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Abstract

Objective

Hip fractures are among the most frequently occurring fragility fractures in older adults,

associated with a loss of quality of life, high mortality, and high use of healthcare resources.

The aim was to apply the superlearner method to predict osteoporotic hip fractures using

administrative claims data and to compare its performance to established methods.

Methods

We devided claims data of 288,086 individuals aged 65 years and older without care level

into a training (80%) and a validation set (20%). Subsequently, we trained a superlearner

algorithm that considered both regression and machine learning algorithms (e.g., support

vector machines, RUSBoost) on a large set of clinical risk factors. Mean squared error and

measures of discrimination and calibration were employed to assess prediction

performance.

Results

All algorithms used in the analysis showed similar performance with an AUC ranging from

0.66 to 0.72 in the training and 0.65 to 0.70 in the validation set. Superlearner showed good

discrimination in the training set but poorer discrimination and calibration in the validation

set.

Conclusions

The superlearner achieved similar predictive performance compared to the individual algo-

rithms included. Nevertheless, in the presence of non-linearity and complex interactions,
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this method might be a flexible alternative to be considered for risk prediction in large

datasets.

Introduction

Hip fractures are among the most frequently occurring fragility fractures in older adults, asso-

ciated with a loss of quality of life, high mortality, and high use of healthcare resources [1].

Some of the highest hip fracture rates are seen in Europe and particularly in northern Europe–

i.e., Denmark, Sweden and Norway [2, 3]. In 2010, the number of incident hip fractures in the

EU has been estimated to amount to 610,000. Total costs of osteoporosis added up to about

€37.4 billion. Hip fractures were determined to account for the majority (54%) of total osteo-

porosis costs [3].

In view of the growing population of older people, early and correct detection of those with

an increased fracture risk is important to provide adequate treatment and reduce the socio-

economic impact of fractures. Approaches to fracture risk assessment such as FRAX [4],

Qfracture [5, 6] or the German DVO Tool [7] are well-established to predict osteoporotic frac-

ture risk based on various (clinical) risk factors including e.g., increasing age, female gender,

low body mass index, low bone mineral density (BMD), history of fragility fractures, history of

falls, smoking, alcohol intake, glucocorticoid use, other causes of secondary osteoporosis [8].

Yet, these tools rely on direct patient information to receive parameters relevant for risk pre-

diction. In addition, these risk assessment tools often assume linear relationships between risk

factors and fracture outcome. Administrative claims data have become an important source of

information for payers and policymakers to support health care decision making [9]. More-

over, claims data in Germany include information, which can be difficult to obtain when ques-

tionairs or interviews are used, because–as opposed to questionairs and interviews–the data is

not prone to recall (e.g., patients who do not remember their prescription dates) or recruit-

ment biases (i.e., the full cohort of insuree’s and not just those who choose to participate are

assessed). Therefore, we applied a Cox proportional hazards regression in a previous analysis

to assess claims data’s potential to predict fracture risk [10]. However, given the number and

complexity of (longitudinal) individual-level information embedded in claims data, these tra-

ditional prediction modelling techniques may be less suited to capture higher-order interac-

tion or nonlinear effects [11]. Only recently, advanced machine learning methods–e.g., neural

networks, ensembling strategies or gradient boosting–have begun to be used for clinical pre-

diction models [12, 13]. These new techniques may have the potential to enhance risk predic-

tion, thereby improving the chances of correctly identifying high-risk populations and offering

interventions in a more efficient and targeted way.

To date, it is difficult to estimate the potential of these techniques, because they are rarely

systematically compared to traditional approaches. Furthermore, the utility largely depends on

where and how they are employed. Miotto, Li [14] recently showed that unsupervised feature

learning based on neural networks can significantly boost the consecutive disease classification

from an area under the receiver operating curve (AUC) of 0.632 (worst alternative) to 0.773.

However, other studies report rather small improvements in the AUC of around 3% when

comparing modern machine learning techniques to traditional approaches [15, 16]. Thus, we

believe that it is important to examine whether applying more complex algorithms as opposed

to traditional regression techniques offers incremental value in various contexts to learn when

this additional effort amounts to meaningful improvements.
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It is often not straightforward to choose a priori the “best” prediction algorithm, but super

learning [17, 18], an ensemble machine learning method, can assist researchers in making this

decision by combining several (pre-identified) prediction algorithms into a single algorithm.

The aim of the study was to develop and validate a prediction algorithm for osteoporotic

hip fracture based on claims data employing a superlearner approach.

Methods

Ethics

The present study is a retrospective, observational, non-interventional study and all data were

fully anonymized, therefore approval by an Ethics Committee was not required.

Sample

In this study, we used administrative claims data from April 2008 through March 2014 on

288,086 individuals aged 65 years and older, without level of care. This datasource was also

used in a previous study of ours [10]. In Germany, there were three distinct levels of care until

2016, which were clearly defined and routinely assessed by a qualified physician or nurse. The

classification depended on daily time needed for care (care level 1, 2, and 3 requiring basic

care such as washing, feeding, or dressing for at least 0.75, 2, and 4 hours daily time, respec-

tively) and on whether domestic supply was necessary [19]. Individuals with care level will

already have an elevated risk of falls and fracture due to a higher level of functional disability

and were therefore excluded. Notably, the dataset is limited to people working in agriculture

and their families, because the data provider is the German agricultural sickness fund–in ger-

man: Sozialversichung für Landwirtschaft, Forsten und Gartenbau (SVLFG). We only

included individuals, who were insured by the SVLFG on April 1, 2010 (baseline) with contin-

uous insurance coverage for the 24 months pre-period–i.e., we excluded patients who switched

to the SVLFG during the pre-period or after April, 1, 2010.

Outcome variable

The outcome variable was the first hip fracture–both osteoporotic and non-osteoporotic–

occurring within 4 years after the index date–i.e., between April 1 2010 and 31 March 2014.

Hospital admission and discharge diagnoses were used to identify hip fractures (International

Classification of Diseases, 10th revision, German Modification, ICD-10 codes: S72.0 to S72.2).

Predictor variables

Numerous risk factors have been identified by prior research to predict hip fracture. We used

information available within administrative claims data to determine potential risk factors.

Age, gender, prior fracture history, and medication use were considered as candidate predictor

variables.

Age was assessed at baseline. We further assessed whether at least one prior fracture within

2 years preceding baseline was recorded (yes/no). We distinguished between prior hip fracture

(ICD-10 codes: S72.0 to S72.2), prior major osteoporotic fracture (i.e., hip, vertebra, forearm

or humerus fractures) [20] and prior osteoporotic fracture (vertebra, pelvic, rib, humerus, fore-

arm, tibia and fibula, clavicle, scapula, sternum, proximal femoral and other femoral fractures)

[21]. Regarding medication use, we considered exposure (yes/no) to the following risk factors:

(1) drugs for which an association with fracture risk has been well established, e.g., glucocorti-

coids, aromatase inhibitors, antidepressants, proton pump inhibitors [4, 6, 7], (2) drugs com-

monly prescribed for conditions that have been associated with increased fracture risk, e.g.,
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antidiabetics, and (3) drugs prescribed for prevention and treatment of osteoporosis such as

bisphosphonates, calcium, vitamin D and their combinations. Exposure was defined as at least

two prescriptions recorded in the seven months before baseline [6, 22, 23]. The validity and

reliability of outpatient diagnoses recorded in claims data are limited [24, 25]. Thus, we

decided to exploit the information on prescribed medications as a surrogate for diseases/disor-

ders associated with increased fracture risk. Henceforth, we refer to these predictors as “drug-

related risk factors”.

Analysis methods

We applied the superlearner (SL) approach [17, 18, 26] to predict the occurrence of hip frac-

ture within 4 years of baseline. Superlearning is an ensemble machine learning method for

choosing via cross-validation the optimal weighted combinations of the predictions made by a

set of candidate algorithms. It does not require an a priori selection of algorithms, but is tech-

nically capable of selecting the best set of algorithms from multiple options and integrating the

results from the relevant ones. Candidate algorithms can be both parametric and non-

parametric and each algorithm is k-fold cross-validated on a dataset to avoid overfitting. We

applied 10-fold cross-validation, which divided the dataset into k = 10 mutually exclusive and

exhaustive sets of almost equal size. For each k fold, one of the k sets serves as validation set,

the others act as training sets. Each algorithm is fitted on the training set to construct the esti-

mators whose performance (so-called risk or squared error) is then assessed in the validation

set. Since overly flexible algorithms tend to exploit random variation in the training data to

increase accuracy, the performance has to be assessed for the validation dataset. The process is

repeated until each set has served both as training and validation sample and predicted values

are obtained for all observations. Simple regression techniques may then be used to determine

the utility (i.e., the beta-coefficients) of the predicted values of the algorithms for predicting

the outcome. Non-significant predictions and their respective algorithms are excluded. A new

estimator (so-called SL-estimator) is then generated as a weighted combination of the relevant

predictions from the candidate algorithms that yields the smallest squared prediction error.

Ideally, the algorithms should be heterogeneous in their statistical properties (i.e., some ought

to be parsimonious while others ought to be flexible), in order to allow for different levels of

complexity in the data.

Furthermore, we compare our model with extreme gradient boosting (XGBoost). XGBoost

is a comprehensive and versatile library, which offers a powerful framework for implementing

Gradient Boosted Trees (GBTs). These build an ensemble of multiple weak trees (e.g., trees

with few decision rules) in sequence, thereby allowing each tree to learn and improve upon the

previous trees. It is a state of the art machine learning approach that outperformed traditional

techniques in various settings [27, 28]. Therefore, it is currently the best option for a gold stan-

dard comparison. Details on the parameter values of the final model and how they were

obtained can be found in the supplement.

Candidate learning algorithms for the superlearner

We considered the following candidate learning algorithms: Logistic regression using forward

and backward variable selection (main effects only) [29], random forests [30], support vector

machines (SVM) [31] and RUS (random undersampling)—Boost with SVM as learner [32,

33]. Additionally, we considered the stepwise logistic regressions with an alternative model

specification that included two-way interaction between age and all other predictors as well as

sex and all other predictors. Random forests (RF) combine predictions from all regression or

classification trees that have been fitted to a data set. The growth of each tree is based on a
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random process, which uses a randomly drawn subsample and a random subset of the avail-

able features for each splitting decision. Thus, the method requires a large number of individ-

ual trees to detect the most important variables and make accurate predictions.

SVM aim to classify cases by constructing a hyperplane that achieves the best partitioning

of the data by maximizing the margin between the closest points of two classes. Whenever a

linear separator cannot be found, the observations are mapped to a higher-dimensional space

using a (non-)linear kernel function to enable linear separation [34].

RUSBoost, a hybrid approach designed for imbalanced data problems, combines random

undersampling and boosting. The latter generates a strong classifier from a number of so-

called weak learning algorithms. These weak learners ought to achieve accuracy just above ran-

dom chance. We chose the AdaBoost.M2-algorithm [35] using a support vector machine with

a linear kernel as weak learner. AdaBoost applies a weak learner repeatedly to predict the most

fitting class. A set of plausibility values for the possible classes is assigned to each case. The

weak learners are evaluated using a loss-function that penalizes different types of misclassifica-

tion. With each iteration, the loss-function values are updated allowing the algorithm to focus

on classes which are particularly difficult to distinguish from the correct class. By addressing

these difficult cases, AdaBoost.M2 can outperform other methods in imbalanced datasets,

where the correct classification of the minority class is often most challenging. An overview of

the algorithms is provided in the electronic supplement (S1 File of S1 Table).

Random undersampling

The dataset was divided into a training (80%) and a validation dataset (20%). For the training

set, random undersampling methods were applied to address that most algorithms try to mini-

mize the overall error rate. In our context, predicting exclusively non-fractures would already

result in an extremely low error rate, although the predictions would practically be useless.

Thus, although random undersampling is associated with a loss of information [36], it may

improve the classifiers’ performance with regard to the AUC [37] by reducing the overwhelm-

ing influence of the majority class in imbalanced datasets. In addition, it has been shown that

methods that rely on random undersampling in an imbalanced setting are often more simple,

faster, and comparable (if not better) in their performance compared to other sampling meth-

ods [33]. In a first step, a one-sided selection method was used [38] that eliminates cases from

the majority class (no fracture) while keeping all cases from the minority class (fracture). In a

second step, random undersampling was performed until the ratio of minority to majority

class was 3:7. Given that the base rate of hip fractures in the original dataset was only about

3%, complete balance, (i.e., a ratio of 1:1) was deemed too expensive, because the number of

cases lost due to undersampling substantially increases the more balanced the ratio becomes.

The final training set resulted in 20,456 individuals. Each candidate algorithm was imple-

mented using the (undersampled) dataset. The predictors considered in the analyses are listed

in Table 1.

We applied the SL approach (as described above) to select the best combination of these

algorithms specifying 10-fold cross-validation. Superlearner is implemented in the R package

Super Learner [39]. All analyses were carried out using R version 3.4.1 (R Foundation for Sta-

tistical Computing, Vienna, Austria).

Evaluating algorithm performance

All candidate algorithms that enter the superlearner were fitted on the entire training dataset

and their performance further assessed using the validation dataset. To evaluate classification

performance the mean squared errors (MSE) and AUC values were calculated for both the

PLOS ONE Machine learning for fracture prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0232969 May 19, 2020 5 / 14

https://doi.org/10.1371/journal.pone.0232969


individual algorithms and the superlearner. AUC is used to evaluate overall prediction accu-

racy. Model calibration was assessed with the Hosmer-Lemeshow statistic [29]. Moreover, we

used calibration plots, which plot actual fracture percentages against those predicted by the

algorithms for various risk quantile to assess (lack of) fit. Due to random undersampling, the

base rate in the training set differed from the base rate in the validation set. Therefore, the pre-

dicted probabilities were adjusted before using them for model calibration in order to avoid

overestimation of the proportion of fracture events [40].

Table 1. Characteristics of study population (n = 288,086).

Characteristic No. %

Female gender 140,709 48.8%

Age (at baseline), years Mean (SD) 75.67 (6.20)

Hip fracture within the 4 year follow-up 7,644 2.7%

Patients without a hip fracture within the 4 year follow-up 280,442 97.3%

Patients without a hip fracture within the 4 year follow-up who were not lost to follow-up 231,578 80.4%

Prior osteoporotic fracture (2 years)

all 7,032 2.4%

minor 2,580 0.9%

major 4,864 1.7%

hip 1,854 0.6%

Medication (within the seven months before baseline):

Antiparkinson agents 7,050 2.4%

Anticonvulsants/Antiepileptics 8,313 2.9%

Aromatase inhibitors 1,295 0.4%

Antidiabetic agents 36,782 12.8%

Proton pump inhibitors 55,770 19.4%

Antidementives 2,509 0.9%

Drugs for obstructive airway diseases 29,616 10.3%

Bisphosphonates 9,451 3.3%

Bisphosphonate combinations 1,831 0.6%

Raloxifene 304 0.1%

Antidepressants, psycholeptics, and their combinations 42,849 14.9%

Gestagens, estrogens, and their combinations 10,030 3.5%

Glucocorticoids (systemic), and combinations with antiphlogistics/antirheumatics 20,648 7.2%

Anti-inflammatory and antirheumatic agents 2,299 0.8%

Calcium, vitamin D and analogues, and combinations 9,798 3.4%

Thyreostatic agents 3,632 1.3%

GnRH analogues, antiandrogens 3,775 1.3%

Ophthalmic agents 33,351 11.6%

Anticholinergic agents 7,786 2.7%

Tamsulosin 20,787 7.2%

Lost to follow-up:

Total (death within four years, other reasons) 51,476 17.9%

Death within the first year 7,721 2.7%

Death within twoyears 17,492 6.1%

Death within three years 28,957 10.1%

Death within four years 40,527 14.1%

GnRH, Gonadotropin-releasing hormone.

https://doi.org/10.1371/journal.pone.0232969.t001
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Results

Descriptive analysis

A summary of variables used in the analysis is presented in Table 1. Of the 288,086 individuals

that were originally included in the sample, 20,456 were used during training and 57,618 in the

validation dataset. Mean age of the original sample was 75.7 years (SD: 6.2), 48.8% were female.

About 3% sustained a hip fracture during follow-up. 2.4% of the sample had any prior clini-

cally diagnosed osteoporotic fracture and 0.6% had a prior diagnosed hip fracture. Drug-

related risk factors affecting the largest percentage of the sample were proton pump inhibitors

(19.4%), followed by antidepressants, psycholeptics, and their combinations (14.9%), antidia-

betic agents (12.8%), ophthalmic agents (11.6%), and drugs for obstructive airway diseases

(10.3%).

Model performance

The performance of the superlearner was similar to other individual algorithms used in the

analysis. With regard to the Brier score, the superlearner algorithm for predicting hip fracture

improved upon random forests by 6%. The superlearner performed very similarly to RUS-

Boost with only marginal improvement in Brier score. Compared to logistic regression the

superlearner performed slightly worse with respect to brier score. All algorithms achieved

moderate discriminatory performance, with AUC values ranging from 0.650 for SVM to 0.704

for logistic regression in the validation set and from 0.660 for SVM to 0.721 for superlearner in

the training set. The superlearner (AUC 0.698, 95% CI 0.684–0.711) was slightly outperformed

by logistic regression (AUC 0.704, 95% CI 0.691–0.718) and XGBoost (AUC 0.703, 95% CI

0.689–0.716) in the validation set. In the training set, the superlearner and XGBoost performed

better than the candidate algorithms regarding their discriminatory ability, with an AUC of

0.722 (95% CI 0.714–0.729) for the superlearner and an AUC of 0.725 (95% CI 0.718–0.733)

for XGBoost. Results are shown in Table 2. Furthermore, we provide information on the num-

ber of false negatives and false positives as well as the corresponding rates for the superlearner

and our benchmark model XGBoost in the S1 File of S1 and S2 Figs.

Actual and predicted fracture percentages are shown in Fig 1. The calibration plot indicates

that the superlearner (right panel) underestimated actual fracture probability to some extent.

Thus, the fit for the superlearner was only moderate (Chi-Square = 154.75, p<0.001).

Table 2. Brier score and AUC for each algorithm.

Validation Training

Algorithm Brier score AUC (95% CI) AUC (95% CI)

Logistic regression with forward selection 0.0251 0.704 (0.691–0.718) 0.713 (0.705–0.720)

Logistic regression with forward selection and interactions 0.0265 0.698 (0.685–0.712) 0.712 (0.705–0.720)

Logistic regression with backward selection 0.0261 0.704 (0.690–0.717) 0.713 (0.705–0.720)

Logistic regression with backward selection and interactions 0.0267 0.695 (0.681–0.708) 0.714 (0.706–0.721)

Random forest 0.0268 0.685 (0.671–0.699) 0.686 (0.678–0.694)

Support vector machines 0.0252 a) 0.650 (0.635–0.666) 0.660 (0.651–0.668)

RUSBoost 0.0254 0.702 (0.688–0.715) 0.711 (0.703–0.718)

Superlearner 0.0259 0.698 (0.684–0.711) 0.722 (0.714–0.729)

XGBoost 0.0251 0.703 (0.689–0.716) 0.725 (0.718–0.733)

CI, confidence interval.
a) Brier score was calculated by transforming the support vector machine output to probabilities using a sigmoid link function.

https://doi.org/10.1371/journal.pone.0232969.t002
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However, for logistic regression, which performed best as regards Brier score and AUC in the

validation set, calibration was good (Chi-Square = 15.14, p = 0.06).

Components of risk

The output of machine learning techniques is not as readily interpretable as the significance

tests for the coefficients of parametric techniques. The performance regarding prediction accu-

racy can easily be assessed, while the importance of specific variables cannot be determined

without additional analysis. Thus, we used the logistic model (with forward selection) to deter-

mine which variables were important for fracture prediction. In particular, female gender,

older age, and prior fracture history were associated with a higher probability of sustaining hip

fractures. Also, several medical conditions (operationalized by medication use) such as Parkin-

son’s disease, dementia, or diabetes as well as the use of glucocorticoids were significantly asso-

ciated with higher fracture probability (Table 3).

Discussion

In this study, we developed a prediction algorithm to assess the risk of osteoporotic hip frac-

tures using claims data. The focus was on machine learning techniques including both tradi-

tional and newer approaches. In particular, we applied the ensembling superlearner algorithm

that can be employed in large administrative claims databases for fracture prediction.

We found the performance of the superlearner algorithm to be similar to the individual

algorithms used in the analysis. Although the superlearner did perform no worse than the can-

didate algorithm in the training set, in the validation set logistic regression, XGBoost and RUS-

Boost had similar or higher AUCs. Furthermore, when comparing the results of this study

Fig 1. Calibration plots for logistic regression (left panel) and superlearner (right panel). The plots show the calibration for the validation dataset. We

grouped the n = 57,618 individuals in the validation dataset according to their respective 5% risk quantile as predicted by either the logistic regression or the

superlearner. For each quantile group, we plotted the predicted proportion of S72.0-S72.2 fractures against the actual proportion of S72 fractures.

https://doi.org/10.1371/journal.pone.0232969.g001
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with the results of a previous publication, in which we used a Cox proportional hazard model

for the prediction of fracture risk [10], we only find negligible differences in the predictive per-

formance. Consequently, the machine learning approach offers no benefits in this context

when compared to traditional approaches. Regarding our data source, we found that predic-

tions based on german claims data are considerably worse than predictive models that take

advantage of clinical information such as bone mineral densities and biochemical glucose mea-

surements. In Denmark, a recent study reported an AUC of up to 0.92 for hip fracture predic-

tions, which highlights the benefit of using a National Patient Registry that contains clinical

and laboratory information for risk prediction [41].

Notably, in several datasets the superlearner increased performance when compared to its

candidate algorithms [18]. Nevertheless, we found multiple studies, who correspondingly

found no major differences between the supe learner and more traditional methods or even

somewhat worse performance [15, 42].

In this study, the slightly poorer calibration of the superlearner may be partly due to the fact

that the algorithm did not estimate probabilities. Thus, the adjustment method proposed by

Saerens et al. [40] may have been imperfectly suited for incorporating the bias due to random

undersampling.

As it is recommended to decide upon input variables, candidate algorithms, and their speci-

fication before running the analysis [11], we considered risk factors commonly included in

fracture risk assessment tools that were also available in claims data. To help to achieve a better

Table 3. Coefficients of multivariable logistic regression to predict hip fracture.

Predictor β value SE p

Intercept -9.216��� 0.204 0,000

Age (effect for each additional year) 0.101��� 0.003 0,000

Female gender 0.628��� 0.034 0,000

Prior osteoporotic fracture (2 years) 0.402��� 0.099 0,000

Prior osteoporotic hip fracture (2 years) 0.635��� 0.175 0,000

Antidiabetic agents 0.276��� 0.047 0,000

Antiparkinson agents 0.385��� 0.092 0,000

Antidementives 0.482��� 0.138 0,000

Anticonvulsants/Antiepileptics 0.270�� 0.087 0,002

Proton pump inhibitors 0.109�� 0.040 0,007

Antidepressants, psycholeptics, and their combinations 0.096� 0.044 0,028

Anticholinergic agents 0.208� 0.091 0,022

Antiinflammatory and antirheumatic agents 0.338� 0.167 0,042

Aromatase inhibitors 0.319 0.218 0,144

Thyreostatic agents -0.182 0.130 0,159

Glucocorticoids, and combinations with antiphlogistics/antirheumatics 0.198��� 0.061 0,001

GnRH analogues, antiandrogens 0.338�� 0.125 0,007

Gestagens, estrogens, and combinations -0.244�� 0.091 0,008

Bisphosphonates 0.212�� 0.082 0,009

Bisphosphonate combinations 0.437� 0.184 0,018

Results are based on the undersampled training dataset. Therefore, a meaningful interpretation can only be given for

the effect direction and not the magnitude.

��� p � 0.001

�� p � 0.01

� p � 0.05. SE—standard error; GnRH—Gonadotropin-releasing hormone.

https://doi.org/10.1371/journal.pone.0232969.t003
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understanding of important risk factors, we reported the output of a logistic regression analysis

and report a variable importance plot of XGBoost in the supplement. However, caution is

needed in interpreting the results of an exploratory logistic regression with a forward selection

method, because it exploits random variation. Nonetheless, it appeared that next to some

drug-related risk factors, risk factors such as gender, prior fracture, and age noticeably contrib-

uted to risk prediction. Thus, the model performance was mainly dependent on few predictors

that are known to be important. This is in line with other studies finding so simple models

consisting of fewer predictors e.g., age, gender, and prior fracture perform as well as more

complex models in predicting fracture [43, 44].

The fact that drug-related risk factors had limited additional explanatory power in this

study may partly explain moderate performance of the superlearner. Our choice to employ a

superlearner approach in this study was driven by the effectiveness of the technique in other

studies [12, 18], the low base rate of hip fractures in our data and the relatively large number of

potential predictors we initially considered. It is still not fully understood whether and when

complex ensemble machine learning techniques offer real value over traditional methods in

clinical prediction tasks [45]. We agree with previous findings on this question that a strong

non-linear relationship between the predictors and the response appears to be an important

prerequisite [46] and that the signal-to-noise ratio ought to be high [47].

Strengths and limitations

Major strengths of the study are the large number of observations and the rich set of potential

risk factors derived from administrative claims data. This allowed us to apply powerful

machine learning methods for fracture prediction, which have the potential to take advantage

of complex interactions and unknown non-linear effects. Moreover, we performed a system-

atic fracture outcome ascertainment based on ICD-10 hospital diagnoses. Hence, outcome

misclassification, which often is an issue in ambulatory settings, should be low as nearly all

people with hip fractures are admitted to hospital.

Since we were faced with highly imbalanced data as regards fracture events, we employed

random undersampling to mitigate the issue that some algorithms perform poorly in imbalanced

datasets. However, we are well aware that there are alternative measures for dealing with this

issue. For instance, we could have applied oversampling, which would entail replicating the

minority samples until fracture and non-fracture events are well-balanced. In our study, this

would require n = 120,189 minority cases–i.e., we would need to replicate each minority case

almost 16 times–to reach the desired ratio of 3:7. Drawing each minority case that frequently sub-

stantially increases the risk of overfitting. Moreover, given our sample size, oversampling would

drastically increase the computational runtime and the probability for running out of memory.

Consequently, we decided on random undersampling, although randomly drawing from the

majority sample sometimes discards informative cases [48, 49] and it can distort significance tests

and the magnitude of the parameter estimates–i.e., the obtained estimates and p-values ought to

be interpreted with caution. In the future, it might be a promising alternative to optimize other

metrics than the global classification accuracy, because non-decomposable functions such as the

F-Score or precision are more natural choices for imbalanced data that do not require random

over- or undersampling [50]. Unfortunately, current implementations are limited to using these

functions as evaluation criteria, which does not enable parameter optimization.

We recognise that the ascertainment of (co-)morbidities proves a challenge in (administra-

tive) ambulatory claims data. The lack of reliability of diagnosis coding in the ambulatory set-

ting has been repeatedly shown [24, 25]. Therefore, we solely considered drug exposure as

surrogate variable, but no ambulatory ICD-10 diagnoses to identify and define conditions that
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have been associated with increased fracture risk such as Parkinson’s disease [51]. Prescribed

medications whose ATC Classification starts with N04 are almost exclusively used to manage

Parkinson’s disease and are therefore a reliable indication for that particular disorder. This

prescription based measure was chosen, because using the most reliable source of information

(i.e., hospital diagnoses) would have introduced considerable bias, because in this case only

individuals with a hospital stay would have been recorded. In addition, we included medica-

tions that have multiple indications but were consistently associated with fracture risk in previ-

ous studies such as psychotropic drugs [52].

Only risk factors available in administrative claims data could be considered. Risk factors

drawn from self-reported data, registries/EHR such as smoking, alcohol use or BMI were not

accounted for. Such information is either unavailable or cannot be retrieved from administra-

tive claims data without bias. Including such additional risk factors might have contributed to

better performance of the algorithms.

In this study, we assessed a relatively long follow-up period, because we needed to identify a

sufficient number of fracture events (the incidence rate of hip fracture was only 0.6% within

the first year). As a result, we were able to apply data hungry machine learning techniques

[53]. Nonetheless, this approach had some disadvantages. First, almost 18% of our sample

were not observed until the end of the 4 year follow-up period. In spite of that we decided to

not exclude patients that switched to another statutory health insurance or passed away during

the follow-up period, because this information would not be available in a prediction model

that is implemented to identify insurees who will be at risk in the future. Second, we are aware

that recently assessed prescription based risk factors have a higher predictive value [54]. Thus,

the long follow-up period could have negatively influenced the model performance.

Finally, our data were derived from only one health insurer and may not be representative

for the whole German population. Compared with persons insured by other health insurance

providers, persons insured at this particular health insurer represent those living in more rural

regions and working or having worked in the agricultural (incl. forestry and horticulture) sec-

tor. This may have influenced the number of hip fractures because lower rates for both hip

fractures and fractures at other sites typically associated with osteoporosis have been reported

in rural populations [55, 56].

Conclusion

In general, the performance of the superlearner was similar to the included individual algo-

rithms used in the analysis. It showed good discrimination in the training data set, but poorer

discrimination and calibration in the validation set compared to the candidate algorithms. The

lack of substantive difference between these methods does not speak against the superlearner

per se. In other cases, the superlearner has proven to perform at least as well or even better

than its candidate methods. In our case, however, any of the methods we included, and in par-

ticular simpler ones, may be used for these data to predict fracture risk.
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