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The fat mass and obesity-associated FTO protein catalyzes
demethylation of the N6-methyladenosine, an epigenetic mark
that controls several metabolic pathways by modulating the
transcription, translation, and cellular localization of RNA
molecules. Since the discovery that its overexpression links to
the development of obesity and cancer, FTO was the target of
screening campaigns and structure-based drug design efforts.
Although several FTO inhibitors were generated, these often
lack potency or selectivity. Herein, we investigate the structure
and dynamics of human FTO in solution. We show that the
structure of the catalytic N-terminal domain is unstable in the
absence of the C-terminal domain, which explains why the
isolated N-terminal domain is incompetent for catalysis and
suggests that the domain interaction represents a target for the
development of specific inhibitors. Then, by using NMR
relaxation measurements, we show that the interface between
the FTO structural domains, the active site, and several pe-
ripheral loops undergo conformational dynamics on both the
picosecond–nanosecond and microsecond–millisecond time-
scales. Consistent with this, we found that the backbone amide
residual dipolar couplings measured for FTO in phage pf1 are
inconsistent with the static crystal structure of the enzyme.
Finally, we generated a conformational ensemble for apo FTO
that satisfies the solution NMR data by combining the experi-
mental residual dipolar couplings with accelerated molecular
dynamics simulations. Altogether, the structural ensemble re-
ported in this work provides an atomic-resolution model of apo
FTO and reveals transient surface pockets at the domain
interface that represent potential targets for the design of
allosteric inhibitors.

FTO is amember of theAlkb family of nonhemeFe(II)- andα-
ketoglutarate (αKG)-dependent dioxygenases and catalyzes
oxidative demethylation of single-stranded RNAs via two
coupled reactions, referred to as the primary and secondary
reaction, respectively (1–3). In the secondary reaction, the αKG
(secondary substrate) is reduced to succinic acid and carbon
dioxide, while the metal center is oxidized to form an Fe(IV)=O
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species. In the primary reaction, the oxyferryl species oxidizes
the methylated base (primary substrate) to reestablish the
canonical nucleic acid. Although FTO was reported to be active
against several methylated nucleobases, including the
3-methyluracil (4), 3-methylthymidine (4), 1-methyladenosine
(5), N6, 2-O-dimethyladenosine (m6Am) (5, 6), N6-methyl-
deoxyadenosine (7), and the N6-methyladenosine (m6A), recent
evidences suggest the m6A and cap m6Am in mRNA, m6A and
m6Am in small nuclear RNA, and 1-methyladenosine in tRNA as
the physiological substrates of the enzyme (5–7). Consequently,
FTO is investigated to understand the molecular mechanisms
regulating gene expression and the cellular localization of RNA
molecules. In addition, FTO has attracted considerable atten-
tion as a pharmaceutical target because of the discovery that its
overexpression links to the development of metabolic diseases
such as obesity and cancers (8–13).

The atomic-resolution structure of FTO has been deeply
investigated by X-ray crystallography, and several crystal
structures of FTO in complex with a variety of substrate
analogs and inhibitors are available in the Protein Data Bank
(PDB) (7, 14–21). Analysis of these structures reveals that FTO
is comprised of two structural domains separated by an
unstructured eight-residue linker. The N-terminal domain
(residues 1–322) is competent for catalysis and contains the
binding site for the metal cofactor, αKG, and the methylated
nucleobase. The C-terminal domain (residues 331–505) does
not contact the primary or secondary substrate of FTO but
forms an extensive interaction with the N-terminal domain.
While the C-terminal domain is required for the correct
functioning of FTO (14), its exact role in catalysis is still
unknown.

Here, we investigate the apo form of human FTO and of
the isolated N-terminal FTO (nFTO) and C-terminal FTO
(cFTO) domains of the enzyme by solution NMR and
molecular dynamics (MD) simulations. We show that the
interaction between the N- and C-terminal domain is
essential to stabilize the structure of the catalytic domain
in its active conformation. In addition, by using NMR-
relaxation experiments, we establish that FTO is a highly
flexible enzyme displaying conformational dynamics
both on the picosecond–nanosecond and on the
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Solution conformational ensemble of apo FTO
microsecond–millisecond timescale. We then obtained an
ensemble representation of FTO conformations in solution
by combining residual dipolar couplings (RDCs) with
accelerated molecular dynamics (aMD) simulations. Our
data indicate that the interface between the FTO domains
is more disordered than what observed in the crystal state
and undergoes structural fluctuations that result in
formation of large surface pockets that can accommodate
small-molecule ligands. As the interaction between the
N- and C-terminal domain of FTO is crucial for catalysis,
these transient pockets can provide the binding site for
allosteric inhibitors of the enzyme. This study highlights
the ability of solution NMR and MD simulations to
characterize structural disorder in proteins and to identify
low-population states that are invisible to crystallography
and open new possibilities for drug discovery.
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Results

In this study, we investigated a construct of human FTO in
which the first 31 residues are truncated. This construct was
shown to retain full enzymatic activity (14) and was
employed in all crystallographic investigations of FTO. The
truncated FTO will be referred to as full-length FTO (as
opposed to the isolated nFTO and cFTO domains) in the rest
of the article.
The interdomain interaction is required to stabilize the
structure of the catalytic domain

The 800 MHz 1H–15N transverse relaxation optimized
spectroscopy (TROSY) spectrum (22) of 2H,15N-labeled FTO
is shown in Figure 1A. Preliminary analysis of the NMR data
reveals the presence of 12 signals in the region occupied by the
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Solution conformational ensemble of apo FTO
Nε1–Hε1 correlation from the Trp side chain. Since the
spectrum is well dispersed and the primary sequence of FTO
contains exactly 12 Trp residues, these data suggest that the
enzyme is well folded in solution. Of note, we observe the
presence of one NH correlation with 1H chemical shift of
2.9 ppm. Assignment of the NMR peaks (see later) reveals that
this correlation belongs to Gly312 (Fig. S1). Interestingly, the
amide hydrogen of Gly312 is packed against the side chain of
Trp270 in the crystal structure of FTO (Fig. 1A, upper left
corner). Since the ring current from aromatic groups can result
in substantial shift of the NMR resonances, the observation of
a large upfield shift for the 1H chemical shift of Gly312 is
consistent with the crystal structure of the enzyme.

The 1H–15N TROSY spectra acquired for the 2H,15N-labeled
nFTO (Fig. 1B) and cFTO (Fig. 1C) domains are of much lower
quality compared with the spectrum measured for the full-
length enzyme (Fig. 1A). In particular, the NMR peaks are
considerably broader and less disperse in the isolated domains
than in the full-length protein. In addition, only one Nε1–Hε1
correlation is observed in the Trp side-chain region of the nFTO
and cFTO spectra. These data indicate that the isolated nFTO
and cFTO are structurally unstable and that the extensive
interaction between the N- and C-terminal domain of FTO is
absolutely required to fold the enzyme in its functional
conformation.

Assignment of the 1HN,
15NH,

13Cα,
13Cβ, and

13C0 reso-
nances of FTO was performed using triple resonance methods
(23) with TROSY readout. Selective 15N-labeling of nine amino
acids (Arg, Asn, His, Ile, Lys, Leu, Phe, Tyr, and Val) was used
to resolve ambiguous assignments (Fig. S2) (24). About 426 of
449 expected peaks were observed in the 1H–15N TROSY
spectrum of FTO (note that the 25 Pro residues are not
expected to provide a backbone amide peak). A total of 248
NH correlations were unambiguously assigned (�55% of the
expected peaks). The low assignment rate is due to the large
size of the enzyme (54 kDa), its unfavorable relaxation prop-
erties, and the inability to produce stable samples of FTO at
high concentrations (note that the assignment experiments
were measured on samples containing �0.3 mM FTO).
Nonetheless, the assigned resonances are homogenously
distributed on the enzyme structure and cover numerous areas
of interest (Figs. 1D and S3). In particular, several assigned
amide correlations are localized at the interface between the
N- and C-terminal domain of the enzyme, within and
surrounding the binding site for the primary and secondary
substrates, within the nucleotide recognition loop (residues
213–225) and within unstructured loops that are not observed
by crystallography because of the lack of electron density
(residues 121–129, 159–188, and 251–263). Of note, the
distribution of secondary Cα chemical shifts along the FTO
primary sequence is consistent with the secondary structure
calculated from the crystal structure of the holo enzyme
(Fig. 1E), which provides further evidence that the overall fold
of apo FTO in solution resembles the one observed for the
holo enzyme in the crystal state. The assigned backbone
resonances for FTO were deposited on the BioMagResBank
(accession number: 51176) (25).
Solution structure ensemble of apo FTO indicates a flexible
interdomain interface

To better investigate the consistency of the crystal structure
of holo FTO with the solution structure of the apo enzyme, we
have measured backbone amide 1DNH RDC data for apo FTO
partially aligned in a dilute liquid crystalline medium of phage
pf1 (26). 1DNH RDCs provide information on the orientation of
the N–H bond vectors relative to the external magnetic field
and are commonly employed to assess the quality of and refine
crystallographic structures (27).

We have measured 1DNH RDC data for 144 and 79
nonoverlapping NMR signals coming from the N- and C-ter-
minal domain of full-length FTO (plus three RDCs coming
from the flexible linker), respectively, by using the amide RDCs
by TROSY spectroscopy (ARTSY) pulse sequence (Fig. 2D)
(28). Interestingly, singular value decomposition fitting of the
data coming from secondary structures (80 and 55 RDC values
for the N- and C-terminal domain, respectively) to the
coordinates of the N- and C-terminal domains of the holo FTO
X-ray structure returns R-factors of 60 and 70%, respectively
(Fig. 2A). The poor agreement between experimental and back-
calculated data indicates that no single orientation of the atomic
coordinates in the PDB file of holo FTO (PDB code: 3LFM) can
be found that satisfies the experimental RDC data, and, there-
fore, the crystal structure of holo FTO does not fully capture the
behavior of the apo enzyme in solution. Since Alkb enzymes are
known to be highly flexible proteins (29–32), we ascribe the
inconsistency between the crystal structure and solution NMR
data to conformational dynamics.

To obtain a structural model of apo FTO in solution that
would account for conformational dynamics, we have calcu-
lated a structural ensemble for the enzyme by coupling the
experimental 1DNH RDCs with aMD simulations (31). We have
proven this protocol successful in generating MD-derived
structural ensembles of dynamical proteins that satisfy solu-
tion NMR data (31–33). An ensemble of 39 conformations
extracted from the aMD trajectory is required to fulfill the
entire set of 226 experimental RDCs (including the data from
unstructured regions) (Fig. 2, B and C). The obtained structure
ensemble confirms that FTO is a highly flexible enzyme (Fig. 2,
E and F). Indeed, regions with high conformational disorder
(resulting in large B-factor) are observed at the N terminus
(residues 32–45), peripheral loops (residues 173–191,
251–267, 277–282, 345–354, 423–430, and 477–488), and
loops located at the interface between the N- and C-terminal
domain (residues 84–89, 120–125, and 460–467) (Fig. 2, E and
F). It is also important to highlight that an overlay of the crystal
structure of holo FTO with the representative structure of the
conformational ensemble calculated for apo FTO (i.e.,
the ensemble member with the lowest backbone rmsd from
the average structure calculated over the ensemble) reveals
large C⍺ rmsd at several flexible loops located on both the
N- and C-terminal domain of the enzyme (Figs. 2G and S4).
Although these results may underline ligand-induced confor-
mational changes, it should be noted that these discrepancies
between crystal structure and solution structure ensemble
could be artifacts deriving from crystal packing.
J. Biol. Chem. (2022) 298(5) 101907 3
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Solution conformational ensemble of apo FTO
NMR relaxation shows that FTO is dynamic on the
picosecond–nanosecond and microsecond–millisecond
timescale

NMR relaxation experiments are a preferred tool for
experimental investigations of protein conformational dy-
namics. In particular, measuring the longitudinal (R1) and
transverse (R2) relaxation rates reports on the regions of the
4 J. Biol. Chem. (2022) 298(5) 101907
protein that are flexible on the picosecond–nanosecond
timescale (34). Relaxation dispersion experiments inform on
areas of the protein structure that undergo conformational
dynamics on the microsecond–millisecond timescale (34, 35).

Residue-specific 15N R1 and R2 values were measured at
800 MHz and 30 �C by acquisition of TROSY-detected R1 and
R1ρ experiments (36) on 2H, 15N-labeled FTO and are reported



Solution conformational ensemble of apo FTO
as 15N-R2/R1 ratios in Figure 3, A and C. For a rigid protein,
where global rotational tumbling is the only contribution to
the picosecond–nanosecond dynamics, the R2/R1 values are
expected to be constant throughout the primary sequence and
proportional to the rotational correlation time (τc) (37).
Instead, the presence of flexible structural elements within the
protein (such as long and flexible loops) that locally increase
the picosecond–nanosecond dynamics experienced by the
backbone amide groups is revealed by a local shift of the R2/R1

ratios toward lower than average values (37). At 30 �C, a
globular protein of the size of FTO (54 kDa) is expected to
have τc � 29 ns (see the Experimental procedures section),
which translates to an 800 MHz 15N-R2/R1 ratio of �147. The
average 15N-R2/R1 ratio measured for FTO is 107 ± 75, which
is consistent with the predicted τc value (Fig. 3A). Interestingly,
analysis of the 15N-R2/R1 values versus residue index (Fig. 3, A
and C) reveals the presence of several residues with a lower
than average 15N-R2/R1. These residues are localized at the
N- and C-terminal ends of the protein (residues 34–36 and
502–504, respectively) and within the peripheral loops
displaying large B-factors in the RDC/aMD conformational
ensembles (residues 164–193, 248–265, 279–285, 349–356,
and 424–425) (compare Figs. 2E and 3C).
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Relaxation dispersion data (800 MHz 15N) were measured
on 2H, 15N-labeled FTO at 30 and 15 �C using the Carr–
Purcell–Meinboom–Gill (CPMG) experiment (35, 38). Sig-
nificant relaxation dispersion was observed for the backbone
amides of 16 residues (Figs. 3, B and D and S5). Of note, six of
these residues (I193, Y199, Y214, L215, V228, and V345) do
not fall in a well-defined area of FTO but are scattered within
the protein structure (Fig. 3D). We ascribe the relaxation
dispersions observed at these residues to local microsecond–
millisecond timescale structural fluctuations that affect the
15N chemical shift of a single amide group (i.e., formation/
disruption of a hydrogen bond and/or rearrangement of a
nearby side chain). On the other hand, the remaining 10
relaxation dispersions cluster at the interface between the N-
and C-terminal domain (R84, I85, D89, H127, and L464) and
at the loop connecting α-helix 11 to α-helix 12 on the C-ter-
minal domain (D479, D480, A481, I492, and S494) (Fig. 3D).
Consistent with the relaxation dispersion results, both these
regions display a high degree of disorder in the calculated
NMR/aMD FTO ensemble (Fig. 2, E and F).

Quantitative analysis of the relaxation dispersion curves
using the Carver–Richards equation indicates that the data can
be globally fit to a two-site exchange model in which the
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protein is in equilibrium between two conformational states
with different 15N chemical shifts (Fig. S5). The best fit
exchange rate (kex) values are �500 and �100 s−1 at 30 and 15
�C, respectively. However, it should be noted that because of
the fact that FTO is a large enzyme with fast 15N-R2 rates, the
lowest refocusing field that we were able to access is 100 Hz
(Fig. 3B). This experimental factor limits the accuracy of the
quantitative modeling of the relaxation dispersion experiments.

Discussion

Pharmacological inhibition of the fat mass and obesity-
associated FTO protein is emerging as a promising strategy
to develop a therapeutic treatment for obesity and cancer
(8–13), and several inhibitors of the enzyme have been
described in the literature (15, 20, 21, 39–46). However, the
majority of the reported inhibitors lack potency or FTO
selectivity over other Alkb demethylases. As of today, only four
selective inhibitors of FTO were identified via a virtual
screening campaign and structure-based design (46–48).

In this work, we have investigated the solution structure and
dynamics of the apo FTO by solution NMR and MD simula-
tions. By comparing the NMR spectra acquired for the full-
length enzyme with the ones measured for the isolated nFTO
and cFTO, we have shown that the interaction between the
FTO structural domains is absolutely required to stabilize the
structure of the catalytic N-terminal domain (Fig. 1). This
observation sheds light on the function of the C-terminal
domain and is consistent with previous work reporting that the
isolated nFTO is enzymatically inactive and that single-point
mutations at the interface between the N- and C-terminal
domain abolish the activity of the full-length enzyme (14). Since
the FTO C-terminal domain has a unique fold and it is not
present in other members of the Alkb dioxygenases family (14),
our data suggest the interface between the N- and C-terminal
domain as a target for developing selective FTO inhibitors.

Analysis of the 15N R1, R2, and relaxation dispersion NMR
data indicated that FTO experiences conformational dynamics
on both the picosecond–nanosecond and microsecond–
millisecond timescale (Fig. 3). In agreement with this finding,
the 1DNH RDC data measured for FTO by solution NMR are
inconsistent with the crystallographic structure of the enzyme
(Fig. 2A). With the help of all-atom aMD simulations, we
generated a 39-member conformational ensemble of apo FTO
that satisfies the experimental 1DNH RDCs (Fig. 2, B and C).
Examination of the conformational ensemble revealed that
while the overall tertiary structure closely resembles the one
seen in the crystal state, several loops are highly disordered in
solution (Fig. 2,E and F). Of note, three of these flexible loops are
integral part of the interface between the N- and C-terminal
domain (Fig. 2E), indicating that conformational dynamics
modulate the interaction between the FTO domains. Such
conformational variability of the domain–domain interface of
FTO was not apparent from the crystallographic studies
reported so far on the enzyme (Fig. S6) and suggests that FTO
functional regulation can be achieved by allosteric perturbations
of protein dynamics. Interestingly, analysis of the conforma-
tional ensemble highlights formation of two large surface
6 J. Biol. Chem. (2022) 298(5) 101907
pockets that are deemed druggable by the DoGSiteScorer pre-
diction server (druggability score of 86 and 82%, respectively)
(Fig. 4) (49). Since the pockets identified here are located at the
interface between the N- and C-terminal domain and are
invisible in the crystal structure (Fig. 4), our study provides the
basis for virtual screening efforts aimed at discovering a new
class of allosteric inhibitors of FTO that disrupt the enzymatic
activity by perturbing the interdomain interaction. Of note,
pocket 1 revealed by our study (Fig. 4) overlaps with the biding
site for the selective FTO inhibitors N-(5-chloro-2,4-
dihydroxyphenyl)-1-phenylcyclobutanecarboxamide (40) and
meclofenamic acid (21) (Fig. 4, E and F), indicating that the
observed transient pockets can provide the interaction site for
novel allosteric inhibitors. It is also important to stress out that
the binding site for N-(5-chloro-2,4-dihydroxyphenyl)-1-
phenylcyclobutanecarboxamide and meclofenamic acid is not
observed in any of the structures of FTO crystallized in the
absence of these inhibitors, further supporting the hypothesis
that the available crystal structures of FTO do not provide a
comprehensive picture of the available small-molecule binding
sites on the enzyme.

In conclusion, our work revealed that the function of the
FTO C-terminal domain is to stabilize the structure of
the catalytic N-terminal domain, identified surface pockets at
the domain–domain interface that can be the target for allo-
steric inhibitors of FTO, and highlighted the utility of
combining NMR and MD data to detect and visualize
conformational disorder in proteins.
Experimental procedures

Expression and purification

The FTO construct used in this study (residues 32–505, see
Results section for justification) was expressed and purified as
described previously (50). In brief, a plasmid containing the
sequences of FTO, an N-terminal His tag, an N-terminal
EIN-fusion solubility tag, and the tobacco etch virus (TEV)
protease consensus sequence (His6-EIN-TEV-FTO) was
transformed into the BL21 star (DE3) Escherichia coli cells. A
single colony from the plated cells was grown in a M9 minimal
medium at 37 �C and 180 rpm. Uniform 2H, 15N isotopic
labeling was obtained by using 99.9% D2O as the solvent and
2H glucose and 15NH4Cl as sole carbon and nitrogen sources,
respectively. Uniform 2H, 13C, 15N isotopic labeling was
obtained by using 99.9% D2O as the solvent and 2H, 13C
glucose, and 15NH4Cl as sole carbon and nitrogen sources,
respectively. Selective 15N labeling of Arg, Asn, Gln, His, Lys,
Phe, Tyr, and Trp residues was achieved by introducing
100 mg/l of the 15N labeled amino acid of interest to the M9
medium 1 h before induction. Selective 15N labeling of Ile, Leu,
and Val residues was performed within the same NMR sample
by adding 100 mg/l of each 15N labeled amino acid to the same
M9 medium 1 h before induction (Figs. S2 and S7). At absor-
bance of �0.6 at 600 nm, the expression was induced with
1 mM IPTG, and the cells were incubated at 16 �C and 180 rpm
for 16 h. Then, the cells were harvested, suspended in 20 ml of
50 mM Tris–HCl (pH 8.0) and 500 mM NaCl, and lysed using



Pocket 1
volume = 660 Å3

druggability score = 86 %
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Figure 4. Two druggable pockets at the interdomain interface. Two structures extracted from the aMD/NMR ensemble (A and C) are compared with two
identical orientations of the crystal structure of FTO (B and D, respectively). The N- and C-terminal domains are colored light blue and salmon, respectively.
The surface pockets detected by the Pymol software are highlighted in green. In the structure ensemble, two large pockets are identified at the interface
between the N- and C-terminal domain that are not present in the crystal structure. Volume and druggability score for the two pockets calculated by the
DoGSiteScorer server are reported. In E and F, the selective FTO inhibitors N-CDPCB and MA, respectively, are placed in pocket 1 (the small molecules are
shown as red sticks). The modeling was performed by superimposing the crystal structure of the FTO-inhibitor complex (Protein Data Bank code: 5DAB and
3QKN, respectively) onto the structure extracted from the conformational ensemble. aMD, accelerated molecular dynamics; MA, meclofenamic acid;
N-CDPCB, N-(5-chloro-2,4-dihydroxyphenyl)-1-phenylcyclobutanecarboxamide.

Solution conformational ensemble of apo FTO
an EmulsiFlex-C3 microfluidizer (Avestin). The lysate was
centrifuged at 20,000g for 30 min, and the supernatant was
filtered using 0.45 μm filter before loading on a HisTrap HP
column (5 ml; GE Healthcare). The protein was eluted with a
100 ml gradient of 375 mM imidazole and 500 mM NaCl in
Tris–HCl (pH 8.0). The EIN fusion tag was removed by
digestion with the 0.25 mg TEV protease at room temperature
for �6 h and repassing through the HisTrap HP column. The
protein was further purified by using a Superdex75 gel filtration
column (GE Healthcare) equilibrated with 20 mM Tris–HCl
(pH 7.4), 200 mM NaCl, 2 mM DTT, and 1 mM EDTA.
Finally, the sample was passed through an ENrich Q ion ex-
change column using a 0 to 100 ml gradient of 20 mM Tris–
HCl (pH 7.4), 1 M NaCl, 2 mM DTT, and 1 mM EDTA.
The isolated nFTO (residues 32–326) and cFTO (residues
327–505) were expressed with the His6-EIN-fusion plasmid
and purified using the same protocol as the full-length enzyme,
with the exception that TEV cleavage was performed at 4 �C
and pH 8.0 for 13 h in 20 mM Tris–HCl (pH 8.0) and 50 mM
NaCl.
NMR experiments

NMR samples containing �0.3 mM FTO were prepared in
20 mM Tris–HCl (pH 7.4), 100 mM NaCl, 0.02% NaN3, 1 mM
EDTA, 2 mM DTT, 1× EDTA-free protease inhibitor, and 90%
H2O/10% D2O (v/v). Samples containing cFTO were prepared
at pH 8.0.
J. Biol. Chem. (2022) 298(5) 101907 7



Solution conformational ensemble of apo FTO
All NMR spectra were acquired at 30 �C on Bruker 600, 700,
and 800 MHz spectrometers equipped with Z-shielded
gradient triple resonance cryoprobes. Spectra were processed
and analyzed using the program NMRPipe (51) and SPARKY
(http://www.cgl.ucsf.edu/home/sparky), respectively.

Backbone resonance assignment was performed using
TROSY versions of conventional 3D triple resonance corre-
lation experiments (HNCO, HNCA, HN(CO)CA, HNCACB,
and HN(CO)CACB) (23).

Backbone amide 1DNH RDCs were measured by taking the
difference in 1JNH scalar couplings in aligned and isotropic
media. The alignment media employed were phage pf1
(8 mg/ml; ASLA Biotech), and 1JNH couplings were measured
using the ARTSY pulse scheme (28). Singular value decom-
position analysis of RDCs was carried out using XPLOR-NIH
(National Institutes of Health) (52).

Backbone amide 15N R1 and R1ρ experiments were carried
out at 30 �C and 800 MHz using heat-compensated pulse
schemes with a TROSY readout (36). The strength of the
spin-lock field for the R1ρ experiment was set to 1 kHz. The
relaxation decay was sampled for eight delay durations of 0,
80, 200, 320, 440, 560, 720, and 840 ms for R1 and 0.2, 1.4, 2.4,
5.0, 7.8, 10.8, 14.0, 17.4, and 20 ms for R1ρ. R1 and R1ρ values
were determined by fitting the time-dependent exponential
restoration of peak intensities at increasing relaxation delays.
R2 values were extracted from the measured R1 and R1ρ

values. The 15N R2/R1 for a globular protein of the size of FTO
(54 kDa) at 30 �C was estimated using the following equation:

R2

R1
≈
ð4πνNτcÞ2þ7

6
(1)

where νN is the 15N resonance frequency in Hertz, and τc is
the estimated rotational correlation time at 30 �C calculated
as:

τcð25 �CÞ ≈ 0:0005998 MWþ0:1674 (2)

τcð30 �CÞ≈τcð25 �CÞ 298 K
303 K

0:7973 cP
0:8903 cP

(3)

where, τcð25 �CÞ and τcð30 �CÞ are the rotational correlation
times at 25 and 30 �C, respectively, MW is the protein mo-
lecular weight (in Dalton), and the water viscosities at 25 and
30 �C (0.8903 and 0.7973 cP, respectively) are calculated as
described by Cho et al. (53). Equation 2 is derived by linear
fitting of the data reported in the NESG website (www.nmr2.
buffalo.edu/nesg.wiki/NMR_determined_Rotational_correlation_
time).

Backbone amide 15N CPMG relaxation dispersion experi-
ments were carried out at 800 MHz and two temperatures (15
and 30 �C) using a pulse sequence that measures the exchange
contribution for the TROSY component of the 15N magneti-
zation (54). Off-resonance effects and pulse imperfections
were minimized using a four-pulse phase scheme (55).
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Experiments were performed with a fixed relaxation delay
(40 ms) but a changing number of refocusing pulses to achieve
different effective CPMG fields (100, 200, 300, 400, 500, 600,
700, 800, 900, and 1000 Hz) (38). Experimental errors on the
transverse relaxation rates were estimated from the noise level
estimated with the SPARKY software (35). The resulting RD
curves acquired at multiple temperatures were globally fit to a
two-site exchange model using the Carver–Richard equation,
as described previously (56, 57).

Calculation of conformational ensembles

The conformational ensemble for apo FTO was calculated
by combining aMD simulations and the NMR-derived 1DNH

RDC data, as recently described (31).
A 1 μs aMD simulation (58) was performed using the

Amber 16 package (59). The X-ray structure (PDB code:
3LFM) (14) was used as a starting conformation where the
residues missing from the crystal structure (122–129,
160–188, 251–263, 425–427, and 500–505) were modeled
using the I-TASSER server (https://zhanggroup.org/I-
TASSER/) (60). Missing hydrogen atoms were built from
Leap module in AMBER16 with the FF14SB force field. The
system was placed in a TIP3P water box, and the distance from
the surface of the water box to all the atoms of the solute is set
to 10 Å. Counterions were added to neutralize the charge.
Energy minimization was carried out using the steepest
descent method followed by the conjugate gradient minimi-
zation. Then the system was heated from 1 to 310 K for 1 ns
and equilibrated at a constant pressure (1 atm) for 5 ns. The
bonds involving hydrogen atoms were restrained by using the
SHAKE algorithm. The electrostatic interactions were treated
with a cutoff of 8 Å for long-range interactions using the
particle-mesh Ewald summation. An integration step of 1 fs
was used. The aMD simulation was run at the “dual-boost”
level in which the total potential energy and the dihedral
energy were boosted. A short (20 ns) MD simulation was used
to collect the potential statistics for calculating aMD acceler-
ation parameters (ED, αD, EP, and αP):

ED ¼ED0 þ α1
Nres

5
(4)

αD ¼ α1 ×
Nres

5
(5)

EP ¼ EP0 þ α2Natom (6)

αP ¼ α2 × Natom (7)

where EP’ and ED’ are the average potential and dihedral
energy, respectively, during the 20 ns MD. Nres and Natom are

http://www.cgl.ucsf.edu/home/sparky
http://www.nmr2.buffalo.edu/nesg.wiki/NMR_determined_Rotational_correlation_time
http://www.nmr2.buffalo.edu/nesg.wiki/NMR_determined_Rotational_correlation_time
http://www.nmr2.buffalo.edu/nesg.wiki/NMR_determined_Rotational_correlation_time
https://zhanggroup.org/I-TASSER/
https://zhanggroup.org/I-TASSER/


Solution conformational ensemble of apo FTO
the total number of residues and atoms in the system,
respectively. α1 (3.5 kcal mol−1 residue−1) and α2
(0.2 kcal mol−1 atom−1) are the approximate energy contri-
bution per degree of freedom calculated over residues and
atoms, respectively (58). The 1 μs of aMD simulation was run
with ED = 8034 kcal mol−1, EP = −195,054 kcal mol−1, αD =
379.2 kcal mol−1, αP = 10,853 kcal mol−1.

To generate the structural ensemble representation, the aMD
trajectory was clustered to produce representative structures
with a high degree of structural diversity. Each representative
structure was energy minimized, and the ensemble of repre-
sentative structures was used to fit the experimental RDC data.
Back-calculation of RDCs from the conformational ensembles
was done using the following equation:

RDCi ¼
X
k

Dk

��
3cos 2 θ − 1

�þ 3
2

�
sin2θ cos 2 Φ

��
(8)

where θ is the angle formed between the internuclear bond
vector of the amide group of residue i and the z-axis of the
alignment tensor, Φ is the angle between the xy plane pro-
jection of the internuclear bond vector and the x-axis, and Dk

is the magnitude of the alignment tensor for ensemble mem-
ber k multiplied by its fractional population in the ensemble.
Dk, θ, and Φ were optimized to reduce the discrepancy be-
tween experimental and back-calculated RDCs using the
MATLAB script downloadable at http://group.chem.iastate.
edu/Venditti/downloads.html.

The consistency between experimental and back-calculated
RDC data was evaluated in terms of R-factor (61):

R− factor¼
X
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
RDCexp

i −RDCcalc
i

�2.�
2RDCexp

i
2
�r

(9)

where RDCexp
i and RDCcalc

i are the experimental and back-
calculated RDC for residue i, respectively. The protocol was
iterated by increasing the number of clusters (and therefore
the representative structures in the pool) until a stable R-factor
was obtained.
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