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ABSTRACT

Background: Glutamate is the main excitatory neurotransmitter. Excessive glutamate causes 
excitatory toxicity and increases intracellular calcium, leading to neuronal death. Parvalbumin 
is a calcium-binding protein that regulates calcium homeostasis. Quercetin is a polyphenol 
found in plant and has neuroprotective effects against neurodegenerative diseases.
Objectives: We investigated whether quercetin regulates apoptosis by modulating 
parvalbumin expression in glutamate induced neuronal damage.
Methods: Glutamate was treated in hippocampal-derived cell line, and quercetin or vehicle 
was treated 1 h before glutamate exposure. Cells were collected for experimental procedure 
24 h after glutamate treatment and intracellular calcium concentration and parvalbumin 
expression were examined. Parvalbumin small interfering RNA (siRNA) transfection was 
performed to detect the relation between parvalbumin and apoptosis.
Results: Glutamate reduced cell viability and increased intracellular calcium concentration, 
while quercetin preserved calcium concentration and neuronal damage. Moreover, glutamate 
reduced parvalbumin expression and quercetin alleviated this reduction. Glutamate 
increased caspase-3 expression, and quercetin attenuated this increase in both parvalbumin 
siRNA transfected and non-transfected cells. The alleviative effect of quercetin was 
statistically significant in non-transfected cells. Moreover, glutamate decreased bcl-2 and 
increased bax expressions, while quercetin alleviated these changes. The alleviative effect of 
quercetin in bcl-2 family protein expression was more remarkable in non-transfected cells.
Conclusions: These results demonstrate that parvalbumin contributes to the maintainace 
of intracellular calcium concentration and the prevention of apoptosis, and quercetin 
modulates parvalbumin expression in glutamate-exposed cells. Thus, these findings suggest 
that quercetin performs neuroprotective function against glutamate toxicity by regulating 
parvalbumin expression.
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INTRODUCTION

Glutamate is a major excitatory neurotransmitter that abundantly presents in the central 
nervous system [1]. It is involved in neuroplasticity, learning, and memory function in the 
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brain [2,3]. However, excessive glutamate causes excitability toxicity and leads to nerve 
damage. Therefore, the regulation of proper glutamate concentration is required to perform 
normal brain function [4]. Glutamate excitatory toxicity is associated with N-methyl-D-
aspartate receptors, which induce neuronal calcium influx, reactive oxygen species (ROS) 
generation, and apoptosis [5-7]. It induces various neurodegenerative diseases such as stroke, 
Alzheimer's disease, and Parkinson's disease [8,9]. It also increases the intracellular calcium 
concentration, which finally causes cell damage [10,11].

Excessive intracellular calcium triggers oxidative stress, lipid peroxidation, mitochondrial 
depolarization, and neurodegeneration [12]. Moreover, it activates the caspase cascade 
signaling pathway and causes apoptotic cell death [13]. Parvalbumin is a calcium-binding 
protein that widely distributed in various areas of the brain. It plays an important role in 
maintaining intracellular calcium concentration [14]. Parvalbumin protects the mitochondria 
from calcium overload by inhibiting a depolarization-induced calcium increase and buffering 
calcium in an intracellular environment [15]. It modulates synaptic plasticity and regulates 
neuronal excitability by controlling the electrical properties of neurons [16]. Down-
regulation of parvalbumin expression induces ROS formation and nerve damage [17]. Based 
on previous studies, the down-regulation of calcium-regulating proteins is closely linked to 
neuronal damage.

Quercetin is a polyphenolic substance that can be easily found in various fruits and vegetables 
[18]. It acts as a potent antioxidant and exerts beneficial effects on cancer, diabetes, and 
cardiovascular disease [19-21]. It has neuroprotective effects in various neurodegenerative 
diseases, including traumatic brain injury and stroke [22,23]. It also protects neurons against 
glutamate toxicity [24]. Moreover, quercetin exerts neuroprotective effects on styrene oxide-
induced neuronal cell death by reducing ROS and controlling calcium concentrations [25]. 
We have previously shown that quercetin exerts neuroprotective effects by regulating the 
calcium sensor protein hippocalcin in stroke animal model [26]. Quercetin also alleviates 
the increase in calcium concentration in neuronal damage caused by glutamate toxicity 
[26]. We have previously reported that quercetin attenuates the reduction of pavalbumin 
in stroke animal models [27]. However, the exact molecular biological mechanism for the 
neuroprotective effect of quercetin against glutamate toxicity has not been fully elucidated. 
We propose that quercetin regulates calcium-binding protein and protects neurons 
against glutamate toxicity. Thus, we investigated whether quercetin regulates intracellular 
calcium concentration and apoptosis-related protein expression through the modulation of 
parvalbumin expression in glutamate-induced neuronal damage.

MATERIALS AND METHODS

Hippocampal cell line culture
Hippocampal cell line (HT22) was cultured in Dulbecco's modified Eagle's medium (DMEM, 
Gibco BRL, USA) that contains heat-inactivated 10% fetal bovine serum (FBS) and antibiotics 
(100 units/mL of penicillin and 100 μg/mL of streptomycin). HT22 cells were cultured in 
a humid incubator at 37°C in 5% CO2 and culture media was replaced to maintain proper 
nutritional environment. Quercetin (Sigma-Aldrich, USA) was dissolved in phosphate buffer 
saline (PBS) and PBS was used for vehicle solution. Quercetin (1, 3, and 5 μM) or PBS was 
supplemented into culture media 1 h before glutamate (5 mM, Sigma-Aldrich) treatment 
[26]. Cells were collected 24 h after glutamate treatment for further experimental procedure.
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Cell viability test
3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay was carried out to 
measure cell viability. HT22 cells were seeded at 5 × 103 cells/well density in 96-well culture 
plate and incubated for 24 h. Glutamate and/or quercetin were treated as previous described 
dose. MTT solution (5 mg/mL) was added to each well and incubated for 4 h at 37°C in light 
blocked place. MTT formazan crystals were dissolved into dimethyl sulfoxide and absorbance 
of 570 nm was measured. Cell viability was measured by the ratio of absorbance value (%) and 
determined as a percentage of the absorbance of each group to that of PBS group.

Intracellular calcium concentration measurement
Fluo-3-acetoxymethyl (Fluo-3 AM, Thermo Fisher Scientific, USA) was applied to measure 
the concentration of intracellular calcium as a previously described [28]. HT22 cells were 
incubated in DMEM containing Fluo-3 AM (3 μM) for 1 h at 37°C and trypsinized by 0.05% 
trypsin solution. Detached cells were centrifuged at 1,000 g for 10 min and re-suspended 
in Locke's solution (pH 7.3, 130 mM NaCl, 15 mM glucose, 10 mM HEPES, 5 mM KCl, 2.2 
mM CaCl2, and 2 mM MgCl2) at a proper cell density (approximately 1 × 106 cells/mL). Cells 
were subjected to fluorescence-activated cell sorting (FACS) and intensity of Fluo-3 AM 
fluorescence was measured by FACSVerse flow cytometer (BD Bioscience, USA). Fluo-3 
AM in Locke's solution was excited at 488 nm and measured at 530 ± 20 nm. Measured 
fluorescence intensity was analyzed by FACSuite software (BD Bioscience). Intracellular 
calcium concentration was calculated accoding to a previously described formula [Ca2+]i = 
Kd × (F − Fmin)/(Fmax − F) [29]. Ca2+ dissociation constant of Fluo-3 AM is expressed as Kd and 
is approximately 400 nM at vertebrate ionic strength. F indicates the mean fluorescence 
intensity of total cell sample at 530 ± 20 nm. Fmax means the maximal fluorescence intensity of 
Fluo-3 AM saturated with Ca2+ by ionomycin. Fmin means the minimal fluorescence intensity 
of Ca2+-free environment made by ethylene glycol tetra acetic acid.

Parvalbumin small interfering RNA (siRNA) transfection
Parvalbumin siRNA transfection was performed according to the manufacturer's 
instructions. HT22 cells were cultured in DMEM medium and culture medium was changed 
to DMEM medium without FBS and antibiotics 24 h before transfection. Liposome solution 
(DMEM containing Lipofectamine 3000, Thermo Fisher Scientific) was mixed with 
parvalbumin siRNA (Thermo Fisher Scientific) and incubated for 20 min. Mixture was added 
to culture medium and medium was changed 48 h after transfection. Quercetin (5 μM) or PBS 
was treated to transfected cells 1 h before glutamate (5 mM) treatment, and transfected cells 
were collected 24 h after glutamate treatment.

Western blot analysis
Collected cells were lysed in lysis buffer (1% Triton X-100, 1 mM EDTA in PBS [pH 7.4]) 
contained phenylmethanesulfonyl fluoride (Sigma-Aldrich) and sonicated. Sonicated lysates 
were centrifuge at 15,000 g for 1 h at 4°C and supernatants were collected. Concentration 
of proteins was analyzed using bicinchoninic acid protein assay kit (Pierce, USA). Proteins 
(30 μg) were electrophoresed in 10% sodium dodecyl sulfate polyacrylamide gels at 10 mA 
for 30 min and consecutively run at 20 mA for 90 min. Loaded gels were transferred to 
polyvinyl difluoride membrane (Sigma-Aldrich) at 120 V for 2 h. Transferred membranes were 
incubated with 5% skim milk in Tris-buffered saline containing 0.1% Tween-20 (TBST) for 1 
h to block non-specific reaction and washed with TBST for 10 min. Washed membranes were 
reacted with anti-parvalbumin (diluted 1:1,000, Thermo Fisher Scientific), anti-caspase-3, 
anti-cleaved caspase-3, anti-bcl-2, anti-bax (diluted 1:1,000, Cell Signaling Technology, 
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USA), and anti-β-actin (diluted 1:1,000, Santa Cruz Biotechnology, USA) for overnight at 4°C. 
They were washed with TBST and incubated with horseradish peroxide-conjugated anti-
rabbit IgG or anti-mouse IgG (diluted 1:5,000, Cell Signaling Technology) for 2 h at room 
temperature. Membranes were washed with TBST for 10 min and reacted with enhanced 
chemiluminescence reagents (GE Healthcare, UK). They were exposed on X-ray film (FujiFilm 
Co., Japan) and developed with developer solution until protein bands were visualized. They 
were continuously washed with water, fixed with fixation solution, washed with water, and 
dried. The intensity of band was statically analyzed by Image J software. They were expressed 
as a ratio of specific protein band intensity to β-actin band intensity

Immunocytochemistry
Cells were cultured on gelatin-coated glass slide, fixed with 4% natural buffered 
paraformaldehyde solution (pH 7.4), and washed with PBS for 10 min. They were reacted with 
normal goat serum for 1 h at room temperature to block non-specific binding and incubated 
with anti- parvalbumin polyclonal antibody (1:100, Thermo Fisher Scientific) for overnight 
at 4°C. Cells were washed with PBS and incubated with fluorescein isothiocyanate (FITC)-
conjugated anti-rabbit secondary antibody for 2 h at room temperature. They were stained 
with 4,6-diamino-2-phenylindole dihydrochloride (DAPI) as a counter staining, mounted 
with fluorescent mounting medium (Dako, North America Inc., USA), and observed with 
confocal fluorescence microscope (FV-1000, Olympus, Japan)

Statistical analysis
Data were presented as means ± SD. Results of each groups were compared by two-way 
analysis of variance (ANOVA) followed by post-hoc Scheffe's test and the effect of quercetin 
by dose-dependent manner were compared by two-way ANOVA followed by Dunnett's 
multiple comparison. p < 0.05 was considered to be statistically significant.

RESULTS

We confirmed the neuroprotective effect of quercetin in glutamate-exposed neurons. Figure 1A  
presented representative photos of neurons in glutamate and/or quercetin-treated groups. 
Glutamate toxicity significantly reduced cell viability, whereas quercetin administration 
prevented this reduction. The protective effects of quercetin were dose-dependent. Cell viability 
values were 17.7 ± 5.3 in the glutamate-only treated cells and 28.0 ± 8.6, 64.3 ± 4.3, and 82.0 
± 3.2 in the quercetin (1, 3, and 5 μM) and glutamate co-treated cells, respectively (Fig. 1B). 
Intracellular calcium levels were significantly elevated in the glutamate-only treated cells, 
while quercetin administration attenuated this rise (Fig. 1C). Quercetin regulated intracellular 
calcium levels in a dose-dependent manner. The intracellular calcium concentration was 740 
nM in the glutamate-only treated cells and 433, 231, and 167 in the the quercetin (1, 3, and 5 μM) 
and glutamate co-treated cells, respectively (Fig. 1D).

Parvalbumin expression was decreased in the glutamate-only treated cells, while quercetin 
prevented this decrease (Fig. 2). Immunocytochemical staining revealed that the number of 
parvalbumin-positive cells was remarkably reduced in the glutamate-only treated cells, but 
quercetin pretreatment alleviated this decrease in a dose-dependent manner (Fig. 2A and B). 
Parvalbumin was strongly expressed in the cytoplasm of neurons. In results of Western blot 
analysis, parvalbumin protein levels were 0.18 ± 0.03 in the glutamate-only treated cells and 
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0.22 ± 0.03, 0.75 ± 0.04, and 0.80 ± 0.03 in the the quercetin (1, 3, and 5 μM) and glutamate 
co-treated cells, respectively (Fig. 2C and D).

Fig. 3 showed parvalbumin and caspase-3 expression levels in glutamate- and/or querectin-
treated cells with parvalbumin siRNA transfection. We confirmed that the expression level 
of parvalbumin was lower in parvalbumin siRNA-transfected cells than in non-transfected 
neurons. Glutamate exposure reduced the expression of parvalbumin in both siRNA-
transfected and non-transfected cells, and quercetin alleviated this reduction (Fig. 3A). 
Parvalbumin expression levels in non-transfected cells were 0.10 ± 0.03 and 0.77 ± 0.05 in 
the glutamate- and in the quercetin and glutamate co-treated cells, respectively (Fig. 3C). 
Parvalbumin levels in siRNA-transfected cells were 0.04 ± 0.01 in the glutamate-only treated 
cells and 0.27 ± 0.03 in the quercetin and glutamate co-treated cells (Fig. 3C). Glutamate 
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Fig. 2. Representative images of double immunofluorescence labeling (A and B) with parvalbumin (green color) and DAPI (nuclei marker, blue) taken at 
a magnification of 200x. Western blot analysis (C and D) of parvalbumin in glutamate (Glu)- and/or quercetin (Que)-treated hippocampal neuronal cells. 
Glutamate (5 mM) was administrated for 24 h and quercetin (1, 3, and 5 μM) was treated 1 h before glutamate exposure. Magnified photo is an enlarged image of square 
area (400×). Parvalbumin-positive cells expression was calculated the percentage of the number of parvalbumin-positive cells to the number of DAPI-positive cells (B). 
Densitometric analysis results are presented as the ratio of parvalbumin intensity to β-actin intensity (D). Data (n = 5) are presented as means ± SEM. 
*p < 0.05, **p < 0.001.
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treatment increased caspase-3 and cleaved caspase-3 expressions regardless of the siRNA 
transfection, while quercetin attenuated the glutamate-induced these increases. Caspase-3 and 
cleaved caspase-3 expressions were greater in parvalbumin siRNA-transfected cells than in non-
transfected cells (Fig. 3B). Caspase-3 levels in parvalbumin siRNA-transfected cells were 0.98 ± 
0.03 in exposed to glutamate and 0.60 ± 0.05 in subjected to quercetin and glutamate (Fig. 3D). 
Cleaved caspase-3 levels in siRNA-transfected cells were 0.89 ± 0.03 in the glutamate-treated 
cells and 0.75 ± 0.03 in the quercetin and glutamate co-treated cells (Fig. 3E).

We evaluated the expression levels of bcl-2 and bax proteins in glutamate-treated cells with 
parvalbumin siRNA transfection. Glutamate treatment significantly reduced the expression 
of bcl-2, but quercetin treatment alleviated this reduction. Bcl-2 expression levels in 
parvalbumin siRNA-transfected cells were lower than in non-transfected cells (Fig. 4A). Bcl-2 
expression levels in siRNA-transfected cells were 0.06 ± 0.01 in the glutamate-only treated 
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cells and 0.10 ± 0.01 in the quercetin and glutamate co-treated cells (Fig. 4C). In contrast 
with bcl-2 expression, bax expression was increased in the glutamate-only treated cells, but 
quercetin co-treatment attenuated this increase. Bax expression levels in the parvalbumin 
siRNA-transfected cells were higher than in the non-transfected cells (Fig. 4B). They were 
0.60 ± 0.03 in the glutamate-only treated cells and 0.51 ± 0.06 in the quercetin and glutamate 
co-treated cells (Fig. 4D). Moreover, the ratio of bcl-2 to bax decreases in glutamate-only 
treated cells, quercetin treatment prevented this decrease. These levels were lower in siRNA-
transfected cells than in non-transfected cells. They were 0.10 ± 0.01 in the glutamate-only 
treated cells and 0.20 ± 0.02 in the quercetin and glutamate co-treated cells with siRNA 
transfection (Fig. 4E).
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9/12https://vetsci.org

DISCUSSION

Glutamate toxicity causes morphological changes such as dendritic atrophy and neuronal 
body contraction, induces neuronal cell death, and eventually reduces cell viability [30]. We 
confirmed that quercetin exerts a neuroprotective effect against glutamate toxicity in a dose-
dependent manner. Moreover, glutamate exposure dramatically raises intracellular calcium 
concentration in neurons, while quercetin attenuates this rise. Quercetin treatment also 
alleviates the glutamate-induced decline in parvalbumin expression. The hippocampus plays 
an important role in learning and memory. It is considered an area vulnerable to glutamate 
toxicity. HT22 cells have been accepted as an immortalized mouse hippocampal cell line 
widely used for studies of nerve damage or recovery. In particular, excitatory glutamate 
toxicity induces apoptosis in HT22 cells through the release of the mitochondrial apoptosis-
inducing factor [31]. In this study, HT22 cells were used to investigate the effects of quercetin 
on glutamate toxicity in the hippocampus. We clearly showed that glutamate toxicity induces 
neuronal damage and quercetin has a protective effect on glutamate in HT22 cells.

Parvalbumin is a calcium-buffering protein that regulates the intracellular calcium 
concentration [32]. It is an important protein that constantly maintains the intracellular 
calcium concentration in nerve cells [33]. Overload of intracellular calcium concentration 
induces cell degradation and damage. An excessively high intracellular calcium level initiates 
the activation of protease and lipase, induces ROS generation and cell structure damage, 
and eventually leads to cell death [34]. In addition, excessive calcium influx increases 
mitochondrial permeability, releases cytochrome c from mitochondria to cytosol, and 
activates caspase cascade [35,36]. Imbalance of intracellular calcium concentration causes 
various neurological disorders. Thus, it is accepted that the maintenance of intracellular 
calcium concentration is important for the survival of neurons [37]. We have previously shown 
that glutamate exposure reduces the expression of parvalbumin in neurons [38]. This study 
additionally showed that quercetin attenuates the glutamate-induced decrease in parvalbumin 
and preserves neurons against glutamate exposure. Quercetin restores nerve damage caused 
by glutamate toxicity and exerts protective effects. It also regulates intracellular calcium 
concentration and parvalbumin expression in glutamate-exposed neurons.

Quercetin attenuates neurobehavioral disorder and alleviates the reduction of pavalbumin 
expression in stroke animal models [27]. We additionally investigated whether quercetin 
prevents apoptotic cell death through parvalbumin regulation using an siRNA transfection 
manual. Our results demonstrated a decrease in parvalbumin expression and an increase in 
caspase-3 expression in siRNA-transfected cells. This finding demonstrated that parvalbumin 
regulates caspase-3 activation and contributes to apoptosis inhibition. Moreover, glutamate 
exposure induces increases in caspase-3 expression regardless of parvalbumin siRNA 
transfection, and these increases are higher in siRNA-transfected cells than in non-
transfected cells. This study showed that quercetin alleviates an increase in caspase-3 in 
glutamate-exposed neurons. The alleviation effect of quercetin was more pronounced in non-
transfected cells than in transfected cells. Caspase-3 is accepted as a representative protein 
that related to apoptosis. Bcl-2 family members are key regulators of cell death [39]. Bcl-2 is 
an inhibitor that prevents apoptosis and bax is an inducer that promotes apoptosis [40,41]. 
Moreover, glutamate exposure causes the down-regulation of bcl-2 and the up-regulation of 
bax. The degree of change in bcl-2 and bax in the parvalbumin siRNA-transfected condition 
was higher than in the non-transfected condition. Quercetin prevents glutamate-induced 
changes regardless of siRNA transfection, but the effect of quercetin on bcl-2 and bax 
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regulation was weakened in parvalbumin siRNA-transfected cells. Our results also revealed 
a decrease in the ratio of bcl-2 to bax in glutamate-treated neurons. The ratio of bcl-2 to 
bax acts as a critical factor in determining cell death and cell survival. The decrease in the 
bcl-2 to bax ratio is more remarkable in siRNA-transfected neurons than in non-transfected 
neurons. Quercetin attenuates this decrease by glutamate exposure, and the recovery ability 
of quercetin on these protein changes was reduced in parvalbumin siRNA-transfected 
neurons. These results showed that parvalbumin contributes to bcl-2 and bax expression, and 
caspase-3 expression in glutamate-exposed neurons. Quercetin modulates both the down- 
and up-regulation of these proteins caused by glutamate toxicity. Our results indicate that 
quercetin regulates glutamate-induced apoptosis through the modulation of parvalbumin. 
We clearly elucidated the fact that quercetin modulates parvalbumin expression in glutamate-
exposed cells, regulates intracellular calcium concentration, and results in the prevention 
of apoptosis by regulating bcl-2 family proteins and attenuating caspase-3 expression. In 
conclusion, these findings suggest that quercetin exerts a neuroprotective effect through the 
modulation of parvalbumin in glutamate-exposed neurons.
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