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Abstract. Lipopolysaccharide (LPS), a potent endotoxin 
present in the outer membrane of Gram-negative bacteria, 
causes chronic immune responses associated with inflamma-
tion. In the present study, the association between LPS and the 
dysbiosis of Gram-negative bacteria in the gut microbiome was 
determined in patients with type 2 diabetes mellitus (T2DM) 
and chronic kidney disease (T2DM-CKD; stages 4 and 5, not 
on dialysis) compared with healthy individuals. Microbiome 
diversity was analyzed in patients with T2DM-CKD and healthy 
controls by sequencing the hypervariable sub-regions of the 
16S ribosomal RNA gene from stool samples. Serum samples 
were assayed by ELISA for LPS, C-reactive protein (CRP), 
tumor necrosis factor-α (TNFα), interleukin-6 (IL6) and endo-
thelin-1. A total of four gut Gram-negative phyla (Bacteroidetes, 
Proteobacteria, Fusobacteria and Verrucomicrobia) were iden-
tified in the gut microbiome of the T2DM‑CKD and control 
groups. Proteobacteria, Verrucomicrobia and Fusobacteria 
exhibited significantly increased relative abundance in patients 
with T2DM-CKD when compared with controls (P<0.05). The 
levels of serum LPS were significantly increased in patients 
with T2DM-CKD compared with controls (P<0.05). Elevated 
serum LPS was significantly correlated with increased levels 
of TNFα, IL6 and CRP. The dysbiosis of Gram-negative 
bacteria in the gut microbiome of patients with T2DM-CKD 
may contribute to the elevated serum levels of LPS and the 
consequential effects on the inflammatory biomarkers in 

these patients. The association between the dysbiosis of 
Gram-negative bacteria in the gut microbiome of patients 
with T2DM-CKD, increased LPS levels and the effects on 
inflammatory biomarkers may provide insight into potential 
diagnostic and therapeutic approaches in the treatment of 
T2DM-CKD.

Introduction

Gut microbiota dysbiosis is associated with the develop-
ment and progression of chronic kidney disease (CKD) (1,2), 
cardiovascular complications (CVC) (2-4), obesity (5) and 
type 2 diabetes mellitus (T2DM) (5-8). High levels of serum 
lipopolysaccharide (LPS), a potent endotoxin produced by 
Gram-negative bacteria, have been associated with patho-
logical processes, including diabetes, the progression of kidney 
disease, obesity and inflammation (9,10). The release of LPS 
from Gram-negative bacteria in the gut and its passage to the 
blood causes LPS‑associated toxicity (11). LPS induces inflam-
mation via a cascade of inflammatory responses following the 
recognition of lipid A of LPS by immune cells (12,13). Lipid A is 
the toxic component of LPS and serves as the microbe‑specific 
molecular signal that binds to the surface receptor complexes of 
immune cells, which comprise Toll-like receptor 4 (TLR4) and 
myeloid differentiation factor 2 (MD2) (14,15). The formation 
of the signaling complex can induce the activation of nuclear 
factor-κB (NF-κB). NF-κB serves key role in signaling for the 
production of proinflammatory cytokines. Therefore, the detec-
tion of low quantities of circulating LPS by the TLR4 receptor 
system initiates the cascade of protein-protein interactions, 
leading to the production of proinflammatory cytokines (16,17).

A number of factors associated with microbial alterations 
in the gut microbiota can lead to changes in host inflamma-
tory responses (18). Diet and T2DM-associated medications 
are among the reported factors that alter the composition of 
the gut microbiome (19,20). The consumption of foods high in 
fat increases the abundance of LPS-containing Gram-negative 
bacteria in the gut at the expense of Gram-positive 
bacteria (20,21). Metformin, a blood glucose regulator, was 
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reported to increase the relative abundance of LPS-producing 
Gram-negative gut bacteria (22). Numerous studies character-
ized the composition of gut microbiota in CKD (23,24), and 
reported the correlation between LPS, increased intestinal 
permeability (11,25) and inflammation in patients with 
CKD (1,26). Metabolic syndrome and obesity are influenced by 
interactions between the gut microbiota and host genetics (27). 
Collectively, diet, the host genome and T2DM medication may 
be associated with imbalances in the gut microbiome. The 
multifactorial network between gut microbiome dysbiosis and 
the health of patients suggests an association between LPS, 
impaired gut permeability, cardiovascular diseases, CKD, and 
patients with T2DM and CKD (T2DM-CKD).

Of note, the aforementioned studies did not analyze 
patients with T2DM and advanced CKD (stages 4 and 5, not 
on dialysis). The present study investigated the link between 
gut Gram-negative bacteria and the derived LPS endotoxin, 
and the consequent inflammatory responses in patients with 
T2DM-CKD. We evaluated gut microbiome dysbiosis associ-
ated with LPS-producing bacteria in patients with T2DM-CKD 
compared with healthy control subjects. In addition, whether 
elevated serum LPS levels correlated with chronic inflamma-
tion was determined. Improved understanding in this research 
field is important for the development of effective therapeutic 
and diagnostic approaches for LPS-associated diseases.

Patients and methods

Study design. Healthy (n=20) and T2DM-CKD (stages 4 and 5, 
not on dialysis) (n=20) subjects were ≥18‑years‑old at enroll-
ment into the present study. Healthy participants were referred 
by primary care physicians, and had no notable medical histo-
ries and were not on any medication. Patients with T2DM-CKD 
were recruited from the outpatient clinic of the Texas Tech 
University Health Sciences Center (Amarillo, TX, USA). 
Patients with T2DM‑CKD with a glomerular filtration rate 
(GFR) of <30 ml/min/1.72 m2 and not on dialysis were enrolled 
in the present study. The exclusion criteria included patients 
treated with antibiotics for ≥3 days during the month prior to 
the initiation of analysis, those diagnosed with end-stage liver 
disease or chronic gut-related diseases other than diabetes, 
pregnant, patients who previously had bariatric surgeries, and 
those with a mental status that restricted informed consent 
for enrollment. Criteria from Electronic Medical Records and 
Genomics (eMERGE) Network were used in categorizing 
patients for the study (28). The GFR was calculated using the 
CKD-EPI formula (29) and staging corresponded to the Kidney 
Disease Outcomes Quality Initiative guidelines (30). The 
Institutional Review Board of Texas Tech University Health 
Sciences Center approved the present study. Patients provided 
informed consent prior to study participation. The study design 
included analyses of the dysbiosis of Gram-negative bacteria in 
the gut microbiome, serum inflammatory markers, and endo-
thelial dysfunction biomarkers in healthy patients and those 
with T2DM-CKD (stages 4 and 5, not on dialysis).

Fecal sample collection and DNA analysis. Stool samples 
were collected from subjects within 24 h prior to a clinical 
visit. The samples were processed for DNA extraction 
within 24 h using PSP Spin Stool DNA PLUS Kits (Invitek 

Biotechnology and Biodesign LTD, Berlin, Germany) 
according to the manufacturer's protocols. DNA sequencing 
and gut microbiota classification were conducted as previ-
ously described (31‑33). Briefly, the hypervariable sub‑regions 
of 16S ribosomal RNA genes were amplified by polymerase 
chain reaction with the bacterial universal primer sets, 341F 
and 805R, which contained Illumina adaptors. The obtained 
libraries were sequenced by MiSeq sequencer (Illumina Inc., 
San Diego, CA, USA) using a 600 cycle v3 sequencing kit. 
The Human 16S rRNA database was used to remove matching 
DNA sequences in the human genome. The microbiome oper-
ational taxonomic units (OTUs) were classified and compiled 
into the taxonomic levels as ‘counts’ and ‘percentage’ files.

Biomarkers assays. ELISA kits were employed to assay 
biomarkers in the serum from the blood of fasting patients and 
healthy controls. ELISA kits (R&D Systems, Minneapolis, 
MN, USA) were used to assay endothelin-1 (ET-1), C-reactive 
protein (CRP), tumor necrosis factor-α (TNFα), and inter-
leukin-6 (IL6). An ELISA kit obtained from TSZ ELISA 
(Waltham, MA, USA) was used to LPS levels.

Statistical analysis. Excel Data Analysis Toolpack and 
GraphPad Prism 7.01 (GraphPad Software, Inc., La Jolla, 
CA, USA) were used for the statistical analysis of various 
parameters via paired or unpaired t-tests, and two-way 
analysis of variance (ANOVA) with Bonferroni's post hoc 
test. A Mann-Whitney test was used to compare data between 
patients with T2DM-CKD and healthy controls. Regression 
and Spearman correlation analyses were used to assess the 
strength and direction of correlations between LPS and serum 
biomarkers. P<0.05 was considered to indicate a statistically 
significant difference. To demonstrate the significance of the 
source of variations in the abundance of identified OTUs 
between the two groups, two-way ANOVA with an adjusted 
P-value (multiplicity test) was applied for each comparison. 
Multiplicity tests revealed three adjusted P-values, interac-
tion [p(I)], column factor [p(CF)] and row factor [p(RF)].

Results

Clinical characteristics. The healthy controls and patients with 
T2DM‑CKD exhibited no significant differences in gender, age 
and body mass index values (Table I). Significant differences 
were observed between the control and T2DM-CKD groups 
for total cholesterol, triglycerides, and low- and high-density 
lipoprotein. Insulin dependence among the diabetic group 
was 40% at enrollment. The remaining patients of the group 
had received sitagliptin or glipizide. None of the patients with 
T2MD-CKD were administered metformin. Patients in the 
T2DM-CKD group used ranitidine (10% of the group) and 
proton pump inhibitors (20% of the group). Antihypertensive 
medications were prescribed to 90% of the recruited patients 
with T2MD-CKD (mono or combined therapy), with 40% on 
angiotensin-converting enzyme inhibitors and 20% on angio-
tensin II receptor blockers. A total of 40% of the T2MD-CKD 
group were taking statins.

Diversity of LPS producing gut Gram‑negative bacteria 
in the T2DM‑CKD and control groups. We identified four 
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Gram-negative phyla in the gut microbiota of the T2DM-CKD 
and control groups, including Bacteroidetes, Proteobacteria, 
Verrucomicrobia and Fusobacteria. Of the Gram-positive 

phyla, Firmicutes and Actinobacteria were identified; 
the phyla exhibited a mean percentage of ≥0.3% (Fig. 1). 
The relative abundance of each phylum in the two study 

Table I. Clinical parameters of patients with T2DM-CKD and control participants recruited in the present study.

Parameter T2DM-CKD Control P-value

Sex 9 male, 11 female 11 male, 9 female 0.75
Age (years) 62.8±3.6 58.5±4.1 0.23
BMI (kg/m2) 32.7±3.8 29.4±2.6 0.18
eGFR (ml/min/1.72 m2) 16.54±3.01 >60 N/A
Proteinuria (g/24 h) 3.58±2.29 N/A N/A
HDL (mg/dl) 38.9±6.2 58.5±8.4 0.01
LDL (mg/dl) 112±12.7 81±9.6 0.01
Total cholesterol (mg/dl) 161.7±15.2 189.0±10.7 0.01
Triglycerides (mg/dl) 193.1±22.7 82.0±17.1 0.01

T2DM-CKD, type 2 diabetes mellitus and chronic kidney disease; BMI, body mass index; LDL, low-density lipoprotein; HDL, high-density 
lipoprotein; N/A, not calculated. The data presented as mean ± standard deviation.

Figure 1. Identified gut microbiota phyla in patients with T2DM‑CKD and healthy individuals. The relative abundances were expressed as mean percentages. 
T2DM, type 2 diabetes mellitus.
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groups, T2DM-CKD and control, revealed no significant 
difference for possessing Bacteroidetes (Fig. 2). Within 
the Bacteroidetes, five families were identified, including 
Bacteroidaceae, Porphyromonadaceae, Prevotellaceae, 
Paraprevotellaceae and Flavobacteriaceae; five genera 
(Bacteroides, Porphyromonas, Prevotella, Paraprevotella 
and Flavobacterium) were also reported in the human gut 
(Fig. 3). In addition, bacteria of a sixth family, Weeksellaceae 
in the phylum Bacteroidetes, were detected (Fig. 3). To the 
best our knowledge, Weeksellaceae has not been reported in 
the human gut microbiota, but has been identified in human 
saliva. Furthermore, the results of the present study revealed 
that members of the Bacteroides genus of the Bacteroidetes 
phylum were dominant in the gut microbiota of patients with 
T2DM‑CKD (36%) and controls (34%); however, no signifi-
cant difference in the mean percentages was observed.

The three Gram-negative phyla (Proteobacteria, 
Verrucomicrobia and Fusobacteria) exhibited lower mean 

percentages (0.3-5%) than Bacteroidetes in the T2DM-CKD 
and control groups (Fig. 1). As presented in Fig. 2, 
Mann‑Whitney analysis demonstrated significantly increased 
relative abundance of the three aforementioned Gram-negative 
phyla in the gut of patients with T2DM-CKD compared 
with the control. A total of 17 genera in the Gram‑negative 
phylum Proteobacteria and 10 genera within the family 
Enterobacteriaceae were reported (Fig. 4A). Akkermansia 
was identified in the Gram‑negative phylum Verrucomicrobia 
(Fig. 4B) and two genera, Leptotrichia and Fusobacterium, 
were detected in the Gram-negative phylum Fusobacteria 
(Fig. 4C).

Multiplicity tests with adjusted P-values revealed the abun-
dance of the identified OTUs between the two study groups, 
T2DM‑CKD and controls. Analysis demonstrated a significant 
difference in the specified source of variation for the relative 
abundance of Proteobacteria and Fusobacteria between the 
T2DM-CKD and control groups [p(I)=0.0226, p(RF)<0.0001 

Figure 3. Identified families and genera in the Gram‑negative phylum Bacteroidetes in the type 2 diabetes mellitus‑chronic kidney disease and control groups 
with high relative abundances.

Figure 2. Relative abundance of four gut Gram‑negative phyla in the T2DM‑CKD and control groups. No significant difference was observed between 
the relative abundance of Bacteroidetes. Significant differences were observed in the relative abundance of the three Gram‑negative phyla Proteobacteria, 
Verrucomicrobia and Fusobacteria between the two groups. P<0.05. T2DM-CKD, type 2 diabetes mellitus and chronic kidney disease.
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and p(CF)=0.0184; Fig. 5]. On the contrary, the multiplicity 
tests indicated no significant differences in the abundance of 
Proteobacteria and Verrucomicrobia, or Verrucomicrobia and 
Fusobacteria between the T2DM-CKD and control groups.

Correlation between elevated levels of serum LPS and 
the assayed biomarkers in the T2DM‑CKD group. The 
significant difference observed in the relative abundance of 
gut Gram-negative bacteria in patients with T2DM-CKD 
compared with the control group may be associated with 
increased levels of serum LPS. ELISA demonstrated that 
serum LPS levels were significantly higher in patients with 
T2DM‑CKD compared with the controls (P≤0.05; Fig. 6A). 

Then, the correlation between elevated serum LPS levels and 
inflammatory biomarkers was determined by linear regression 
and Spearman correlation analyses. Linear regression was 
performed using circulating inflammatory biomarkers as a 
dependent variable and LPS as an independent variable. The 
results demonstrated that elevated LPS levels were associated 
with increased levels of CRP, IL6 and TNFα in the blood of 
patients with T2DM‑CKD (P≤0.05; Fig. 6B‑D). Whereas, 
LPS and endothelial dysfunction biomarker, ET-1, exhibited 
a non-significant correlation. The levels of inflammatory 
biomarkers were significantly decreased in healthy individuals 
compared with patients with T2DM-CKD and exhibited a 
non‑significant correlation with LPS.

Figure 5. Multiple comparison analysis with adjusted P-values of the relative abundances of Proteobacteria and Fusobacteria in patients with T2DM and 
controls. The two phyla demonstrated a significant difference for the specified source of variations. P<0.05. T2DM‑CKD, type 2 diabetes mellitus and chronic 
kidney disease.

Figure 4. Members of the gut microbiota identified in three Gram‑negative phyla with low relative abundances within patients with type 2 diabetes mellitus 
and controls. (A) The phylum Proteobacteria comprised of 5 families and 17 genera. (B) A single genus was identified in the phylum, Verrucomicrobia; 
(C) 2 genera were identified in the phylum, Fusobacteria.
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Figure 6. Correlation between elevated serum LPS and inflammatory biomarkers in the T2DM‑CKD and control groups. (A) Serum LPS (ng/ml) levels in 
T2DM‑CKD patients compared with the controls. (B‑D) Elevated serum levels of LPS revealed a significant positive correlation with (B) CRP, (C) IL6 and 
(D) TNFα in the blood of patients with T2DM-CKD. P<0.05. CRP, C-reactive protein; IL6, interleukin-6; LPS, lipopolysaccharide; T2DM-CKD, type 2 
diabetes mellitus and chronic kidney disease; TNFα, tumor necrosis factor α.

Figure 7. Multifactorial effects of host genotype, diet, drugs and the potential influence of T2DM on alterations in the gut microbiome, which is followed by a 
cascade of events that promote systemic inflammation and reduces the clearance of endotoxins associated with chronic kidney disease. T2DM, T2DM type 2 
diabetes mellitus.
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Discussion

The results demonstrated a shift in the gut microbial 
community in patients with T2DM-CKD towards increased 
relative abundances of Gram-negative bacteria. The dysbiosis 
of Gram-negative gut microbiota is a health risk associ-
ated with elevated LPS levels and correlated with increased 
levels of inflammatory biomarkers that can cause chronic 
inflammation in patients with T2DM‑CKD. LPS forms the 
outer monolayer of the outer membranes of the majority of 
Gram-negative bacteria with profound effects on the immune 
system (10,34,35). Nicholson et al (18) reported the involvement 
of bacterial LPS in metabolic and numerous inflammatory 
disorders (18).

A total of four Gram-negative phyla, including Bacteroidetes, 
Proteobacteria, Verrucomicrobia and Fusobacteria were identi-
fied in the gut microbiota of T2DM‑CKD and control subjects. 
Previous studies proposed Bacteroidetes as the primary 
Gram‑negative microbiota in the gastrointestinal tract (36,37). 
The present study identified five previously reported genera 
in the phylum Bacteroidetes, including Porphyromonas, 
Prevotella, Paraprevotella and Flavobacterium (38,39). 
Members of the Weeksellaceae family in the Bacteroidetes 
phylum had been detected in human saliva but were reported 
not to inhabit the human gut (40). In the present study, members 
of the genus Bacteroides were reported to be dominant in the 
gut microbiota of the T2DM-CKD (stages 4 and 5, not on 
dialysis) and control groups; no significant differences were 
observed. Jiang et al (41) revealed that members of the genus 
Bacteroides were prevalent in samples collected from patients 
with end-stage renal disease.

The other three Gram-negative phyla, Proteobacteria, 
Verrucomicrobia and Fusobacteria exhibited reduced abun-
dances in the T2DM-CKD group compared with that of 
Bacteroidetes. The mean percentages for Proteobacteria (5%), 
Verrucomicrobia (4%) and Fusobacteria (1%) in patients 
with T2DM‑CKD were significantly higher than the relative 
abundance in the controls (2, 3 and 0.3%, respectively). A total 
of 17 genera in five families in the phylum Proteobacteria 
were identified. Several of the identified genera were within 
the family Enterobacteriaceae. Of note, the activity of LPS 
in Bacteroidetes is less effective compared with that of other 
Gram-negative bacteria. Numerous studies reported that 
Escherichia coli and other bacteria in the Enterobacteriaceae 
family possess markedly increased LPS endotoxin activity 
than LPS extracted from the envelope of Bacteroides fragilis 
of the Bacteroidetes phylum (42,43). LPS is structurally similar 
to lipid A of E. coli; however, lipid A of B. fragilis differs by 
the lack of a phosphate group on C4 of the non-reducing amino 
sugar, and by the presence of fewer and various fatty acids (42). 
These differences may account for the low endotoxic activity 
of B. fragilis-derived LPS. In addition, Bacteroides fragilis 
endotoxins are a notable cause of anaerobic bacteremia and 
sepsis (44). The present study also reported the three genera, 
Akkermansia, Fusobacterium and Leptotrichia which belong 
to two phyla, Verrucomicrobia and Fusobacteria, are a part of 
the human gut microbiota. Recent studies reported the genera 
identified in the present study, including, Leptotrichia (45), 
Akkermansia (46) and Fusobacterium (45,47) to be a part of 
the human gut flora.

Additionally, the present study revealed a significant 
correlation between elevated levels of LPS, and inflammatory 
biomarkers, including CRP, TNFα and IL-6 in patients with 
T2DM-CKD compared with the controls. Increased levels 
of circulating LPS have been reported to promote systemic 
inflammation (42,43). The inflammatory response is initi-
ated following the recognition of lipid A by TLR4 and MD2 
of immune cells (12-15). The formation of the TLR4-MD-2 
complex activates the signaling pathway controlling the 
expression of various inflammatory genes (48‑51). Thus, when 
the levels of LPS in the blood exceed a threshold concentration, 
myeloid cells are systemically activated to produce excessive 
quantities of pro‑inflammatory cytokines, including IL‑1β, 
IL-6 and TNFα (52,53).

An additional factor contributing to elevated LPS in 
the blood is diet. Consuming foods high in fat promotes 
Gram-negative bacteria in the gut (20,21). In the present study, 
it was observed that patients with T2DM-CKD consumed 
more fat than control participants. Furthermore, several 
studies revealed the effects of the gut microbiota in regulating 
the integrity of the intestine permeability; gut permeability 
is critical for health (54,55). Gut bacteria can induce altera-
tions in zonulin, an essential component of the intercellular 
tight junction and an important factor associated with gut 
permeability (56,57). The loss of integrity of intestinal perme-
ability allows the translocation of LPS from the gut into the 
blood (58-61). Thus, the loss of gut wall integrity associated 
with gut microbiota dysbiosis could increase the levels of 
circulating LPS in patients with T2DM-CKD.

Numerous cross-sectional studies reported that insulin 
resistance and T2DM are associated with increased levels 
of CRP, IL-6 and TNFα, markers of subclinical systemic 
inflammation (62). The precise mechanisms underlying the 
upregulation of these inflammatory markers require further 
investigation; however, the inflammatory response under the 
conditions of T2DM may be multifactorial. The present study 
aimed to demonstrate LPS as a major factor in the onset of 
inflammation; however, other factors, including age, quantity 
of adipose tissue and advanced glycation end products may 
serve a role. Furthermore, the host genome and drugs have 
been associated with gut microbiome imbalances (19,20,27). 
The present study proposed a multifactorial association 
between the composition of the gut microbiome and the health 
of patients with T2DM‑CKD (Fig. 7), including the contribu-
tion of T2DM, LPS endotoxin and impaired gut permeability 
in the development of CVC, CKD and T2DM-CKD.

However, there are two limitations to this study. First, 
using a small number of subjects is not to quantify the general 
performance of dysbiosis within T2DM -CKD patients but to 
document the existence of an effect (63). The second limita-
tion is the analysis of the potential association of only four 
Gram-negative phyla with LPS. These phyla predominantly 
exhibited a mean percentage of greater than or equal to 0.3%.

In conclusion, the present study revealed the dysbiosis 
of three Gram-negative phyla, including Proteobacteria, 
Verrucomicrobia and Fusobacteria in the gut microbiota of 
patients with T2DM-CKD, which was associated with elevated 
levels of LPS endotoxin in the blood. Direct therapeutic 
interventions are required to reduce the relative abundance of 
LPS-producing bacteria in patients with T2DM-CKD.
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