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Ginsentides: Cysteine and Glycine-
rich Peptides from the Ginseng 
Family with Unusual Disulfide 
Connectivity
James P. Tam1, Giang K. T. Nguyen1,3, Shining Loo1, Shujing Wang1,4, Daiwen Yang2 & 
Antony Kam1

Ginseng, a popular and valuable traditional medicine, has been used for centuries to maintain health 
and treat disease. Here we report the discovery and characterization of ginsentides, a novel family of 
cysteine and glycine-rich peptides derived from the three most widely-used ginseng species: Panax 
ginseng, Panax quinquefolius, and Panax notoginseng. Using proteomic and transcriptomic methods, 
we identified 14 ginsentides, TP1-TP14 which consist of 31–33 amino acids and whose expression 
profiles are species- and tissues-dependent. Ginsentides have an eight-cysteine motif typical of the 
eight-cysteine-hevein-like peptides (8C-HLP) commonly found in medicinal herbs, but lack a chitin-
binding domain. Transcriptomic analysis showed that the three-domain biosynthetic precursors of 
ginsentides differ from known 8C-HLP precursors in architecture and the absence of a C-terminal 
protein-cargo domain. A database search revealed an additional 50 ginsentide-like precursors from both 
gymnosperms and angiosperms. Disulfide mapping and structure determination of the ginsentide TP1 
revealed a novel disulfide connectivity that differs from the 8C-HLPs. The structure of ginsentide TP1 is 
highly compact, with the N- and C-termini topologically fixed by disulfide bonds to form a pseudocyclic 
structure that confers resistance to heat, proteolysis, and acid and serum-mediated degradation. 
Together, our results expand the chemical space of natural products found in ginseng and highlight the 
occurrence, distribution, disulfide connectivity, and precursor architectures of cysteine- and glycine-rich 
ginsentides as a class of novel non-chitin-binding, non-cargo-carrying 8C-HLPs.

Of all medicinal herbs, ginseng is the most widely used and the most economically valuable. According to Baeg 
& Seung, in 2013 worldwide sales of ginseng and ginseng-derived products surpassed 200 million dollars1. A 
literature survey of PubMed and Google Scholar showed that ginseng is one of the most studied medicinal herbs 
with >10,000 scientific reports related to different aspects of ginseng research, including the medicinal benefits, 
phytochemistry, and cultivation of ginseng.

Ginseng is the collective name for 13 species of the Panax genus of the Araliaceae family2. Most studies involve 
three common and commercial-important ginseng species: Panax ginseng (Asian ginseng), Panax quinquefolius 
(American ginseng), and Panax notoginseng (notoginseng). The name Panax means “cure-all”, and ginseng has 
indeed been exploited for many uses, ranging from health maintenance to the treatment of diseases. In traditional 
Chinese medicine, ginseng is used to vitalize visceral organs, stimulate rapid recovery from illnesses, and improve 
blood circulation3. Ginseng is also used as an adaptogenic herb to maintain general well-being and counteract the 
effects of physical and emotional stress by enhancing memory, relieving fatigue, and improving stamina4.

Studies of active components in ginseng predominantly focused on small-molecule metabolites. To date, 
>200 chemical compounds have been identified from the three most common ginseng species3,5. The best known 
are ginsenosides that belong to the saponin family3,5,6. Ginsenosides can be broadly divided into two groups, 
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protopanaxadiol and protopanaxatriol6. However, no multiple disulfide-constrained peptides with MW 2 to 
6 kDa has been reported for ginseng species, even though they are commonly found in plant and play important 
roles in host defense as antimicrobials, insecticidals7–11, and proteinase inhibitors12–15. The primary amino acid 
sequences of plant-derived multiple disulfide-crosslinked peptides, also known as cysteine-rich peptides (CRPs), 
generally contain >16% cysteine residues that form between three and five disulfide bonds16. These multiple 
disulfide linkages confer resistance to degradation by heat, acid and enzymes12,13,15,17.

CRPs are classified into different families based on their cysteine motifs16. Our recent studies showed that 
many medicinal herbs contain a common cysteine motif with a tandemly-connecting cysteine in the third and 
fourth position. An example is the eight-cysteine hevein-like peptides (8C-HLPs) that have a cysteine motif 
arranged as CXnCXnCCXnCXnCXnCXnC16,18–20. The prototypic member of 8C-HLPs is hevein, which was first 
isolated from the rubber tree (Hevea brasiliensis) and contains cystine-knot disulfide connectivity as well as a 
chitin-binding domain that promotes binding to chitin which is found in fungi and insects21.

Here we report the identification, isolation, and characterization of a novel family of 8C-HLPs that lack a 
chitin-binding domain, termed ginsentides. We identified ginsentides TP1-TP14 from three common ginseng 
species, Panax ginseng, Panax quinquefolius, and Panax notoginseng of the Araliaceae family. Proteomic anal-
ysis showed that the ginsentides contain the cysteine motif present in the 8C-HLP family, but disulfide map-
ping, NMR structural determination and transcriptomic analysis showed that these peptides display an unusual 
disulfide connectivity and precursor architecture. Additionally, the ginsentides have a high cysteine and glycine 
content that accounts for >50% of the amino acids present in their sequences. The high cysteine content (>24%) 
together with cystine residues at both the N- and C-termini of ginsentides confers a tightly folded pseudocyclic 
structure. We also showed that ginsentides are stable against heat, acidic, proteolytic and human-serum-mediated 
degradation. Taken together, our discovery of ginsentides unveiled a novel family of underexplored cysteine-rich 
peptides derived from ginseng that could have therapeutic importance.

Results
Identification of cysteine-rich peptides from three ginseng species: Panax ginseng, Panax 
quinquefolius and Panax notoginseng. A mass spectrometry-driven profiling of aqueous extracts of 
Panax ginseng, Panax quinquefolius, and Panax notoginseng roots revealed a cluster of strong signals in the mass 
range of 3–5 kDa (Fig. 1). Mass spectra of the extracts showed that each species expressed a unique set of mass sig-
nals with m/z of 3000–3500. Panax ginseng displayed four strong peaks having m/z values of 3054, 3084, 3122, and 
3142, as compared to 3054, 3092, 3216 and 3254 for Panax notoginseng, and 3071, 3109, 3233, and 3271 for Panax 

Figure 1. Mass spectrometry profiles of aqueous extracts of roots from (A) Panax ginseng, (B) Panax 
quinquefolius and (C) Panax notoginseng using MALDI-TOF MS.
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Figure 2. Mass spectrometry profiles of aqueous extracts of (A) roots, (B) seeds, (C) leaves and (D) flowers 
from Panax ginseng using MALDI-TOF MS.

Figure 3. Mass spectrometry profiles of aqueous extracts of (A) Panax quinquefolius and (B) Panax notoginseng 
flowers using MALDI-TOF MS.
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quinquefolius (Fig. 1). Figure 2 shows the tissue distribution of ginsentides in Panax ginseng roots, seeds, leaves 
and flowers. Figure 3 shows the mass spectra of Panax notoginseng and Panax quinquefolius flower. The peak at 
m/z value 3054 was designated as ginsentide TP1, which was isolated by RP-HPLC and subjected to S-reduction 
and S-alkylation using dithiothrietol (DTT) and N-ethylmaleimide (NEM) to determine the disulfide content. All 
other peaks representing the putative ginsentides in the mass region 3 to 3.5 kDa showed a mass shift of 1008 Da 
after S-reduction and S-alkylation, indicating the presence of eight cysteine residues (Supplementary Data S1).

Primary sequence and biosynthesis of ginsentides. MS/MS sequencing of the 3054 Da ginsentide TP1, 
which was found in both Panax ginseng and Panax notoginseng, serves as a representative example of the TP peptides 
(Fig. 4). Enzymatic digestion of S-reduced TP1 by chymotrypsin or trypsin produced one major fragment having m/z 
values of 2459 and 2831, respectively (Fig. 4). Using the b-ions and y-ions generated from MALDI-TOF MS/MS, these 
fragments showed that the sequence of the 2459-fragment was CKSGGAWCGFDPHGCCGNCGCLVGF and the 
2831-fragment was SGGAWCGFDPHGCCGNCGCLVGFCYGTGC. Combining these two overlapping fragments 
yielded the full sequence of the 3054-Da ginsentide TP1. De novo peptide sequencing was also performed to determine 
the primary sequence of the 3084-Da ginsentide TP2 (Supplementary Data S2).

The Basic Local Alignment Search Tool (BLAST) of the NCBI database and transcriptomic analyses revealed 
that ginsentides are the mature products of ginseng-specific abundant proteins (GSAPs). Our results revealed 14 
putative ginsentide-encoding gene sequences (TP1-TP14) from the Panax family of Panax ginseng, Panax quin-
quefolius and Panax notoginseng (Fig. 5 and Table 1). Sequence analysis also showed that the eight cysteine resi-
dues in the C-terminal regions of ginsentide-encoding genes are conserved. All ginsentides have between 31 and 
33 amino acids that include eight cysteine residues arranged in a cysteine motif of CXnCXnCCXnCXCXnCXnC 
with the tandemly connecting CC motif highlighted in bold. In addition, ginsentides are exceptionally 
glycine-rich; TP1 has nine glycine residues. Sequence comparison showed that 66% of amino acid residues 
in TP1 are conserved among the TP family, and sequence conservation is highest for cysteine and glycine. 

Figure 4. De novo sequencing of ginsentide TP1. Enzymatic digestion of S-reduced peptides by chymotrypsin 
and trypsin generated one major fragment each with m/z values of 2459 and 2831, respectively. The sequences 
of the fragments were deduced using the b-ions and y-ions generated from MALDI-TOF MS/MS.
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Figure 5. Ginsentide-encoding transcripts from Panax ginseng, Panax quinquefolius and Panax notoginseng 
deduced from de novo assembly of transcriptome data from the NCBI database. The transcriptome data used 
are listed as follows: Panax notoginseng flower (SRX378878), Panax quinquefolius flower (SRX062267), Panax 
ginseng flower (SRX181263), Panax ginseng flower (SRX378873), Panax notoginseng leaf (SRX378880), Panax 
quinquefolius seed (SRX529365), Panax ginseng root (ERX137460). SPase: signal peptidase.

Ginsentide Amino acid sequence
Calculated 
Mass (m/z) mRNA*

TP1 CKSGGAWCGFD-PHGCCG--NCGCLV--GFCYGTGC- 3053.10 PG, PN

TP2 CKSSGAWCGFD-PHGCCG--NCGCLV--GFCYGTGC- 3083.11 PG, PQ

TP3 CKSAGTWCGFD-PHGCCG--SCGCLV--GFCYGVSC- 3098.15 PG, PQ

TP4 CLKNGEFCWGD-PSGCCG--NCGCLIIPGVCYGTGC- 3320.31 PG

TP5 CKSSGAWCGFD-PHGCCG--NCGCLV--GFCYGTDC- 3141.12 PG, PQ

TP6 CIPGGGFCMFE-PLSCCV--NCGCILVPGVCY--CG 3135.27 PG, PQ

TP7 CKSGGTWCGFD-PHGCCG--NCGCLV--GFCYGTGC- 3083.11 PG

TP8 CISSGGWCGFD-LHGCCG--NCGCLV--GFCYGTGC- 3070.12 PQ

TP9 CKSGGSWCGFD-PHGCCG--NCGCLV--GFCYGTGC- 3069.10 PQ

TP10 CIFSGGWCGFD-LHGCCG--NCGCLV--GFCYGTGC- 3130.15 PQ

TP11 CLKNGQFCWGN-PSGCCG--NCGCLIIPGVCYGTGC- 3318.34 PQ

TP12 CIPGGGFCMFE-PLSCCH--NCGCLLVPGVCY--CG 3173.26 PQ

TP13 CIPNGGFCMFE-PLSCCV--NCGCILVPGVCY--CG 3192.29 PN

TP14 CLKVGKICLGRGLKECCPSATCGCLL--GFCIK--C- 3310.61 PQ

Table 1. Sequence alignment of ginsentide TP1-TP14. *PG: Panax ginseng; PN: Panax notoginseng; PQ: Panax 
quinquefolius.
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Transcriptomic analysis further showed that ginsentides (TP1-TP14) are synthesized as precursors with three 
domains: N-terminal signal peptide, pro-domain and C-terminal mature ginsentides (Fig. 5).

Secondary structure and disulfide connectivity of ginsentide TP1. We next used a chemical map-
ping method involving sequential S-tagging to determine disulfide connectivity of ginsentides22–26. Stepwise 
determination of ginsentide TP1 to determine disulfide connectivity showed an initial partial S-reduction with 
tris(2-carboxyethyl)phosphine followed by S-alkylation with excess NEM (Fig. 6). Three NEM-labeled inter-
mediates with one (1SS), two (2SS), or three (3SS) intact disulfide bonds were then collected. These interme-
diate species were subsequently fully S-reduced and S-tagged with a second alkylation reagent, iodoacetamide 
(IAM). Mixed S-labeled peptides were digested with trypsin and sequenced by MS/MS (Supplementary Data S3). 
Combining the information from the 1SS- and 3SS-intermediates, we deduced the ginsentide TP1 disulfide con-
nectivity as Cys I-IV, Cys II-VI, Cys III-VII and Cys V-VIII.

Tertiary structure of ginsentide TP1. The three-dimensional (3-D) structure of ginsentide TP1 was 
determined using the distance, dihedral angle and hydrogen bond restraints derived from 1H NMR analy-
sis (Table 2). The average RMSD for secondary structural regions were 0.35 ± 0.05 Å and 0.68 ± 0.07 Å for all 

Figure 6. (A) HPLC profile of partially S-reduced and S-alkylated ginsentide TP1. Peaks 1, 2, 3, N, and RA 
contained the 3SS, 2SS, 1SS, native peptide, and fully S-NEM alkylated peptides, respectively. A schematic 
representation of ginsentide TP1 disulfide mapping is also shown; (B) The putative unfolding pathway of 
ginsentide TP1 as determined by disulfide connectivity mapping. Under our experimental conditions, the Cys 
I-IV bond was the first to be reduced to generate the 3SS species, followed by the Cys V-VIII bond, generating 
the 2SS species, then the Cys III-VII bond generating the 1SS species, and lastly, the Cys II-VI bond.
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backbone and heavy atoms, respectively. Ginsentide TP1 (PDB code: 2ML7) adopts a β-sheet structure with 
two antiparallel β-strands consisting of residues Gly20-Leu22 and Phe25-Tyr27, and eight β-turns, as well as a 
β-hairpin that includes Gly20 to Tyr27 (Fig. 7A). The solution structures of ginsentide TP1 showed that it adopts 
unusual disulfide connectivity wherein the three disulfide bonds Cys I-IV, II-VI and III-VII adopt a cystine-knot 
fold similar to knottin family peptides such as the cystine-knot α-amylase inhibitors (Fig. 7B)12,13,15,17,20. The 
additional disulfide bond at Cys V-VIII is a penetrating disulfide bond that is unique to ginsentides. The overall 
structure is tightly folded with approximately 90% and 30% of the amide proton signals remaining in the 1D spec-
tra after H/D exchange in D2O for 2 h and 18 h, respectively (Fig. 7C).

NMR analysis showed that ginsentides possess a pseudocyclic structure in which both N- and C-terminal 
Cys residues participate in the disulfide linkages. This arrangement, together with a cystine-knot, forms the gin-
sentide sulfur core. A search for conserved structures using the ginsentide TP1 coordinates in the Dali Server27 
yielded 11 similar structures with Z-scores ranging from 2.0 to 2.6. All 11 structures belong to ion (sodium/potas-
sium/calcium) channel blockers from spider toxins, such as hainantoxin-IV (PDB code: 1niy and 1ryv)28, HS1A 
(PDB code: 2mt7), U1-TRTX-SP1A (PDB code: 2LL1)29, jingzhaotoxin-XI (PDB code: 2a2v)30, μ-TRTX-Tp1a 
(PDB code: 2mxm)31, HD1A (PDB code:2mpq)32, psalmotoxin-1 (PDB code: 2kni)33, psalmotoxin 1 (PDB 
code:1lmm)34, SGTX1 (PDB code:1la4)35, and VSTx1 (PDB code:2n1n)36 (Fig. 8A). The primary sequence simi-
larities of ginsentide TP1 and the 17 spider toxins are limited to the six cysteine residues involved in the disulfide 
bonds: Cys I-IV, Cys II-VI, and Cys III-VII (Fig. 8B). These three disulfide bonds form a scaffold that is similar to 
the common cystine-knot disulfide connectivity12,13,15. Ginsentide TP1 is unique in the presence of an additional 
disulfide bond that links the C-terminal Cys VIII to Cys V in the middle of the peptide sequence. Analyses of 
the peptide surface properties revealed the presence of positively charged residues distributed around the hydro-
phobic patches on the structural surface of spider toxins that are essential for their ion-channel blocking proper-
ties28,33,37–39. This positively-charged surface property, however, is absent in ginsentide TP1, where more than half 
of its sequence are Cys and Gly residues.

Stability of ginsentide TP1 against heat, proteolytic, acid and serum-mediated degradation.  
To examine the stability of the unique pseudocyclic cystine-knot motif of ginsentides, heat, proteolytic, acid and 
serum stability assays were performed on ginsentide TP1 (Fig. 9). The percentages of remaining ginsentides were 
quantified based on their relative peak areas in RP-HPLC profiles before and after treatment. Ginsentide TP1 was 
relatively stable to heat with less than 10% degradation after heating at 100 °C for 30 min and 29% after 120 min. 
Ginsentide TP1 displayed high stability against enzymatic degradation, including that by trypsin, chymotrypsin, 
and pepsin, with >80% of peptides remaining intact after 3 h incubation. Similarly, in an acid stability assay, 
ginsentide TP1 was highly stable in 0.2 N HCl. Ginsentide TP1 was also stable in human serum with <10% deg-
radation over a 48 h incubation period at 37 °C.

Cytotoxicity, hemolyticity and immunogenicity assessment of ginsentides TP1. To examine the 
toxicity of ginsentides, we incubated ginsentide TP1 with Huh7 cells or red blood cells and found no change in 
cell viability or hemolysis at concentrations up to 100 µM. Ginsentide TP1 was non-immunogenic to THP-1 cells 
and induced no observable increase in IL-6, IL-8, IL-10 and TNF-α secretion (Fig. 10).

NOE constraints 551

  Intra-residue (|i-j| = 0) 32

  Sequential (|i-j| = 1) 220

  Medium-range (1 < |i-j| < 5) 73

  Long-range (|i-j|≥  5) 226

  Dihedral angle restraints 13

  Hydrogen bonds 9

PROCHECK-NMR Ramachandran plot (%)

  Most favored region 52.6

  Additionally allowed region 47.4

  Generously allowed region 0

  Disallowed region 0

Average maximum violations per structure

  Distance (Å) 0.015 ± 0.002

  van der Waals (Å) 2.2 ± 0.4

  Torsion angles (°) 1.25 ± 0.12

CYANA target function value (Å2) 0.68 ± 0.13

Average RMSD to mean structure (Å)

  All back bone atoms (1--31) 0.35 ± 0.05

  All heavy atoms (1--31) 0.68 ± 0.07

Table 2. NMR experimental and structural statistics of ginsentide TP1.
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Transcriptomic database search for ginsentide-like 8C-HLPs. To explore the occurrence and distri-
bution of ginsentide-like 8C-HLPs in other plant species, we performed a TBLASTN and BLASTP search of the 
NCBI and Onekp databases using the ginsentide TP1 precursor sequence. Based on our database search, we iden-
tified 50 other three-domain ginsentide-like precursor sequences containing four disulfide bonds and a cysteine 
motif of CXnCXnCCXnCXCXnCXnC from 31 plant species in 19 families (Fig. 11).

Discussion
In this study, we report the identification, isolation and characterization of 14 novel ginseng-derived cysteine-rich 
peptides, ginsentides TP1-TP14, from Panax ginseng, Panax quinquefolius, and Panax notoginseng. To the best of 
our knowledge, this is the first report on the discovery and characterization of ginseng-derived CRPs.

Using transcriptomic and proteomic approaches, we collectively identified 14 ginsentides (TP1-TP14). 
Ginsentides are 3 to 3.5 kDa peptides with 31–33 amino acids that are rich in Cys and Gly residues. With cysteine 
occurring at approximately one in every four amino acids, ginsentides are highly disulfide constrained and 
structurally compact. All ginsentides possess a CX6CX6–7CCX2–4CXCX4–6CX1–4C cysteine motif that is similar 
to 8C-HLPs. However, the 8C-cysteine motif of ginsentides differs from other 8C-HLPs in that it contains both 
a CC and a CXC motif. This cysteine motif results in a fold that contains one loop with a single amino acid and 
five loops of >2 amino acids. Additionally, all 14 ginsentides had high sequence similarity with conservation of 
cysteine and glycine residues. In particular, the intercysteine loop 4 is absolutely conserved in terms of loop size 
and presence of a Gly residue. In contrast, loop 5 and loop 6 showed a greater variability in size, particularly for 
ginsentides TP6, TP12, TP13 and TP14.

Interestingly, although ginsentide sequences have high sequence similarity (>66%), the occurrence and distri-
bution patterns of ginsentides are species-dependent. At the mRNA level, ginsentide TP4 and TP7 are unique to 
Panax ginseng, whereas only Panax quinquefolius expresses ginsentides TP8, TP9, TP10, TP11, TP12 and TP14. 
Ginsentide TP13 is unique to Panax notoginseng and ginsentides TP2, TP3, TP5 and TP6 are common to both 

Figure 7. Ginsentide TP1 NMR structure. (A) Illustration of the structure topology against the ginsentide TP1 
sequence. (B) Cartoon view of the ginsentide TP1 solution structure, with disulfide bonds colored yellow. (C) 
Comparison of the 1D spectra of ginsentide TP1 in 95% H2O/5% D2O and 100% D2O in the range of 7.6–9.6 
ppm. Peaks of amide protons are labeled with assignments, except those from side chains. Red line represents 
TP1 in 95% H2O/5% D2O, and cyan, blue and magenta lines illustrate TP1 in 100% D2O for 2 min, 2 hr and 
18 hr, respectively, at 25 °C.
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Panax ginseng and Panax quinquefolius. TP1 is produced by both Panax ginseng and Panax notoginseng. Mass 
spectrometry profile analyses revealed that ginsentide expression is also tissue-dependent. Aqueous extracts of 
roots and flowers from Panax ginseng displayed similar ginsentide expression patterns, with TP1 and TP2 as the 
dominant ginsentides. Panax quinquefolius and Panax notoginseng also had similar expression profiles in aqueous 
extracts of roots and flowers. In Panax ginseng, we saw a distinct ginsentide tissue expression pattern wherein the 
dominant ginsentide in aqueous extracts of seeds and leaves was TP3 and TP4, respectively. Collectively, these 
results suggested that ginsentide expression profiles could be used as biologic markers for identifying species and 
tissues of ginseng.

The 8C-HLPs belong to a family of CRPs that has an evolutionarily conserved CXnCXnCCXnCXnCXnCXnC 
cysteine motif. The tandemly-connecting CC motif at Cys III and Cys IV found in both 6C-HLPs and 8C-HLPs 
produce the cystine-knot disulfide connectivity of Cys I-IV, Cys II-V and Cys III-VI. For 8C-HLPs, the cysteine 
knot is followed by the small intercysteine loop Cys VII-VIII. The 8C-HLPs can be further divided into two sub-
families based on the presence or absence of a chitin-binding domain. Chitin-binding 8C-HLPs have a highly 
conserved SXΦXΦ domain (Φ, aromatic residues; X, any amino acid) in intercysteine loop 3 and a conserved 
aromatic residue at loop 4, which are essential for chitin-binding activity18,19,21. Because ginsentides lack the 
chitin-binding domain, we have classified them into a new subfamily described as non-chitin-binding 8C-HLPs. 
Transcriptome database searches of NCBI and Onekp revealed that 31 other plant species from 19 families in both 
gymnosperms and angiosperms express 50 other three-domain ginsentide-like 8C-HLP precursor sequences 
having the cysteine motif of CXnCXnCCXnCXCXnCXnC. Ginsentide-like peptides are found in some of our most 
important crops, including coffee (Coffea canephora), cacao (Theobroma cacao), cotton (Gossypium raimondii), 
rice (Oryza sativa) and wheat (Triticum aestivum).

Although ginsentides display a cysteine spacing pattern typical of 8C-HLPs with a tandemly connecting CC 
motif, ginsentides display a novel disulfide connectivity not found in 8C-HLPs. Using the stepwise S-reduction 
and S-alkylation method reported by Gray et al.22, we unequivocally determined the connectivity of ginsentide 
TP1 as Cys I-IV, II-VI, III-VII and V-VIII. The disulfide bonds Cys I-IV, II-VI, and III-VII formed a cystine-knot 

Figure 8. (A) Structure and (B) sequence alignment of ginsentide TP1 (PDB code: 2ML7) with spider toxins: 
hainantoxin-IV (PDB code: 1niy and 1ryv), Hs1A (PDB code: 2mt7), U1-TRTX-Sp1a (PDB code: 2LL1), 
jingzhaotoxin-XI (PDB code: 2a2v), TRTX-Tp1a (PDB code: 2mxm), Hd1a (PDB code:2mpq), psalmotoxin-1 
(PDB code: 2kni), PcTX1 (PDB code:1lmm), SGTx1 (PDB code:1la4), and VSTx1 (PDB code:2n1n). Cysteine 
residues are highlighted in yellow whereas charged residues are highlighted in blue.
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that is similar to that of 6C-HLPs, whereas the fourth penetrating disulfide bond Cys V-VIII is unique to ginsen-
tides. By comparing differences in cysteine spacing patterns and disulfide connectivities between ginsentides and 
chitin-binding 8C-HLPs, we found that ginsentides and ginsentide-like sequences have a conserved, and highly 
shortened one-amino-acid intercysteine loop 4, whereas the chitin-binding 8C-HLPs have the SXΦXΦ motif at 
loop 3 and a six-amino-acid loop 4 with a conserved aromatic residue that is essential for chitin binding. Due to 
the absence of the chitin binding domain, ginsentides are non-chitin binding (Supplementary data S4).

The unique disulfide connectivity of ginsentides confers high stability against heat, proteolytic, acidic and 
human serum-mediated degradation. Chemical disulfide mapping and NMR analysis showed that three of 
four disulfide bonds of ginsentide TP1, Cys II-VI, III-VII, and V-VIII, are buried in the core of the structure. 
Consequently, the side chains of the other residues are all solvent-exposed, resulting in hydrophobic patches on 
the structural surface of the peptide. Thus, ginsentide TP1 displays an overall amphipathic distribution of the 
hydrophobic and hydrophilic side chains. The first residue in Cys I forms a disulfide bond with Cys IV, and the last 
residue in Cys VIII connects with Cys V. In this way, both the N- and C-termini of ginsentide TP1 are topologi-
cally fixed in the tertiary structure through disulfide bonds, which confers a pseudocyclic topology. This feature 
combined with a tightly folded structure fortified by four disulfide bonds and intramolecular hydrogen bonds, 
contribute to the high stability of ginsentides.

The biosynthetic precursors of ginsentides are also known as the mature product of ginseng-specific abundant 
proteins (GSAPs), which were previously identified in random gene screening of Panax ginseng and Panax quin-
quefolius genomes40. The mRNA transcripts of GSAPs were reported to be highly expressed in rhizomes, ranking 
third among 17,605 ESTs in the ginseng cDNA library. Biosynthesis of mature ginsentides from precursors is 
similar to that for other 8C-HLPs, which are generally synthesized as a three-domain precursor consisting of an 
N-terminal signal peptide, a mature peptide, and a C-terminal tail or a C-terminal protein-cargo. In this study, 
transcriptomic analysis showed that ginsentides are also biosynthesized as a three-domain precursor but have 
a different arrangement. The precursor architecture of ginsentides and ginsentide-like sequences consists of an 
N-terminal signal peptide, a pro-domain and a C-terminal mature peptide that differs from the protein-cargo 
family of chitin-binding 8C-HLPs. The processing of precursor proteins to mature ginsentides probably requires 
at least two proteolytic events. The first event is likely catalyzed by a signal peptidase that cleaves the ER signal 

Figure 9. (A) Heat, (B) acid, (C) trypsin, (D) chymotrypsin, (E) pepsin and (F) serum stability of ginsentide 
TP1. All results are expressed as mean ± S.E.M. (n = 3).
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peptide only after folding of the ginsentide domain by protein disulfide isomerases (PDIs) in the ER. The second 
event could be catalyzed by an unknown protease that targets a cleavage site at the N-terminal region of the gin-
sentide domain.

In conclusion, here we identified 14 novel ginsentides from Panax ginseng, Panax quinquefolius, and Panax 
notoginseng of the Panax family that have an unusual disulfide connectivity and represent a new precursor archi-
tecture that distinctly differs from all known 8C-HLPs. The novel and highly compact structure of ginsentides 
confers their resistance to heat, acid, and digestive enzymes. Ginsentides possess certain features of small chem-
ical metabolites but have large footprints, which could be of interest for drug development. This study greatly 
expands the occurrence, disulfide connectivity, and precursor architectures of non-chitin binding 8C-HLPs.

Materials and Methods
Materials. All chemicals and solvents, unless otherwise stated, were purchased from Sigma Aldrich, US and 
Fisher Scientific, US.

Isolation and purification of ginsentides. Dried roots, seeds, and flowers from Panax ginseng, P. quin-
quefolius, or P. notoginseng (Yue Hwa Chinese Products Emporium Ltd., Singapore) were pulverized and 100 mg 
were extracted with 0.5 mL 50% ethanol to screen for CRPs with molecular masses of 2–6 kDa by mass spec-
trometry using an Applied Biosystems 4800 MALDI TOF/TOF Analyzer. To obtain sufficient ginsentides for 
characterization studies, ~2 kg of dried material were extracted with 10 L water. The extracts were filtered and 
subjected to flash chromatography using C18 powder (Grace Davison). The ginsentide-enriched fractions were 
subsequently eluted with 60% ethanol and concentrated using a rotary evaporator. The concentrated fractions 
were then purified by preparative RP-HPLC using a C18 Grace Vydac column (250 × 22 mm) at a flow rate of 
8 mL/min on a Shimadzu system. A linear gradient of 1%/min of 10–80% buffer B was applied. Buffer A con-
tained 0.05% (v/v) trifluoroacetic acid (TFA) in HPLC grade water, and buffer B contained 0.05% (v/v) TFA and 
99.5% (v/v) acetonitrile (ACN). To obtain isolated ginsentides, the resulting fractions were further purified by a 
semi-preparative C18 Vydac column (250 × 10 mm), using the same gradient, at a flow rate of 3 mL/min.

Sequence determination. 20 µg of isolated and purified ginsentides were dissolved in 50 µL 100 mM 
ammonium bicarbonate buffer (pH 7.8) containing 50% ethanol. S-reduction was performed with addition 
of 20 mM dithiothreitol (DTT) and incubated for 2 h at 37 °C. S-reduced ginsentides were S-alkylated with 
N-ethylmaleimide (NEM) followed by enzymatic digestion with trypsin or chymotrypsin at 37 °C. Peptide 

Figure 10. Ginsentide TP1 shows no (A) cytotoxic activities in Huh7 cells or (B) hemolytic effects. Ginsentide 
TP1 does not induce (C) IL-6, (D) IL-8, (E) IL-10, and (F) TNF-α release from THP-1 cells. LPS was used as a 
positive control. All results are expressed as mean ± S.E.M. (n = 3). *P < 0.05 compared to control group.
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fragments were subjected to mass spectrometry and sequenced by MS/MS (Applied Biosystems 4800 MALDI 
TOF/TOF Analyzer) using nitrogen as the collision gas with an applied collision energy of 1 keV. Assignments of 
isobaric residues Ile/Leu and Lys/Gln of ginsentides were based on the nucleotide sequences obtained from the 
NCBI database.

NCBI and Onekp Database search for ginsentide-like precursor sequences. TBLASTN and 
BLASTP was used to search for ginsentide-like precursor sequences in the NCBI and OneKp databases using 
the full precursor and mature ginsentide TP1-TP14 as query sequences with an expected value threshold of 100.

Connectivity mapping. 0.5 mg of Ginsentide TP1 was partially reduced in 2 mL 100 mM citrate buffer (pH 
3.0) containing 20% ACN and 20 mM tris(2-carboxyethyl)phosphine (TCEP) at 37 °C for 40 min. Trapping of 
intermediates was done by adding excess NEM to a final concentration of 50 mM and incubating at 37 °C for 

Figure 11. Alignment of 51 three-domain precursor sequences with four disulfide bonds and a cysteine motif 
of CXnCXnCCXnCXCnCXnC by TBLASTN and BLASTP search of the Onekp and NCBI databases.
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20 min. The reaction was quenched by immediate injection of samples into a C18 Vydac column (250 × 4.6 mm) 
at a flow rate of 1 mL/min. Intermediate species separated by RP-HPLC were analyzed by mass spectrometry to 
verify the number of NEM-alkylated cysteines. S-NEM intermediate species with one (1SS), two (2SS) or three 
(3SS) intact disulfide bonds were subsequently fully S-reduced with 20 mM DTT, and S-alkylated with 40 mM 
iodoacetamide (IAM). Mixed S-alkylated peptides were digested with trypsin and the resulting fragments were 
analyzed by MS/MS.

NMR spectroscopy. Samples for NMR analysis were prepared by dissolving lyophilized ginsentide TP1 in 
95% H2O/5% D2O or D2O directly (~1 mM protein and pH/pD 3.2). All NMR experiments were carried out 
on a Bruker 800 MHz NMR spectrometer equipped with a cryogenic probe. Two dimensional (2D) total cor-
relation spectroscopy (TOCSY) and nuclear Overhauser spectroscopy (NOESY) experiments were performed 
with mixing times of 80 ms and 200 ms, respectively (49), to acquire two 2D data sets at 298 K and 303 K, respec-
tively. Water suppression was achieved using modified WATERGATE pulse sequences (50). The NMR spectra 
were processed with NMRPipe software (51). The amides involved in hydrogen bonding were identified in the 
hydrogen-deuterium exchange one-dimensional (1D) 1H experiment (52).

Resonance assignment. Sequence specific assignments were achieved based on the 2D TOCSY and 
NOESY, and NOEs were assigned from the 2D NOESY, using the in-house software NMRspy (http://yangdw.sci-
ence.nus.edu.sg/Software&Scripts/NMRspy/index.htm). The chemical shifts were deposited in BioMagResBank 
under accession number 18983. Distance restraints were derived from the peak intensities of the assigned NOEs. 
Dihedral angles ϕ were obtained from 3JHN-Hα coupling constants measured from the 1D 1H spectrum. 
Hydrogen bond restraints were incorporated based on the observation of amide protons in the 1D 1H spectra 
recorded after re-suspending the lyophilized ginsentide TP1 in D2O for up to 18 h at 25 °C.

Structure calculation. The solution structure was calculated using a simulated annealing approach with 
CYANA 2.0 (53). Distance restraints were divided into three classes: 1.8 < d ≤ 3.4 Å (strong NOEs), 1.8 < d ≤ 4.2 Å 
(medium NOEs) and 1.8 < d ≤ 5.5 Å (weak NOEs). Disulfide bond restraints of 2.0 ≤ d (Sγi, Sγj) ≤ 2.1 Å, 3.0 ≤ d 
(Cβi, Sγj) ≤ 3.1 Å, and 3.0 ≤ d (Sγi, Cβj) ≤ 3.1 Å were used for structure calculation. During the structure calcu-
lation, hydrogen bond restraints of 1.8–2.2 Å for the NH-O distance, and 2.2 to 3.2 Å for the HN-O distance were 
applied on nine identified hydrogen bonds according to the slowly exchanging amide protons. Φ angles were 
constrained to the range of −150° to −90° for 3JHN-Hα >8 Hz. Structures were displayed and analyzed using 
software Pymol (http://www.pymol.org) and program PROCHECK-NMR, respectively (54). The structure was 
deposited with a PDB code: 2ML7.

Chitin binding assay. Ginsentide TP1 was incubated with chitin beads (New England Biolabs, Ipswich, MA 
US) in chitin binding buffer (10 mM phosphate; pH 7.4) at room temperature for 1 h. At each time point up to 
1 h, the beads were centrifuged at 12,000 g for 1 min and the absorbance of the supernatant was read at 214 nm to 
assess binding. Samples were further analyzed by MALDI-TOF MS.

Stability assays. Heat Stability. 10 μg ginsentide TP1 was dissolved in 100 μL distilled water and incubated 
at 100 °C for 30, 60, 90, and 120 min. As a control, a replica was performed with incubation at room temperature. 
The RP-HPLC profiles of the heated and control samples were compared to evaluate their stability.

Enzymatic Stability. 10 μg ginsentide TP1 was dissolved in 100 μL 100 mM ammonium bicarbonate buffer (pH 
7.8) with 1 μL 0.5 μg/μL trypsin or chymotrypsin, incubated at 37 °C for 3 h. Stability assays against pepsin was 
performed with ginsentide TP1 dissolved in 100 mM sodium citrate buffer (pH 2.5). A replica without enzymes 
served as the control. The RP-HPLC profiles of the treated and control samples were compared to evaluate their 
stability.

Acid Stability. 10 μg ginsentide TP1 was dissolved in 100 μL 0.2 M HCl and incubated at 37 °C for 2 h. A control 
replica was performed without the addition of acid. The RP-HPLC profiles of the treated and control samples were 
compared to evaluate their stability.

Human serum-mediated stability. 0.1 mM ginsentide TP1 was incubated in 25% human serum in Dulbecco’s 
Modified Eagle Medium (DMEM) (GE Healthcare Life Sciences, UK) containing 1 mM sodium pyruvate, 4 mM 
L-glutamine, without phenol red at 37 °C for 48 h. Synthetic peptide DALK (sequence: KRPPGFSPL) was used 
as a positive control. After incubation, precipitation was performed with an addition of 100% ethanol and cen-
trifuged at 18,000 g for 15 min, 4 °C. Supernatants were collected in a fresh tube and monitored using analyti-
cal RP-HPLC (Shimadzu Shim-pack XR-C8 column, 3.0 × 50 mm, 2.2 µm, flow rate 0.3 mL/min, Japan), with a 
30 min linear gradient of 0–50% buffer B (0.05% TFA (v/v) in 99.5% ACN). Individual peaks were collected and 
identified by MALDI-TOF MS.

Cell culture. Huh7 (human liver carcinoma cells) and human-derived endothelial cells (HUVEC-CS) were 
kindly provided by Professor Kathy Qian Luo (Nanyang Technological University, Singapore). THP-1 cells were 
cultured in DMEM or RPMI medium (Thermo Scientific HyClone) supplemented with 10% fetal bovine serum, 
100 U/mL of penicillin and streptomycin and grown in a 5% CO2 humidified incubator at 37 °C.

http://www.pymol.org
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Cell viability assay. Cell viability was measured using a 3-(4,5-dimethylthiazolyl-2)−2,5-diph
enyltetrazolium bromide (MTT) dye reduction assay. Briefly, cells were treated with ginsentide TP1 or 0.1% 
Triton X-100 (positive control) for 24 h. MTT (final concentration 0.5 mg/mL) was added and incubated for 3 h at 
37 °C. Dimethyl sulfoxide was then added to dissolve insoluble formazan crystals. The absorbance was measured 
at 550 nm using a microplate reader (Tecan Infinite® 200 Pro, Switzerland).

Hemolytic assay. Red blood cells were washed three times and re-suspended in PBS to give a final 1% 
suspension. 95 µL of the 1% suspension was added to each well of a 96-well plate. Ginsentide TP1 was serially 
diluted in PBS, and 5 µL of the peptide samples was added into the wells at final concentrations of 6.25, 12.5, 25, 
and 50 μM. Each concentration was tested in triplicate. The plate was incubated at 37 °C for 1 h and centrifuged 
at 1,000 rpm for 6 min. 60 µL of the supernatant were transferred to a new 96-well plate. The absorbance was 
measured at 415 nm. The level of hemolysis was calculated as the percentage of maximum lysis (1% Triton X-100 
control) after adjusting for minimum lysis (PBS control).

Immunogenicity assay. Approximately 1 × 106 THP-1 cells were seeded into each well of 12-well plates. 
The cells were treated with ginsentide TP1 for 6 h with lipopolysaccharide as the positive control. The superna-
tants were collected and stored at −80 °C until measurement. The concentrations of TNF-α, IL-6, IL-8 and IL-10 
were determined by enzyme-linked immunosorbent assay using ELISA MAX™ Deluxe Sets (BioLegend, USA).

Statistical analyses. Statistical comparisons were performed using GraphPad Version 6.0d (USA). The data 
were analyzed by one way analysis of variance (ANOVA) followed by Newman-Keuls post hoc test. Data were 
expressed as mean ± S.E.M. P < 0.05 was considered statistically significant.
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