided in Table S12. Data
(means±SEs) with different superscripts above were significantly different
at p<0:05 (one-way analysis of variance and Tukey’s post hoc tests). Note:
ELISA, enzyme-linked immunosorbent assay; LBP, gene encoding lipopoly-
saccharide binding receptor; LPS, lipopolysaccharide; MP-OTC, microplas-
tics and oxytetracycline; MPs, microplastics; OTC, oxytetracycline; PCR,
polymerase chain reaction; prot, protein; SE, standard error.

Figure 10. (A) Activities of lipase (n=6 for each experimental group) and
(B) expressions of LIP (n=3 for each experimental group) in zebrafish liv-
ers after 28-d exposure to control, MPs, OTC, and MP-OTC, respectively.
The activity of lipase was determined with the commercial lipase activity kit
(BC2345; Solarbio) using a microplate reader (Multiskan GO; Thermo
Scientific) and LIP expression was determined by real-time PCR with a Bio-
Rad real-time system (CFX96; Bio-Rad). The corresponding numeric data
are provided in Table S13. Data (means±SEs) with different superscripts
above were significantly different at p<0:05 (one-way analysis of variance
and Tukey’s post hoc tests). Note: LIP, gene encoding lipase; MP-OTC,
microplastics and oxytetracycline; MPs, microplastics; OTC, oxytetracy-
cline; PCR, polymerase chain reaction; prot, protein; SE, standard error.
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fruits and vegetables (apples, pears, broccoli, lettuce, and carrots)
in Catania, Italy, reached as high as 132,740 particles/g.104 In addi-
tion, based on the survey conducted in Catania, Italy,28 the esti-
mated daily intakes of MPs through drinking bottled water were
estimated to be ∼ 1:53× 106 particles=kg-body weight (BW) per
day (40:1 mg=kg-BW per day) and 3:35× 106 particles=kg-BW
per day (87:8 mg=kg-BW per day) for adults and children, respec-
tively. Furthermore, given the exposure risk caused by consuming
formula prepared in infant feeding bottles, the daily intake of MPs
by infants was estimated to be ∼ 1:62× 107 particles=day based on
data collected from 48 regions globally.105 Similarly, the estimated
daily intakes of OTCmerely through consuming contaminated sea-
food was estimated to be ∼ 0:141–0:447 lg=d per capita based on
the survey results (∼ 2:7–8:6 lg=kg OTC) of seafood in the U.S.
market48 and the seafood consumption per capita (52:05 g=d) of
the Food andAgriculture Organization of the UnitedNations.106

Although both MPs and OTC potentially pose a great threat to
human health, the realistic overall exposure concentrations of these
two pollutants remain unclear. Therefore, it is hard to directly
extrapolate the results obtained in this study to humans (the zebra-
fish were exposed to the environmental realistic concentrations of
MPs and OTC for fish species). However, given the high genome
sequence homologies between human and zebrafish,107 our results
contribute significant implications for the environmental induction
of human NAFLD. Considering the long-term amount of MPs and
OTC that can accumulate in our body via daily ingestion of conta-
minated food and water, the potential NAFLD risk of these pollu-
tants should not be overlooked.
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