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SUMMARY

Carbon fixation microorganisms (CFMs) are important components of the soil carbon cycle. However, the
global distribution of CFMs and whether they will exceed the environmental tipping points remain un-
clear. According to the machine learning models, total carbon content, nitrogen fertilizer, and precipita-
tion play dominant roles in CFM abundance. Obvious stimulation and inhibition effects on CFMabundance
only happened at low levels of total carbon and precipitation, where the tipping points were 6.1 g$kg�1

and 22.38 mm, respectively. The abundance of CFMs in response to nitrogen fertilizer changed from pos-
itive to negative (tipping point at 9.45 kg ha�1$y�1). Approximately 46% of CFM abundance decline
happened in cropland at 2100. Our work presents the distribution of carbon-fixing microorganisms on
a global scale and then points out the sensitive areas with significant abundance changes. The previously
described information will provide references for future soil quality prediction and policy decision-mak-
ing.

INTRODUCTION

Carbon fixation microorganisms (CFMs) in soils are critical contributors to ecosystem function since they convert atmospheric CO2 into soil

carbon.1 Microbe-associated autotrophic carbon fixation provides approximately 2–3 31015 g C$y�1 in terrestrial areas of the world.2 CFMs

are directly associated with the soil fixation process and further affect soil carbon storage and the fertility of terrestrial ecosystems; moreover,

they can offset global warming.3 Autotrophic microorganisms have six pathways capable of fixing atmospheric CO2 in soil, where the Calvin

cycle and rTCA cycle are the most common pathways.4,5 CO2 fixation pathways in grassland soils are mainly influenced by precipitation.6 A

low-nutrient environment stimulates microbial carbon fixation capacity in soil.7 Other factors, such as pH and total nitrogen, have also been

proven to be related tomicrobial carbon fixation.4,7,8 Additionally, the results and conclusions of previous studiesmay have uncertainty in real

environments on a global scale.3,9,10 The isotopic tracer technique is expensive and time-consuming, which creates problems for global

research on microbial carbon fixation. In addition, the nonlinear relationship between biotic carbon fixation and multiple environmental fac-

tors makes the existence of tipping points possible.11 Small changes in environmental or climatic factors can lead to abrupt changes or rela-

tionship reversals in ecosystems.12 Whether and how CFMs will reach any tipping points remain unclear.

Machine learning is a data-driven modeling approach with a high capability for learning complicated patterns13,14 that can be used to

identify crucial environmental factors, organize complex relationships, and predict further trends.15,16 Then, the conditions and locations

of tipping pointsmay be identified. The identification of tipping points for CFMabundance is urgently needed tomaintain soil carbon storage

and to mitigate climate change.

To solve these problems, we built a database containing 1726 observations of soil microorganism samples from 640 locations worldwide (Fig-

ure S1). The relative abundance of CFMs in the soil was taken as the research object. Fourteen environmental factors thatmay threaten soil CFMs

were collected based on previous articles.8,17 The factors included those related to climate (e.g., mean annual temperature [MAT] and mean

annual precipitation [MAP]), soil properties (e.g., pH, soil total carbon [TC], soil organic matter [OM], soil total N [TN], soil total P [TP], soil water

[SW], organic carbon [OC], and texture), and agricultural management (e.g., use of N/P/K fertilizers). A workflow for predicting the global distri-

butionpattern of soil CFMs is presented in Figure 1A. Based on thebuiltmachine learningmodel, we screenedout the critical factorswith tipping

points. Tippingpoints aredeterminedas thepointsaboveorbelowwhichabruptchangesor relationship reversals happen, in this case, changes in

soil CFMabundance. Toexplore themechanisms underlying theoccurrenceof tippingpoints, weproposedmicrobial toleranceonaglobal scale

(Figure1C).Microbial tolerancedenotes theproportionof tolerant species in themicrobial community under extremedisturbance (e.g., excessive

temperatureorpH).18 Thehighermicrobial tolerance is, the less suitable the local environment is formicrobes to survive.19 Thisworkpredicted the
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current and futuredistribution anddevelopment ofmicrobial carbonfixation in soil and identified the crucial factors andecological tippingpoints

affecting CFMabundance.Our work provides quantitative information for understanding soil carbon sinks andmitigating climate change driven

by microbes.

RESULTS

Distribution patterns of global soil carbon fixation microorganisms

CFMs are key components of the soil carbon cycle.7 The global distribution pattern of CFM abundance provides information for predicting

future soil carbon storage and climate change.1,20 A dataset containing 1726 sets of soil microbial data from 640 locations worldwide was

mined and analyzed (Figure S1). Fourteen environmental factors related to CFM abundance21–23 were collected, including MAT, MAP, pH,

TC, OM, TN, TP, SW, OC, texture, and soil management (i.e., use of N/P/K fertilizers). Moreover, the microbial capacity to tolerate extreme

environmental conditions was analyzed to explain the changes in the soil microbial communities (Figures 1C and 1D).

Different machine learning modeling methods were tested (Figure S2A). The training set R2 values of the K-nearest neighbors, random

forest, decision tree, linear regression, and ordinary least-squares regression methods were 0.94, 0.93, 0.86, 0.21, and 0.02, respectively.

XGBoost performed the best among the five tested machine learning models. The training set coefficient (R2) of XGBoost was 0.94. Here,

we chose XGBoost as the machine learning model for the subsequent investigations. The test set R2 for the XGBoost model was 0.61,

and the normalized root-mean-square error was 0.1132. Model robustness evaluation was performed using new datasets together with ad-

versarial samples to attack the model. The model was still able to maintain an R2 of 0.61. The percentage of data points within the 95% con-

fidence interval was 82.14 G 5.90%. The mean absolute percentage error was 19.05 G 1.96% (Figures S2B–S2E). Given the complexities of

large-scale ecological modeling, our model performance is acceptable compared to other ecological models, which have R2 values less than

Figure 1. Workflow and prediction of carbon fixation microorganisms (CFMs) and microbial tolerance

(A) Workflow for predicting the global abundance distribution pattern of soil CFM abundance on a global scale.

(B) Diagram of tipping point types representing abrupt changes and relationship reversals.

(C) Microbial tolerance is the proportion of tolerant species in the microbial community under extreme conditions (e.g., excessive temperature or extreme pH).

The details for the calculation are provided in the STAR Methods section.
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0.6 and uncertainty values of more than 20%.24,25 The percentage of CFM and tolerance points within the 95% confidence interval was higher

than 80%. Moreover, the predictive performance for different regions (e.g., different continents) was replicable at the global scale, indicating

that our model is stable.

Based on the previously established XGBoost model, the relative abundance of global CFMs was determined, as shown in Figure 2A. The

relative abundance range of global CFMs was 0.24%–0.51%. The distribution of CFM abundance was dispersed (Figure 2A), although 66.71%

and 46.35% of the high (top 10%) and low (bottom 10%) CFM abundance areas occurred in cropland, respectively. Some studies have pro-

posed that habitat is an important factor influencing soil carbon fixation.7 Figure 2B also shows that the abundance of CFMs in desert and

uncultivated lands was significantly higher than that in croplands (p < 0.05). This pattern is related to the response of CFMs to nitrogen fer-

tilizer and carbon content. The detailed relationships of nitrogen fertilizer and TC with CFMs are analyzed in the following paragraphs. Mi-

crobial tolerance is the abundance of tolerant species that can survive in extreme environments and is positively correlated with the level of

severity of the environmental conditions.26 Hot and cold spots of microbial tolerance were found in the temperate zone and cropland areas

(Figure 2B). In addition, microbial tolerance had obvious hot spots in North Africa and West Asia (Figure 1H).

Tipping points of critical factors for carbon fixation microorganisms

To assess the important factors influencing the CFMs community and microbial tolerance, we calculated SHAP values for 14 factors. The

SHAP values estimate the contribution of each factor to the model output.27 The heatmap of mean SHAP values (Figure S3A) shows that

soil TC, nitrogen fertilizer application (N), and MAP are the most important factors affecting soil CFMs. The contributions of these three

factors to CFMs on a global scale were all more than 50% (Figure 3A). In addition to TC, N, and MAP, MAT was a crucial factor affecting

Figure 2. Prediction of global soil carbon fixation microorganisms (CFMs) and microbial tolerance in 2021

(A) Global distribution of CFM abundance in 2021; (B) Global distribution of microbial tolerance in 2021; (C) CFM abundance in different habitats,different letters

indicate significant differences between columns (p<0.05); (D) Pearson correlation coefficients between the independent and dependent variables of the model.
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microbial tolerance (Figures 3A–3C). Our work considered the minor (0.36%) contribution of temperature to soil CFMs on a global scale

based on data from field studies. The response pattern also showed that the abundance of CFMs does not change with temperature

(Figure S5A).

In our study, the screening of critical factors laid the foundation for tipping point analysis. An ecological tipping point is an abrupt

change and relationship reversal in one ecological feature caused by a minor change in critical factors under special conditions12 that

becomes the premise of subsequent management. We found that a significant stimulation effect of soil TC content on CFM abundance

only occurred when TC was low and that the tipping point was 6.1 g kg�1 (Figure 4A). Low carbon content soil (<10 g kg�1) accounted for

11.7% of the terrestrial region (Figure S6A). The areas of low TC in Africa, Oceania, and Asia accounted for 27.8%, 17.2%, and 9.6%,

respectively.

The response of CFMs to nitrogen fertilizer also exhibited a trend of first increasing and then declining. The tipping point of CFM abun-

dance in response to N fertilizer was at 9.45 kg ha�1$y�1, and the CFM abundance remained stable after crossing the tipping point at

103.65 kg ha�1$y�1 (Figure 3D). Areas with N fertilizer had CFM abundances lower than average (Figure 2A; the global N fertilizer appli-

cation is shown in Figure S6B). Excessive application of nitrogen fertilizer may lead to a decline in soil carbon fixation rate. The response of

microbial tolerance to nitrogen fertilizer consistently showed a downward trend (Figure 3F), suggesting that high nitrogen fertilization

weakens adaptability to environmental changes. The tipping point of microbial tolerance to nitrogen fertilization was 10.06 kg ha�1$y�1

at the global scale.

MAPmade important contributions to CFMabundance in the areas from 0 to 10N� (Figure S5E). In extreme areas with annual precipitation

less than 22.38 mm, biotic carbon fixation was reduced. The combined effect of low TC (10 < g$kg�1) and low nitrogen fertilizer (<50 kg

ha�1$y�1) resulted in the highest CFM abundance (Figure 4C). MAP under 20 mm limited the effect of TC and N fertilizer on CFM abundance

(Figures 4E and 4F). Precipitation is an important limiting factor of autotrophic carbon fixation in barren areas.

Prediction of global carbon fixation microorganisms in future climate scenarios

Figure 5 shows the changing proportion of CFMs from 2021 to 2100. The increases in temperature and nitrogen fertilizer were determined

according to the high emissions and intensive agriculture scenarios in Climate Model Intercomparison Project Phase 6.28,29 Precipitation and

nitrogen fertilizer use will increase by approximately 1.1 and 1.6 times by 2100, respectively. Future precipitation changes produce hot spots

only in North Africa and West Asia, accounting for 0.5% of global terrestrial soil (Figure 5A). Global climate change has little impact on soil

microbial carbon fixation, and the abundance of CFMs increases after the precipitation limit is crossed in barren areas in North Africa and

West Asia. Nitrogen fertilizer is the dominant factor determining further CFM development. Under the scenario with the combined effects

of precipitation and nitrogen fertilizer, the relative change in CFM abundance was similar to that with the effect of nitrogen fertilizer alone

(Figures 5B and 5C). Croplands in the Americas, Europe, and Southeast Asia appear to be cold spots for CFM abundance changes. The crop-

land CFM abundance in North America, South America, and Oceania decreases by 2.85%, 1.98%, and 2.58%, respectively. The countries with

CFM abundance increases higher than 5% are presented in Figure 5D.

Figure 3. Quantitative contribution of critical environmental factors to soil carbon fixationmicroorganisms (CFMs) and environmental tolerance in 2021

(A) Quantitative contribution of each critical factor. SHAP value distribution of critical factors for CFMs (B) and environmental tolerance (C) with latitude.
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DISCUSSION

XGBoost provides a parallel tree boosting to achieve efficiency, flexibility, and portability.30 The uncertainty assessment also proves the sta-

bility of the model. Based on the proposed XGBoost model, present and further CFMs abundances can be efficiently attained. Autotrophic

microorganisms explained approximately 56% of the variation in CO2 fixation in soil.4 Prediction of global CFM distribution will provide a

foundation for identification of the biochemical cycle of global carbon and climate change. The distribution of CFMs demonstrates the imbal-

ance of CO2 fixation rates over the world, where cropland, arid, and barren regions are the places we should pay attention to.

Approximately half of the hot and cold spots of CFM abundance occurred in cropland, which is related to the influence of N fertilizer on

CFMs. A small amount of nitrogen addition can stimulate the growth of autotrophicmicroorganisms,31 while a large amount of nitrogen addi-

tion can play a negative role in the microbial community due to the inhibition of nondiazotrophs and to community complexity.32,33 Consid-

ering the stimulatory effect of nutrient addition to soil, the overuse of N fertilizer increases the sensitivity of soil carbon andproduces a positive

feedback effect on global warming.34 Effective N fertilizer management ensures the optimal trade-off between yield and fertilizer usage. It

was proposed that the combined application of half inorganic N plus half organic Nmight have the potential to enhance soil C sequestration

in cropland.35 Manure fertilization increased the abundance of functional genes involved in the rTCA cycle.36 Nitrogen fertilizer has also

become a decisive factor in the future global distribution of CFMs (Figures S5B and S5C). Nitrogen fertilizer in the Americas, Europe, and

Southeast Asia is applied with concentrations of 10–110 kg ha�1$y�1; in this range, CFM abundance decreases with increasing nitrogen fer-

tilizer. Considering that more than 60% of global cropland is supplemented with nitrogen fertilizer at rates higher than 10 kg ha�1$y�1, the

addition of nitrogen fertilizer has a negative feedback effect on global CFMs. A negative impact will occur on global soil carbon storage and

atmospheric CO2 content.

The impact of global warming on future CFMs is relatively small due to the weak response of CFMs to temperature. The important influ-

ence of temperature on soil microbes is widely known9,22 but is different from data from previous local studies or laboratory experiments.10 It

was proposed that temperature is not the dominant factor in the carbon fixation process and that precipitation plays an important role in

controlling CO2 fixation.
4 Temperature affects heterotrophic processes more strongly than it affects autotrophic processes.37 A reduction

in autotrophic CFMs may neutralize the positive effect of temperature on carbon fixation.37

Figure 4. Identification of tipping points and double-variable partial dependence of carbon fixation microorganisms (CFMs)

(A) The response of CFM abundance to TC; (B) the response of CFM abundance to N; (C) the response of CFM abundance to MAP; (D) double-variable partial

dependence of CFM abundance on TC and N; (E) double-variable partial dependence of CFM abundance on TC and MAP; (F) double-variable partial

dependence of CFM abundance on N and MAP. Black dashed lines and numbers in purple font represent the identified tipping points; the pink line

represents the smoothed trend fitted by the generalized additive model (GAM), and the red lines are the fitted lines obtained from the segmented linear

regression (SLR) model.
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The existence of tipping points in TC andMAPmakes the CFM abundance in barren and arid regions worth noting. It has been proposed

that the microbial CO2-fixation efficiency can be higher than that of plants under barren conditions,7 but the likelihood of such a relationship

and quantitative information at global or regional scales remain unclear.When the soil carbon content exceeds the tipping point, autotrophic

microbes no longer play a prevalent role and exhibit a decreasing trend relative to the wholemicrobial community.2 A higher adaptability and

growth rate of microbes critically contribute to carbon fixation in barren areas.7 Thus, TC deserves much attention in the aforementioned re-

gions as a soil microbial carbon sink. In low precipitation regions, the abundance of autotrophic microbes was also lower.38 The CO2 fixation

rates by CFMs in wetland, arid grasslands, and desert soils were 85, 22, and 6.4 mg C m�2 d�1, respectively,6 suggesting that precipitation is

the limiting factor of soil carbon fixation efficiency.

Conclusion

Elucidating the potential and trend of microbial-mediated carbon fixation in soil is important for understanding ecosystem function and

global climate change. Through machine learning, we screened out TC, nitrogen fertilizer, and precipitation as the key factors triggering

the tipping points of soil CFM abundance. According to our research, cropland presents a wide range of CFM abundance. Appropriate appli-

cation of nitrogen fertilizer (near tipping points) may maximize the carbon fixation ability of soil CFMs. Then, a positive feedback effect on soil

carbon storage and greenhouse gas reductions may be achieved. Precipitation is the limiting factor for CFM abundance in barren land. Pre-

cipitation increases will relieve the carbon fixation limitation in North Africa and West Asia, and vice versa. Our study provides quantitative

information on a global scale to assist in soil management.

Limitations of the study

We collected soil microbial data from related articles based on 16S rRNA sequencing technology; more soil metadata can be pulled from soil

metagenomes in further research.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

Figure 5. Relative change in carbon fixation microorganisms (CFMs) from 2021 to 2100

(A) Relative change in carbon fixation microorganism (CFM) abundance due to precipitation from 2021 to 2100; (B) relative change in CFM abundance due to N

fertilizer from 2021 to 2100; (C) relative change in CFM abundance due to precipitation and N fertilizer from 2021 to 2100; (D) relative change in CFM abundance

from 2021 to 2100 in different countries.

ll
OPEN ACCESS

6 iScience 26, 108251, November 17, 2023

iScience
Article



d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY

B Lead contact

B Materials availability

B Data and code availability

d METHOD DETAILS

B Data collection

B Calculation of the CFMs and microbial tolerance

B Data preparation and model building

B SHAP analysis and identification of tipping points

B Global prediction

d QUANTIFICATION AND STATISTICAL ANALYSIS

d ADDITIONAL RESOURCES

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.isci.2023.108251.

ACKNOWLEDGMENTS

This work was financially supported by the National Key Research and Development Program of China (grant no. 2019YFC1804603), National

Natural Science Foundation of China (grant nos. 22176103 and U22A20615) and theMinistry of Education of China (grant no. T2017002)，and

the Central Public Research Institutes Basic Funds for Research and Development (Institute of Agro-Environmental Protection, Ministry of

Agriculture and Rural Affairs, China).

AUTHOR CONTRIBUTIONS

Conceptualization, L.M. and X.H.; methodology, H.L. and Y.H.; investigation, Y.H. and J.L.; writing – original draft, Y.H. and H.L.; writing –

review and editing, L.M. and X.H.

DECLARATION OF INTERESTS

The authors declare no competing financial interests.

Received: March 15, 2023

Revised: July 18, 2023

Accepted: October 16, 2023

Published: October 27, 2023

REFERENCES
1. Hartley, I.P., Hill, T.C., Chadburn, S.E., and

Hugelius, G. (2021). Temperature effects on
carbon storage are controlled by soil
stabilisation capacities. Nat. Commun. 12,
6713–6717.

2. Lynn, T.M., Ge, T., Yuan, H., Wei, X., Wu, X.,
Xiao, K., Kumaresan, D., Yu, S.S., Wu, J., and
Whiteley, A.S. (2017). Soil Carbon-Fixation
Rates and Associated Bacterial Diversity and
Abundance in Three Natural Ecosystems.
Microb. Ecol. 73, 645–657.

3. Crowther, T.W., van den Hoogen, J., Wan, J.,
Mayes, M.A., Keiser, A.D., Mo, L., Averill, C.,
and Maynard, D.S. (2019). The global soil
community and its influence on
biogeochemistry. Science 365, eaav0550.

4. Liao, H., Hao, X., Qin, F., Delgado-Baquerizo,
M., Liu, Y., Zhou, J., Cai, P., Chen, W., and
Huang, Q. (2023). Microbial autotrophy
explains large-scale soil CO2 fixation. GCB
29, 231–242.

5. Zheng, Z., Liu, B., Fang, X., Fa, K., and Liu, Z.
(2022). Dryland farm soil may fix atmospheric
carbon through autotrophic microbial
pathways. Catena 214, 106299.

6. Huang, Q., Huang, Y., Wang, B., Dippold,
M.A., Li, H., Li, N., Jia, P., Zhang, H., An, S.,
and Kuzyakov, Y. (2022). Metabolic pathways
of CO2 fixing microorganisms determined
C-fixation rates in grassland soils along the
precipitation gradient. Soil Biol. Biochem.
172, 108764.

7. Chen, H., Wang, F., Kong, W., Jia, H., Zhou,
T., Xu, R., Wu, G., Wang, J., andWu, J. (2021).
Soil microbial CO2 fixation plays a significant
role in terrestrial carbon sink in a dryland
ecosystem: A four-year small-scale field-plot
observation on the Tibetan Plateau. Sci. Total
Environ. 761, 143282–143287.

8. Buchanan, P.J., Chase, Z., Matear, R.J.,
Phipps, S.J., and Bindoff, N.L. (2019). Marine
nitrogen fixers mediate a low latitude
pathway for atmospheric CO2 drawdown.
Nat. Commun. 10, 4611–4710.

9. Canfield, D.E., Glazer, A.N., and Falkowski,
P.G. (2010). The Evolution and Future of
Earth’s Nitrogen Cycle. Science 330, 192–196.

10. Jiang, J., Li, Z., Xiao, H., Wang, D., Liu, C.,
Zhang, X., Peng, H., and Zeng, G. (2018).
Labile organic matter plays a more important
role than the autotrophic bacterial

community in regulating microbial CO2

fixation in an eroded watershed. Land
Degrad. Dev. 29, 4415–4423.

11. Thakur, M.P., Reich, P.B., Hobbie, S.E.,
Stefanski, A., Rich, R., Rice, K.E., Eddy, W.C.,
and Eisenhauer, N. (2018). Reduced feeding
activity of soil detritivores under warmer and
drier conditions. Nat. Clim. Chang. 8, 75–78.

12. Berdugo, M., Delgado-Baquerizo, M.,
Soliveres, S., Hernández-Clemente, R., Zhao,
Y., Gaitán, J.J., Gross, N., Saiz, H., Maire, V.,
Lehmann, A., et al. (2020). Global ecosystem
thresholds driven by aridity. Science 367,
787–790.

13. Ban, Z., Yuan, P., Yu, F., Peng, T., Zhou, Q.,
and Hu, X. (2020). Machine learning predicts
the functional composition of the protein
corona and the cellular recognition of
nanoparticles. Proc. Natl. Acad. Sci. USA 117,
10492–10499.

14. Yu, F., Wei, C., Deng, P., Peng, T., and Hu, X.
(2021). Deep exploration of random forest
model boosts the interpretability of machine
learning studies of complicated immune
responses and lung burden of nanoparticles.
Sci. Adv. 7. eabf4130–14.

ll
OPEN ACCESS

iScience 26, 108251, November 17, 2023 7

iScience
Article

https://doi.org/10.1016/j.isci.2023.108251
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref1
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref1
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref1
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref1
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref1
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref2
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref2
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref2
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref2
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref2
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref2
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref3
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref3
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref3
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref3
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref3
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref4
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref4
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref4
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref4
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref4
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref4
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref5
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref5
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref5
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref5
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref6
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref6
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref6
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref6
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref6
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref6
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref6
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref6
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref7
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref7
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref7
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref7
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref7
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref7
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref7
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref7
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref8
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref8
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref8
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref8
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref8
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref8
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref9
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref9
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref9
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref10
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref10
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref10
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref10
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref10
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref10
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref10
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref11
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref11
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref11
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref11
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref11
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref12
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref12
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref12
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref12
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref12
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref12
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref13
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref13
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref13
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref13
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref13
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref13
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref14
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref14
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref14
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref14
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref14
http://refhub.elsevier.com/S2589-0042(23)02328-3/sref14


15. Ban, Z., Hu, X., and Li, J. (2022). Tipping
points of marine phytoplankton to multiple
environmental stressors. Nat. Clim. Chang.
12, 1045–1051.

16. Karimi, B., Terrat, S., Dequiedt, S., Saby,
N.P.A., Horrigue, W., Lelièvre, M., Nowak, V.,
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to andwill be fulfilled by the lead contact, Li Mu (Email: muli@

caas.cn).

Materials availability

This study did not generate new unique materials.

Data and code availability

� The experimental data have been presented in Data S1 and S2.
� The Python codes used in this study are available at (GitHub:https://github.com/duck9427/Predicition-of-Global-Soil-Microbial-

Function.git), are publicly available as of the date of publication. .
� Any additional information required to reanalyze the data reported in this work paper is available from the lead contact upon request.

METHOD DETAILS

Data collection

Given that the second-generation sequencing technology established in 2005 matured and began to be applied to a variety of studies by

2010,39 an extensive literature survey was conducted through theWeb of Science platform. The soil microbial data were from relevant studies

published from January 2010 to December 2021. The keywords we used to search theWeb of Science platform included ‘‘soil,’’ ‘‘bacteri*’’ and

‘‘fung*’’, and the initial search returned 1,931,418 studies. The following criteria were used to screen for appropriate studies: (1) only field

studies were selected, and laboratory experimental studies were excluded; (2) microbial composition at the phylum level was reported;

and (3) soil microbial community information was quantified by high-throughput sequencing techniques.

Ultimately, the dataset (Data 1) includes 1726 observations from 640 locations (sample locations are shown in Figure S1). The relative abun-

dance of soil microorganisms at the phylum level was the most common data type in different studies, was comparable between studies, and

was collected as the microbial feature. The dataset covered variations in 14 environmental factors related to soil CFM abundance, which are

mean annual temperature (MAT), mean annual precipitation (MAP), pH, soil total carbon (TC), soil organic matter (OM), soil total N (TN), soil

total P (TP), soil water (SW), organic carbon (OC), texture and artificial management status (i.e., use of N/P/K fertilizers). Longitude and latitude

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

The Python codes used in this study

are available at GitHub

GitHub https://github.com/duck9427/Predicition-

of-Global-Soil-Microbial-Function.git

Software and algorithms

XGBoost regression Scikit-learn (version1.0.1): Machine

Learning in Python 3.8

https://scikit-learn.org/stable/index.html

Random forests regression Scikit-learn (version1.0.1): Machine

Learning in Python 3.8

https://scikit-learn.org/stable/index.html

K-nearest neighbors regression Scikit-learn (version1.0.1): Machine

Learning in Python 3.8

https://scikit-learn.org/stable/index.html

Ordinary least squares regression Scikit-learn (version1.0.1): Machine

Learning in Python 3.8

https://scikit-learn.org/stable/index.html

Linear regression Scikit-learn (version1.0.1): Machine

Learning in Python 3.8

https://scikit-learn.org/stable/index.html

SHapley Additive exPlanations

(SHAP) model

Scikit-learn (version1.0.1): Machine

Learning in Python 3.8

https://scikit-learn.org/stable/index.html

R software version 4.1.2 R software https://www.r-project.org/

Python version 3.7 Python Software https://www.python.org/

ArcGIS 10.7 ArcGIS Desktop https://desktop.arcgis.com/
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data were also collected. In cases where the studies did not report MAT or MAP, the values were derived from the historical monthly weather

data from the Database: WorldClim (https://www.worldclim.org) using site geographic location (i.e., latitude and longitude). Any absent

data pertaining to properties of global soils (e.g., pH, TC, OM, OC, TN and TP) were filled in by retrieving data from the Database: Interna-

tional Soil Reference and Information Centre (ISRIC) World Soil Information Data Hub (http://www.tpdc.ac.cn). SW and texture data were

collected from the Database: Harmonized World Soil Database (HWSD v1.2, https://previous.iiasa.ac.at/web/home/research/researchPro-

grams/water/HWSD.html). In cases where the studies did not report the latitude or longitude, the approximate latitude and longitude

were derived by geocoding the name of the location in Google Earth 7.0. We took into consideration that various climate and soil properties

exist in any given habitat and that further subdivision will lead to insufficient data. Therefore, we did not include the habitats in the machine

learning model.

Calculation of the CFMs and microbial tolerance

The relative abundance of CFMs was defined as the proportion of microbes with corresponding functions (shown in Data 2):

K =

Pn

i = 1

Bi � Nk
N

Pn

i = 1

Bi

(Equation 1)

where Nk is the number of functional microbes in phylum i; N is the total species number in phylum i; and Bi is the relative abundance of the

bacterial phylum.

Information about common soil microbial species (n=851) was obtained from the RefSoil database.40 Five common marker genes (cbbL,

aclA, acsA, accA and hcd)41 involved inmicrobial CO2 fixation pathways were used to select the functional microbes based on the genomes of

the above species from the National Center for Biotechnology Information (NCBI). Those species that do not have a complete genome in

NCBI but have been proven to be autotrophic microorganisms, such as Cyanobacteria, were also considered functional microorganisms

(Data 2).

Microbial tolerance is the proportion of tolerant species in the microbial community under extreme disturbance (e.g., excessive temper-

ature or extreme pH) (Figure 1D)26 (Allison andMartiny, 2008). We selected 6 extreme environmental conditions, including high temperature,

low temperature, barrenness, drought, and peracidic and peralkaline conditions.Microbes that can survive in these extremeenvironments are

considered to be stress-tolerant microbes (shown in Data 2). According to information from the NCBI (National Center for Biotechnology In-

formation (nih.gov)), thermophilic microbes are defined as species with an optimum temperature greater than 30�C; psychrophilic microbes

are defined as species with an optimum temperature lower than 15�C; acidophilic microbes are defined as having an optimal survival pH less

than 5; alkalophilic microbes are defined as having an optimal survival pH higher than 9; and drought- and barrenness-tolerant microbes are

the dominant species in desert and infertile areas. We defined microbial tolerance as follows:

T =

Pn

i = 1

Bi � Nt
N

Pn

i = 1

Bi

(Equation 2)

where Nt represents the number of tolerant microbes in phylum i; N represents the total species number in phylum i; and Bi represents the

relative abundance of bacterial phylum i.

Data preparation and model building

Weused the interquartile range (IQR) criterion to exclude outlier data.42 As shown in Figure S2D, IQR is defined asQ3-Q1, and (Q1,Q3) covers

the middle 50% of the data in the data distribution. The data outside the range (Q1-1.5$IQR, Q3+1.5$IQR) were considered outlier data. We

upsampled the positive samples to obtain a balanced dataset. There were 1726 samples used for themodel construction.We randomizedour

dataset into a training subsample (72%, n=1243) and a test subsample (18%, n=311). Both the training set and test set were divided by 5-fold

cross-validation. The validation set accounted for 10% of the dataset (n=172). Then, the data dependence caused by upsampling and data

division was eliminated, making the results credible. XGBoost, random forests, decision trees, K-nearest neighbors, ordinary least squares

and linear regression were tested to find a suitable model. The validation set accounted for 10% of the training set. The sampling ratio of

random sampling was 0.9. The maximum depth and colsample_bytree were 12 and 0.8, respectively. The number of samples in the leaf

node was 13. Seed was set at 2 to make the results the same every time.

In the process of data cleaning, it is possible to remove data that are useful but not robust after removing outlier data.43 We introduced

adversarial samples to test the robustness of the models. Adversarial samples that were generated from the critical environmental factors

remained unchanged, and other features were randomly generated within the disturbance range. The new data were mixed with the original

and adversarial data at a ratio of 7:3 and then put into themodels as a newdataset. The robustness of themodels was evaluated by the change

in R2 between the original dataset and the new dataset.
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SHAP analysis and identification of tipping points

SHapley Additive exPlanations (SHAP) values estimate the contribution of each feature by averaging over all the possible marginal contribu-

tions to a prediction task and are a unified framework for interpreting machine learning models.27 The SHAP model can be used for not only

global interpretation but also local interpretation. The possible relationship between a predicted value given by a model and some features

can be explained by the SHAP model.27

The SHAP model is a post hoc model.27 The SHAP model calculates the marginal contribution of features to the model output and then

explains the black box model at the global and local levels. It constructs an additive interpretation model, and all features are regarded as

contributors. For each prediction sample, themodel generates a prediction value. Various combinations of features (players) are taken to form

coalitions, while each SHAP value measures the average contribution of each player across all possible combinations. The calculation of the

SHAP value of a single feature, eliminating cross effects, is as follows:

Fi;i = 4i �
X

jsi

Fi;j (Equation 3)

Here,Fi;i represents the contribution of the feature i; 4i represents the calculated SHAP value of feature i based on the tree-basedmodel;

and Fi;j represents the cross influence of features i and j. The dataset X_train was used to calculate the SHAP value.

Two types of tipping points (discontinuous and continuous) were identified and analyzed. A continuous tipping point indicates that the

relationship between independent and dependent variables changes significantly; a discontinuous tipping point indicates that the value

of the dependent variable changes abruptly due to the independent variable.12 A generalized additive model (GAM) and segmented linear

regression (SLR) model were used for regression analysis. The tipping point of the GAM was defined as the point with a second derivative of

0 in the continuous curve; the tipping point of the SLRmodel was defined by the overall change in the intercept and slope of the linear regres-

sion before and after the tipping point.12 Tipping points were derived from the segmented and mgcv packages in R. The model with the

highest R2 was used for further analysis.We also used theGAMand the SLRmodel to calculate the tipping points of the independent variables

and the corresponding SHAP values. Only when the tipping points from the raw data and the SHAP values were similar were they considered

to be the actual tipping points.

Global prediction

The monthly temperature and precipitation data for 2021 were obtained from the Database: National Oceanic and Atmospheric Administra-

tion (https://psl.noaa.gov/data/gridded/index.html), with a resolution of 0.5�30. 5�. The future MAP data were obtained from the Database:

Climate Model Intercomparison Project Phase 6 (CMIP6,https://esgf-node.llnl.gov/search/cmip6/) at a 1�31� resolution. The fertilizer data at

present and in the future were derived from the Database: Land-Use Harmonization (LUH2) project (https://luh.umd.edu). The resolution was

1�31�. In the latitude range of -30 degrees to 10 degrees, C4 plants are dominant,44 so C4 plant fertilizer data were used. C3 plant data were

employed for the remaining regions. Global soil properties with 10 km resolution were obtained from the Database: Global Soil Dataset for

Earth System Modeling (2014) (http://data.tpdc.ac.cn/zh-hans/data). Because there is no suitable soil property database that is based on

future climate models, current soil properties were used for future predictions in our analysis. The data were resampled to a spatial resolution

of 1�31�, and all terrestrial grid cells were input into the established models to obtain the global distribution pattern.The global cropland

maps for 2019 are publicly available at Database: Global cropland expansion in the 21st century (https://glad.umd.edu/dataset/croplands).

We repeatedly predicted values for different climatic zones and continents to quantify the uncertainty in themachine learningmodels. The

global data were divided into the following regions to test predictive repeatability: Africa, Asia, Europe, North America, South America, Oce-

ania, North Cold Zone, North Temperate Zone, Tropical Zone and South Temperate Zone. The stability of the models was assessed by calcu-

lating the differences between repeated predictions for the same location.

QUANTIFICATION AND STATISTICAL ANALYSIS

The confidence interval of prediction and significance analysis of different habitats were conducted in Python 3.8.6. All confidence levels not

otherwise specified were 0.95.

ADDITIONAL RESOURCES

This study did not generate additional resources.

ll
OPEN ACCESS

iScience 26, 108251, November 17, 2023 11

iScience
Article

https://psl.noaa.gov/data/gridded/index.html
https://esgf-node.llnl.gov/search/cmip6/
https://luh.umd.edu
http://data.tpdc.ac.cn/zh-hans/data
https://glad.umd.edu/dataset/croplands

	ISCI108251_proof_v26i11.pdf
	Environmental tipping points for global soil carbon fixation microorganisms
	Introduction
	Results
	Distribution patterns of global soil carbon fixation microorganisms
	Tipping points of critical factors for carbon fixation microorganisms
	Prediction of global carbon fixation microorganisms in future climate scenarios

	Discussion
	Conclusion
	Limitations of the study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Method details
	Data collection
	Calculation of the CFMs and microbial tolerance
	Data preparation and model building
	SHAP analysis and identification of tipping points
	Global prediction

	Quantification and statistical analysis
	Additional resources




