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Molecular functions of MCM8 and MCM9
and their associated pathologies
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SUMMARY

Minichromosome Maintenance 8 Homologous Recombination Repair Factor
(MCM8) and Minichromosome Maintenance 9 Homologous Recombination
Repair Factor (MCM9) are recently discovered minichromosome maintenance
proteins and are implicated in multiple DNA-related processes and pathologies,
including DNA replication (initiation), meiosis, homologous recombination
and mismatch repair. Consistent with these molecular functions, variants of
MCM8/MCM9 may predispose carriers to disorders such as infertility and
cancer and should therefore be included in relevant diagnostic testing. In this
overview of the (patho)physiological functions of MCM8 and MCM9 and the
phenotype of MCM8/MCM9 variant carriers, we explore the potential clinical
implications of MCM8/MCM9 variant carriership and highlight important future
directions of MCM8 and MCM9 research. With this review, we hope to
contribute to better MCM8/MCM9 variant carrier management and the poten-
tial utilization of MCM8 and MCM9 in other facets of scientific research and
medical care.
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INTRODUCTION

Minichromosome Maintenance 8 Homologous Recombination Repair Factor (MCM8; OMIM 60817) and

Minichromosome Maintenance 9 Homologous Recombination Repair Factor (MCM9; OMIM 610098)

are the most recent minichromosome maintenance (MCM) proteins to be discovered, having been iden-

tified in 2003 and 2005, respectively.1–3 They show sequence homology with the MCM2-7 proteins (OMIM

116945; OMIM 602693; OMIM 602638; OMIM 602696; OMIM 601806; OMIM 600592), which form a stable

hetero-hexamer that is a component of the replication initiation complex responsible for the initiation of

DNA synthesis in all eukaryotic cells.4,5 Although MCM1 and MCM10 (OMIM 609357) are not members of

this family, they are conserved in higher eukaryotes. MCM1 acts as a transcription factor, whereas MCM10

is also directly involved in the initiation of DNA synthesis.4,5

Following the identification of MCM8 and MCM9, which may also interact to form a hexameric ring com-

plex,6 a wide variety of experimental approaches were used to explore their molecular functions. As

with other MCM components, MCM8 and MCM9 have been implicated in initiation of DNA replication,7–10

as well as in meiosis,9,11–14 homologous recombination (HR)15–21 and mismatch repair (MMR).20,22,23 Corre-

spondingly, the number of studies describing the possible involvement of MCM8 and MCM9 in pathol-

ogies has increased enormously, with disrupting variants of the MCM8/MCM9 genes that follow an auto-

somal recessive inheritance pattern linked to infertility in both males and females,23–44 as well as recently

highlighted roles for the MCM8/MCM9 genes in polyposis,23,37,38 (early onset) colorectal cancer

(OMIM 114500)23,37,38 and multiple other cancer types.23,34,37,38

Despite the increasing number of studies focusing onMCM8 andMCM9, comprehensive literature reviews

are scarce and those published have generally focused on a subset of molecular functions or pathol-

ogies.6,37 Taking a broader view, we aim to provide an overview of all associated molecular functions of

both proteins, whereas also covering current evidence of their roles in distinct pathologies. We will explore

potential clinical implications ofMCM8/MCM9 variant carriership and highlight important future directions

of MCM8 and MCM9 research.
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RESULTS

Functions of MCM8 and MCM9

DNA replication (initiation)

Since their discovery, MCM8 and MCM9 have been associated with multiple DNA-related processes.

MCM8 was the first to be associated with the initiation of DNA replication, which is strictly controlled

and regulated by the cell cycle, requiring the assembly of a pre-replicative complex in G1 phase.
45 In short,

initiation of DNA replication in eukaryotic cells begins with the mobilization of a six-subunit origin recog-

nition complex (ORC) at an origin of DNA replication (Figure 1A). Subsequently, ORC recruits CDC6 (OMIM

602627) and CDT1 (OMIM 605525), which stabilize the ORC and load the MCM2-7 protein complex onto

chromatin.46 The MCM2-7 complex possesses DNA helicase activity, which is activated through phosphor-

ylation of the complex by CDK2/CYCLIN E (OMIM 116953; OMIM 123837, respectively) and CDC7/DBF4

kinases (OMIM 603311; OMIM 604281, respectively) and by the assembly of the CMG complex, consisting

of MCM2-7, GINS (OMIM 610608) and CDC45 (OMIM 603465).10,47–49 The recruitment of CDC45 to the

MCM2-7 complex is facilitated by MCM10, which also recruits other replication factors.10,49 The CMG com-

plex is also required for the recruitment of DNA polymerases, allowing DNA replication to commence.

In 2005, Volkening et al.10 used immunoprecipitation assays to show that although MCM8 accumulated on

chromatin throughout the cell cycle, this peaked in early G1 phase and involved interactions with ORCs and

CDC6. As downregulation of MCM8 led to a reduction of CDC6 and MCM2-7 loading, Volkening et al.10

hypothesized that MCM8 is responsible for the recruitment of CDC6 to ORCs, possibly in cooperation

with CDT1, and is therefore required for MCM2-7 loading and the assembly of the pre-replicative com-

plex.10 The latter conclusion was supported by their finding that endogenous depletion of MCM8 by

RNA interference reduced DNA replication by delaying entry into S phase.

Similarly, Maiorano et al.50 suggested that MCM8 is directly involved in DNA replication, rather than simply

the initiation of DNA replication. In contrast to Volkening et al.,10 Maiorano et al.50 were unable to identify

chromatin loading of MCM8 during the formation of pre-replicative complexes whilst studying a Xenopus

homolog of MCM8. Instead, they detected maximal chromatin binding of MCM8 during processive DNA

synthesis and showed that MCM8, like theMCM2-7 complex, displays DNA helicase activity, as determined

by displacement of 40 base-labeled oligonucleotides annealed to single-stranded DNA.50 This postulated

DNA helicase activity suggests that MCM8may be able to unwind DNA during DNA synthesis, an inference

supported by the fact that cellular MCM8 depletion led to a reduction of chromatin-bound RPA34, which

specifically recognizes single-stranded DNA and recruits DNA polymerase-a (OMIM 312040) at replication

forks.50

The contrasting findings of Volkening et al.10 and Maiorano et al.50 highlight the complexity of DNA repli-

cation (initiation) and the potential role(s) for MCM8 in these processes. The discrepancies could be the

result of differences in analysis methods, as well as the use of different models and MCM8 homologs. Of

interest, Kinoshita et al.51 found that MCM8 colocalizes with proteins involved in both the initiation of

DNA replication (e.g., CDC6, CDK2) and the DNA replication process (RPA70; OMIM 179835), implying

that both of the proposed roles for MCM8 may exist in parallel.

In 2008, Lutzmann et al.7,8 described a possible role for MCM9 in pre-replicative complexes, showing that

MCM9 forms a stable complex with CDT1 and like MCM8 harbors a helicase domain (Figure 2) which opens

up the double strand during G1 phase to allow loading ofMCM2-7 complexes that facilitate replication fork

movement later in S phase. This introduced the hypothesis that MCM8 and MCM9 may exert similar func-

tions in DNA replication (initiation), a proposition which gained support from later findings showing that

MCM8 and MCM9 may form a complex, resembling the MCM2-7 complex in both size (600kD) and struc-

ture (hexamer).18 By forming this complex, MCM8 and MCM9 may be able to stabilize each other, because

both MCM8 and MCM9 silencing reduces the protein concentration of the other partner.16 Although

future studies should define the precise stoichiometry of the MCM8-9 complex, MCM8 and MCM9

subunits have been proposed to form a hetero-hexameric ring, which includes a central channel that

may be used to accommodate DNA.6 The N-terminal domains of this ring were found to be more stable

than the C-terminal domains, with the relative positions of the N- and C-terminal domains being able to

change during functional state conversion.52 Considering the structural resemblance to and sequence ho-

mology with the MCM2-7 complex, an analogous role of MCM8-9 in DNA replication (initiation) could be

envisioned.
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Figure 1. Simplified overview of the proposed molecular functions of MCM8/MCM9

(A) In eukaryotic cells, DNA replication initiation starts with the mobilization of ORC at each origin. MCM8 and MCM9 may subsequently support ORC in

recruiting CDC6 and CDT1, respectively, which stabilize ORC and help load the MCM2-7 protein complex on chromatin. The helicase activity of the MCM2-7

complex is then activated through phosphorylation by CDK2/Cyclin E and CDC7/DBF4 kinases and by assembly of the CMG complex (GINS-CDC45-

MCM2-7), thereby opening the DNA double helix. The CMG complex is also required for the recruitment of DNA polymerases, allowing DNA replication to

begin. The recruitment of CDC45 to theMCM2-7 complex is facilitated byMCM10, which also attaches to theMCM2-7 complex and additional recruits other

replication factors. During DNA replication, MCM8-9 complexes can, under some circumstances, drive fork progression, for instance in case of MCM2-7

dysfunction. By recruiting BRCA1 and RAD51, the MCM8-9 complexes may also prevent fork degradation when a transient or persistent block is

encountered.

(B) [1] The formation of COs is essential for genetic diversity. This process is initiated by the formation of a DSB on one chromatid, which is then resected by

the MRE11-RAD50-NBS1 complex to generate 30 single-stranded overhangs. MCM8-9 complexes may be responsible for the function of MRE11-RAD50-

NBS1 nuclease activity and the recruitment of MRE11 to foci of DNA damage. Next, one of the 30 single-stranded overhangs invades the homologous, non-

sister chromatid. The latter depends on RAD51, the recruitment of which may be facilitated by MCM8-9 complexes. MCM8-9 complexes themselves may be

recruited by HROB, which localizes on damaged chromatin by interacting with RPA1 and/or single-stranded DNA. Following the formation of several

intermediate DNA products, resolution of DSBs could eventually lead to COs or NCOs, with MCM8-9 complexes potentially shifting the balance in favor of

CO formation. [2] During the repair of crosslinks, MCM8-9 may exert similar functions as during the formation of COs.

(C) Base mismatches and insertion/deletion variants are recognized by hMutS, consisting of MSH2 and MSH6 (hMutSa) or MSH2 and MSH3 (hMutSb),

respectively. hMutS may then recruit MCM8-9 complexes to the site of the mutation, which through DNA helicase activity may open the DNA double helix.

This, in turn, could trigger the recruitment of hMutL, consisting of MLH1 and PMS2 (hMutLɑ) or MLH1 and MLH3 (hMutLɣ), which initiates the degradation of
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Figure 1. Continued

the mismatch-containing strand by exonucleases and the synthesis of a new strand by DNA polymerases and ligases. NOTE: This figure visualizes

simplified versions of complex processes. In each of the three processes, a multitude of components are involved that are not depicted or mentioned.

Adapted from ‘‘DNA Replication Process’’, by BioRender.com (2022). Retrieved from https://app.biorender.com/biorender-templates. CO, crossover;

DSB, double-strand break; HR, homologous recombination; MMR, mismatch repair; NCO, non-crossover; ORC, origin recognition complex.
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Further evidence of a role for MCM8-9 in DNA replication came from more recent studies by Natsume

et al.17 and Griffin et al.,54 both of whom linked MCM8-9 complex functioning to the progression of repli-

cation forks. First, Natsume et al.17 showed that MCM2-depleted cells maintained some DNA synthesis,

which required the helicase activity of MCM8-9 complexes, hypothesizing that these MCM8-9 complexes

could be alternative drivers of fork progression in case of MCM2-7 dysfunction. Correspondingly, Griffin

et al.54 demonstrated that replication fork progression and the overall replication rate were reduced in

MCM8KO orMCM9KO cells. Moreover, they showed that MCM8-9 complexes were involved in fork protec-

tion during replication stress via recruitment of downstream proteins such as BRCA1 (OMIM 113705) and

RAD51 (OMIM 179617), which stabilize the replication fork and prevent fork degradation.54

In summary, current evidence defines multifunctional roles of MCM8 and MCM9 in the initiation of DNA

replication and in DNA replication itself: MCM8 andMCM9may assist the assembly of pre-replicative com-

plexes, may alternatively drive replication fork progression using their DNA helicase activity and they may

be able to protect replication forks during replication stress. Although a subset of these functions was

initially described for each protein individually, they conceivably acquire MCM8 and MCM9 to function

in complex. Future studies exploring molecular architecture of the MCM8-9 complex, as well as the timing

of MCM8-9 functioning and the specific consequences ofMCM8/MCM9 silencing on DNA replication (initi-

ation) are necessary for a better understanding of these complex processes.

Meiosis and HR

In addition to the aforementioned association with DNA replication (initiation), a number of studies have

implicated MCM8 and MCM9 in meiosis. Meiosis is responsible for the generation of haploid gametes

(containing a single set of chromosomes), such as sperm or egg cells, from diploid precursors (containing

two sets of chromosomes).55 In short, each chromosome must recognize and align with its homologous

pairing partner during early prophase, after which the aligned chromosomes are held together by the as-

sembly of a synaptonemal complex between the chromosomes. Next, the formation of DNA double-strand

breaks (DSBs) induces crossover (CO) recombination events between the DNA of the aligned and synapsed

homologs.55 These COs form physical linkages between chromosome pairs and are essential for the intro-

duction of genetic diversity.11 During late prophase, the connected homologs orient away from each other,

resulting in bipolar attachment of homologs to the meiosis I spindle and segregation of homologous chro-

mosomes at anaphase I. A similar separation of sister chromatids during meiosis II completes the meiotic

program.55

The first evidence of a potential role for MCM8 in meiosis originated from a study on recombination defec-

tive (rec), the Drosophila ortholog of MCM8, which found that rec mutants exhibited a defect in meiotic

recombination, as indicated by high levels of chromosome nondisjunction and reduced fertility.56 It was

hypothesized that rec is involved in the generation of COs, because the rec mutants showed a severe

reduction in CO formation but were able to pair homologs normally.11,56 Briefly, CO formation is initiated

with the formation of a DSB on one chromatid, which is then resected to generate 30 single-stranded over-

hangs, one of which invades the homologous, non-sister chromatid and primes DNA repair synthesis (Fig-

ure 1B).11 Following the formation of several intermediate DNA products, resolution of the DSBs may even-

tually lead to COs, in which genetic material is exchanged between the two homologous chromosomes’

non-sister chromatids. Alternatively, non-crossover (NCO) products may be produced that do not result

in exchange of genetic material.11

Of interest, Blanton et al.11 demonstrated that rec mutant females had about twice the number of NCOs

compared to wildtype females, suggesting that rather than the initiation of recombination itself, repair

of DSBs as COs is impaired in rec mutants. The hypothesis that rec facilitates DSB repair during meiotic

recombination was also supported by studies in Arabidopsis thaliana, a frequently used plant model

because of its relatively simple genome, because three Atmcm8mutants showed a limited level of chromo-

some fragmentation at meiosis, a process that normally depends on DSB repair.12 Moreover, a study using
4 iScience 26, 106737, June 16, 2023
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Figure 2. MCM8 and MCM9 human protein domains

(A) Protein domains of MCM8 are similarly organized as those of MCM2-7 and MCM9, containing an N-terminal and C-terminal domain.6,52 The N-terminal

domain contains a zinc-finger (ZF) motif and is able to bind DNA. The N terminus consists of a structurally disorder region (amino acids 1–60). The C-terminal

domain is composed of an AAA+ (ATPase) domain and a winged-helix (WH) domain, with the latter also being able to bind DNA.53 The AAA+ domain

contains the highly conserved Walker A (WA) and Walker B (WB) motifs, which are required for ATP hydrolysis and helicase activity, and an arginine-finger

(RF) domain.18 The N-terminal domain and C-terminal domain are linked by the N-C linker domain.

(B) Protein domains of MCM9 are similarly organized as those of MCM2-7 and MCM8, containing an N-terminal and C-terminal domain.6,52 The N-terminal

domain contains a ZF motif. The C-terminal domain is composed of an AAA+ domain and a WH domain. The AAA+ domain contains the highly conserved

WA and WB motifs and an RF domain.18 At its C terminus, MCM9 contains a unique long tail (amino acids 685–1143), which may mediate interactions with

other proteins.6 The N-terminal domain and C-terminal domain are linked by the N-C linker domain. RF, arginine finger; WA, Walker A; WB, Walker B; WH,

winged-helix; ZF, zinc-finger.
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Drosophila melanogastermodels showed that rec participates in multiple protein complexes that show dif-

ferential rec-dependent ATP-binding and ATP-hydrolyzing requirements and, in part, regulate CO

formation.14

One of themechanisms responsible for the repair of DSBs into COs duringmeiosis is HR, which additionally

has multiple other functions in DNA maintenance and repair that involve a multiplex of pathways and me-

diators. Of interest, considerable evidence implicates MCM8 but also MCM9 in HR. The first association

between MCM8-9 and HR was reported by Nishimura et al.,18 who demonstrated that MCM8-9 is involved

in DNA interstrand crosslink repair, because MCM8KO and MCM9KO cells were both found to be highly

sensitive to DNA crosslinking agents, showing more chromosomal aberrations following mitomycin C

treatment as compared to wildtype cells. Interstrand crosslink repair is orchestrated by the Fanconi anemia

proteins and depends on nucleotide excision repair, translesion synthesis and HR. Lutzmann et al.16

confirmed these findings, showing that HR was impaired in bothMCM8KO andMCM9KOmice during game-

togenesis and that MCM8-9 deficient cells were hypersensitive to DSBs and replication stress. Of interest,

in the latter study, the potential involvement of MCM8-9-mediated HR in meiosis was highlighted by the

fact that female MCM8KO mice were sterile, showed atrophied ovaries with dysplastic primary follicles,

and were prone to development of colon adenomas and sex cord stromal tumors. Similarly, maleMCM8KO

mice were sterile, showed testis with atrophic seminiferous tubules, elevated numbers of apoptotic cells

and no post-meiotic cells.16 FemaleMCM9KO mice were also sterile, with ovaries completely devoid of oo-

cytes, while male MCM9KO mice were fertile but with testes that showed severe early proliferation defects

of germ cells, leading to an abundance of atrophied seminiferous tubules.16 Correspondingly, Hartford

et al.9 showed that MCM9-mutant mice underwent P53-independent embryogenic germ-cell depletion

in both sexes, with males also exhibiting defective spermatogonial stem-cell renewal.

Remarkably, although the studies of Nishimura et al.18 and Lutzmann et al.16 both supported a role for

MCM8-9 in HR, they conflicted with regards to the exact timing of MCM8-9 functioning in HR. To distin-

guish early events in HR, such as end resection, from late events, including strand invasion and DSB reso-

lution, genetic studies regularly rely on RAD51 appearance (or DMC1, its meiotic homolog; OMIM

602721).57 Of interest, though Nishimura et al.18 hypothesized that complexes of MCM8 and MCM9 act

at some point after RAD51 loading and are therefore only involved in the late events of HR, Lutzmann

et al.16 reported that MCM8-9 complexes are required before RAD51 loading. Furthermore, Park et al.19

and McKinzey et al.20 found that MCM8-9 complexes directly promote RAD51 recruitment, whereas Lee

et al.15 demonstrated that MCM8-9 complexes are required for DNA resection by the MRE11-RAD50-

NBS1 complex (OMIM 600814; OMIM 604040; OMIM 602667, respectively) at DSBs to generate 30
iScience 26, 106737, June 16, 2023 5
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single-stranded overhangs, with an essential role for the ATPase activity of MCM9 in the function of the

MRE11-RAD50-NBS1 nuclease and the recruitment of MRE11 to foci of DNA damage.

Several recent studies additionally demonstrated that the OB-fold containing protein HROB (also referred

to as C17orf53/MCM8IP; OMIM 618611) is able to support MCM8-9 functioning during HR.58,59 It is hypoth-

esized that HROBmay interact with RPA1 (OMIM 179835) and/or directly bind to single-stranded DNA.58,59

Once present on damaged chromatic, HROB was found to increase the affinity of MCM8-9 for single-

stranded DNA and to remarkably stimulate (�6-fold increase) MCM8-9 helicase activity.58 With HROB-defi-

cient cells showing severely impaired HR and increased sensitivity to DNA crosslinking agents, the interac-

tions of HROB and MCM8-9 appear to facilitate HR and protect against crosslinking agents by promoting

replication fork progression and cellular viability.58,59 Future studies are needed to test the biochemical ba-

sis of these interactions and should for example explore whether HROBmay drive MCM8-9 conformational

changes that underlie the increased affinity of MCM8-9 for single-stranded DNA and the increased DNA

helicase activity of MCM8-9. Moreover, future studies are necessary to define whether the interaction of

HROB and MCM8-9 is also required for MCM8-9 activity in other DNA-related processes, including DNA

replication (initiation).

Collectively, these findings provide convincing evidence for the role of MCM8-9 in meiosis and HR, yet

future functional studies are vital to better understand the precise functioning of MCM8-9 in these pro-

cesses. Although MCM8 and MCM9 may also have distinct functionalities, indicated for example by

modest differences in the phenotypes of MCM8KO/MCM9KO mice, most of the functions in (HR-mediated)

meiosis appear dependent on MCM8-9 complexes. As was the case for MCM8-9 in DNA replication (initi-

ation), the MCM8-9 complex is most likely involved in more than one step of these complex reactions.57

MMR

The most recently suggested function of MCM8-9 involves MMR. The MMR system serves as a post-repli-

cative proofreading and editing system60 responsible for the repair of variants caused by slippage of DNA

polymerases,61,62 as well as for the repair of diverse types of endo- and exogenous DNA damage.63,64

Briefly, base mismatches and short insertion/deletion variants are initially recognized by hMutSa, consist-

ing of MSH2 (OMIM 609309) andMSH6 (OMIM 600678) dimers, whereas longer insertion-deletion loops are

detected by hMutSb, consisting of MSH2 and MSH3 (OMIM 600887; Figure 1C). Upon detection of a

mismatch, hMutS recruits and forms a complex with hMutL, which subsequently coordinates the degrada-

tion of the mismatch-containing strand and the synthesis of a new strand. The hMutL complex either in-

volves hMutLɑ or hMutLɣ, consisting of MLH1 (OMIM 120436) and PMS2 (OMIM 600259) or MLH1 and

MLH3 (OMIM 604395), respectively.60

As MCM9 co-immunoprecipitates with multiple MMR initiation proteins, including MSH2, MSH3, MLH1

and PMS1 (OMIM 600258), it was hypothesized that MCM9 plays a role in MMR.21,65 This hypothesis gained

traction when Traver et al.21 reported that MCM9KO cells display MMR deficiency and MSI. Of interest,

although MMR activity was restored in MCM9KO cells following transfection with wildtype MCM9 protein,

transfection with helicase-dead MCM9 did not restore MMR activity in MCM9KO cells, suggesting that

MCM9 helicase activity is required for efficient MMR. Moreover, whereas MSH2 was found to be essential

for MCM9 loading on chromatin, MCM9 was responsible for the recruitment of MLH1.21 The latter finding

was supported by Liu et al.,22 who showed that aberrantly expressed HORMAD1, which binds toMCM9 and

prevents the efficient nuclear localization of MCM8-9 complexes, led to compromised MMR via reduced

MLH1 loading.

A possible role forMCM8 inMMRwas first proposed by Golubicki et al.,23 who demonstrated thatMCM8KO

cells were microsatellite instable (MSI), with their DNA reflecting the single-base signature 20, which is

associated with concurrent POLD1 (OMIM 174761) pathogenic variants and MMR deficiency.23,66 Of inter-

est, Golubicki et al.23 also found higher frequencies of insertions and deletions larger than 5 base pairs in

MCM8KO cells, and in a comet assay these cells were less able to repair DNA damage caused by oxaliplatin

compared with MCM8WT cells. The investigators hypothesized that MCM8 deficiencies can concurrently

impair both MMR and other DNA repair pathways, such as HR.

Collectively, these findings suggest the following role for MCM9 (and MCM8) in MMR, which should be

tested and evaluated in future studies: once a mismatch is detected, MSH2 recruits MCM9, perhaps in a
6 iScience 26, 106737, June 16, 2023
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complex with MCM8. The DNA helicase activity of MCM9 and/or the MCM8-9 complex subsequently

opens the DNA double helix at the site of the mismatch, triggering the recruitment of MLH1 to the

mismatch site, which then forms a complex with PMS2 or MLH3 to repair the mismatch.
MCM8 and MCM9 in pathology

Infertility

MCM8. Following the first reports suggesting a role for MCM8 in meiosis and the observation that both

male and female MCM8KO mice were sterile, a potential link between MCM8 and (in)fertility was hypoth-

esized. This link was further explored by multiple genome-wide association studies in women, which iden-

tified an association between single nucleotide polymorphisms in the MCM8 gene and age at natural

menopause.67–71 Validation of these associations in several cohorts of women undergoing early meno-

pause showed that single nucleotide polymorphisms in MCM8 significantly increase the odds for early

menopause and are additionally associated with a decreased length of reproductive lifespan and number

of ovarian follicles.72–74

Early menopause, a decreased reproductive lifespan and a decreased number of ovarian follicles are all

hallmarks of primary ovarian insufficiency (POI), also referred to as premature ovarian failure (POF;

OMIM 311360).75 In POI-affected females, ovaries cease to produce mature oocytes before the age of

40 years, leading to secondary amenorrhea, infertility, hypoestrogenism and elevated serum levels of

follicle-stimulating hormone, among other effects.75

Additional evidence for an association between MCM8 and POI originated from a study by AlAsiri et al.,24

who were the first to describe a consanguineous family with three homozygous MCM8 variant

[p.(Pro149Arg)] carriers affected by POI. The heterozygous carriers in this family were all healthy. Similarly,

Tenenbaum-Rakover et al.25 reported two consanguineous families in whichMCM8 variant carriers were

affected by POI. In the first family, a brother and sister, both homozygous carriers of the MCM8 variant

(c.1954-1G>A), were affected by azoospermia at the age of 17 years and POI at the age of 15 years, respec-

tively. In the second family, three sisters, all homozygous MCM8 variant (c.1469-1470insTA) carriers, were

each affected by POI, whereas two of their first-degree cousins, also homozygous carriers, were diagnosed

with primary hypergonadotropic hypogonadism. Of interest, the heterozygous carriers in both families

were healthy, albeit that some showed delayed puberty.25 Moreover, the fibroblasts or lymphocytes of ho-

mozygous carriers from both studies showed significantly increased chromosomal breakage following

exposure to mitomycin C (DNA crosslinker) as compared to cells of unaffected family members, suggesting

impaired HR because of the absence of functional MCM8.24,25

Numerous other studies have since reported MCM8 variant carriers with POI26–33 and/or (non-obstructive)

azoospermia (Table 1).76 Of interest, Tucket et al.33 described a POI patient with variants of HROB, which is

believed to interact with and support MCM8-9 functioning, suggesting that variants of genes with functions

related to MCM8-9 may cause similar phenotypes.33,59

Strikingly, the phenotype of infertile MCM8 variant carriers is additionally characterized by several other

clinical features (Table 1). For instance, a majority of POI-affected MCM8 variant carriers were found to

have infantile uteri24,25,29 and/or invisible or small ovaries on ultrasound,24,25,28,29,31,33 indicating a potential

need to include the MCM8 gene in screening panels for unexplained gonadal dysgenesis. Moreover,

multiple POI-affected cases were diagnosed with hypothyroidism, suggesting that MCM8 dysfunction

may concurrently affect endocrine homeostasis.24,30 Several other observed characteristics are typical

for patients with POI and/or azoospermia, including delayed puberty,24,25,28,30 osteoporosis/delayed

bone age30,31 and a short stature,31 whereas other associated pathologies seem less directly related,

such as kidney agenesis,25 temporal epilepsy,25 mental retardation,25 hearing loss,25 pilomatricomas,30

facial naevi,31 a peltate chest31 and being small for gestational age at birth.25,30

MCM9. Considering the significant overlap in their cellular functions, the pathologies associated with

MCM8 and MCM9 also show commonalties, withMCM9 variants being similarly linked to fertility problems

(Table 1). Wood-Trageser et al.43 were the first to describe MCM9 variants in patients with POI, detecting

homozygousMCM9 variants in two unrelated, consanguineous families. In the first family, two daughters of

a union between first-degree cousins were found to be homozygous for the MCM9 c.1732 + 2T>C variant

and presented with a Turner-like phenotype of primary amenorrhea, short stature and low weight. In the
iScience 26, 106737, June 16, 2023 7



Table 1. Pathologies associated with MCM8/MCM9

Pathology MCM8 MCM9

Abnormal uterine bleeding Shen et al.77

Alzheimer disease Ratnakumar et al.78

Birth of child with Down syndrome Pal et al.79

Infertility, female AlAsiri et al., Tenenbaum-Rakover et al., Dou

et al., Desai et al., Bouali et al., Zhang et al.,

Heddar et al., Wang et al., Jin et al., Tucker

et al.24–33

Desai et al., Alvarez-Mora et al., Fauchereau

et al., França et al., Goldberg et al., Guo et al.,

Liu et al., Shen et al., Turkyilmaz et al., Wood-

Trageser et al., Yang et al., and Jolly

et al.27,34–36,38–44,80

Born small for gestational age Tenenbaum-Rakover et al., Heddar et al.25,30

Delayed puberty AlAsiri et al., Tenenbaum-Rakover et al., Bouali

et al., Heddar et al.24,25,28,30
Fauchereau et al., Turkyilmaz et al., Wood-

Trageser et al., Yang et al.35,42–44

Facial naevi Wang et al31

Hearing loss Tenenbaum-Rakover et al.25

Hypothyroidism AlAsiri et al and Heddar et al.24,30

Infantile uterus AlAsiri et al., Tenenbaum-Rakover et al., Zhang

et al.24,25,29
Fauchereau et al.,Guo et al., Shen et al.,

Turkyilmaz et al., Wood-Trageser et al., Yang

et al.35,39,41–44

Invisible/small ovaries AlAsiri et al., Tenenbaum-Rakover et al., Bouali

et al., Zhang et al., Wang et al., Tucker

et al.24,25,28,29,31,33

Fauchereau et al., Turkyilmaz et al., Wood-

Trageser et al., Yang et al.35,42–44

Kidney agenesis Tenenbaum-Rakover et al.25

Mental retardation Tenenbaum-Rakover et al.25

Osteoporosis/delayed bone age Heddar et al and Wang et al.30,31 Fauchereau et al., Wood-Trageser et al., Yang

et al.35,43,44

Peltate chest Wang et al.31

Pilomatricomas Heddar et al.30

Short stature Wang et al.31 França et al.,Guo et al., Turkyilmaz et al.,

Wood-Trageser et al.36,39,42,43

Temporal epilepsy Tenenbaum-Rakover et al.25

(Continued on next page)

ll
O
P
E
N

A
C
C
E
S
S

8
iS
cie

n
ce

2
6
,
1
0
6
7
3
7
,
Ju

n
e
1
6
,
2
0
2
3

iS
cience
R
e
v
ie
w



Table 1. Continued

Pathology MCM8 MCM9

Infertility, male Tenenbaum-Rakover et al and Kherraf

et al.25,76
Goldberg et al and Chen et al.37,81

Born small for gestational age Tenenbaum-Rakover et al.25

Delayed puberty Tenenbaum-Rakover et al.25

Tremor Bally et al.82

Cancer

Tumor suppressive role Oncogenic role Tumor suppressive function(s) Oncogenic role

(Loss of function)

variants/deletions

Increased

expression

Gain of copy

number

(Loss of function)

variants/deletions

Increased

expression

Gain of copy

number

Acute myeloid leukemia He et al.83

Adrenocortical carcinoma He et al.83

Bladder cancer Zhu et al.84 He et al.83 Lee et al.15

Breast cancer Golubicki et al., Verdiesen

et al, and Michailidou et al.23,85,86
He et al.83 He et al.83 Lee et al.15

(HPV18+) Cervical cancer Goldberg et al.37 Sample.87

Cholangiocarcinoma Hao et al.88

Chronic myelogenous leukemia Cai et al.89

Colorectal cancer Golubicki et al.23 He et al.83 Golubicki et al.,

Goldberg et al and

Goldberg et al.23,37,38

Esophageal (adeno)carcinoma He et al., Li and Xu83,90

Gastric cancer Huang et al.91

Germ cell tumor Alvarez-Mora et al.34

Glioblastoma (multiforme) He et al.83 He et al.83 Lee et al.15

Glioma He et al and Wang et al83,92

Head and neck squamous cell carcinoma He et al.83 Lee et al.15

Hepatocellular carcinoma He et al., Liu et al.,

Wan et al., Wen et al,

and Xiong et al.83,93–96

Kidney renal clear cell carcinoma Lee et al.15

Liver cancer He et al.83

Lung cancer Li et al and Liu et al.97,98

Non-small cell lung cancer He et al and Xie et al.83,99 He et al.83

Lymphoma Braggio et al and

Sung et al.100,101

Medulloblastoma He et al.83

(Continued on next page)
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Table 1. Continued

Cancer

Tumor suppressive role Oncogenic role Tumor suppressive function(s) Oncogenic role

(Loss of function)

variants/deletions

Increased

expression

Gain of copy

number

(Loss of function)

variants/deletions

Increased

expression

Gain of copy

number

Melanoma Lee et al.15

Nasopharyngeal carcinoma He et al.83

Osteosarcoma Ren et al.102

Ovarian cancer He et al.83 Lee et al.15

Pancreatic cancer Peng et al.103 He et al.83

Polyposis Golubicki et al and

Soares de Lima et al.23,104

Primary salivary adenoid cystic sarcoma Feng et al.105

Primitive neuroectodermal tumor He et al.83

Prostate cancer He et al.83 He et al.83 Lee et al and Kim et al.15,106

Rhabdoid tumor He et al.83

Sarcoma He et al.83

Serous ovarian cancer Li and Xu.90

T cell acute lymphoblastic leukemia He et al.83

Thyroid carcinoma He et al.83

Uterine corpus endometrial carcinoma He et al83

Uterine leiomyomas Rafnar et al107

HPV18, Human papillomavirus 18.
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second family, a 16-year-old girl with homozygous MCM9 variants [p.(Arg132*)] similarly presented with

primary amenorrhea, short stature and low weight, as well as additionally showing a lack of breast devel-

opment. In all affected females in both families, ovaries were invisible on ultrasound and the uteri were in-

fantile. All unaffected (fe)males of both families were healthy, except for a younger sister of the two affected

daughters from the first family, who also showed developmental delay and short stature. Repair of chromo-

some breaks was impaired in lymphocytes from affected, but not unaffected, females in both families,

consistent with an MCM9 function in HR.43 Moreover, in a cohort of 109 women with idiopathic POI,

Wood-Trageser et al.43 detected one additional heterozygous carrier for a likely damaging MCM9 variant

p.(Val229Gly).

Numerous other female MCM9 carriers were subsequently reported with POI.27,34–36,38–42,44,80 Of interest,

as was the case for MCM8 variant carriers with POI, the POI-affected MCM9 variant carriers typically pre-

sented with short stature,36,39,42,43 delayed puberty,35,42–44 delayed bone age,35,43,44 infantile uteri35,39,41–44

and/or small or invisible ovaries.35,42–44 The other pathologies found in MCM8 variant carriers with POI,

including hypothyroidism amongst others, have not been reported in POI-affected MCM9 variant carriers.

MCM9 variants have further been linked to a predisposition for infertility in male carriers. For instance, in a

cohort of 314 unrelated male patients with non-obstructive azoospermia or severe oligospermia, a homo-

zygous MCM9 variant [p.(Gln434Pro)] was identified in a carrier with oligozoospermia, arrest of male

meiosis and abnormal germ cell apoptosis.81 Like-wise, Goldberg et al.37 described a carrier of a hetero-

zygous MCM9 variant [p.(Glu495*)] diagnosed with severe oligoteratoasthenozoospermia (OMIM 619379)

at the age of 35 years.

Cancer

MCM8. In viewof the proposed involvement ofMCM8 in (multiple) DNA repairmechanisms, includingHR

andMMR, apotential role in cancer as a tumor suppressor gene is plausible. Thiswas confirmedby the in vivo

studies of Lutzmann et al.,108 who found that MCM8KO mice show increased bone marrow DNA damage,

leading to the development of myeloid tumors. The first evidence for a role in human cancer originated

from a study by Golubicki et al.,23 who described amale patient with fertility issues and Lynch-like syndrome

(LLS) presenting as early onset colorectal cancer without detectable germline MMR variants andMLH1 hy-

permethylation. This patient was found to be a compound heterozygous carrier of two possibly pathogenic

MCM8 variants, p.(Lys118Glufs*5) and p.(Ile138Met) (Table 1). Moreover, in a cohort of 131 Dutch unaffili-

ated familial cancer cases, Golubicki et al.23 identified a compound heterozygousMCM8 variant [p.(Ile231-

Lys), p.(Thr332Ala)] carrier with breast cancer (OMIM 114480), as well as five heterozygous MCM8 variant

[p.(Ile717Val), p.(Ile138Met), p.(Asn629Ser), p.(Arg278Cys), p.(Ala737Thr)] carriers with either colonic polyp-

osis or MMR-proficient familial CRC. The link with polyposis was further strengthened by findings of Soares

de Lima et al.,104 who detected a likely pathogenic deletion inMCM8 (c.876-1delG) in a family with serrated

polyposis syndrome (OMIM 617108), whilst other studies have linked theMCM8 variant p.(Glu341Lys) to an

increased risk for breast cancer85,86 and uterine leiomyomas (OMIM 150699).107

Intriguingly, high expression levels of MCM8 have also been observed in a wide variety of cancer types and

are associated with aggressive tumor behavior102 and poorer clinical outcomes (Table 1).91,97,98,103 In line

with this, multiple cancer types showMCM8 gains of copy number, as identified by analyses of cancer data-

sets from The Cancer Genome Atlas.83,90 These findings suggest a potential oncogenic role for MCM8 in

cancer development, in contrast to the previously discussed tumor suppressive functions. He et al.83 hy-

pothesized that overexpression of MCM8 facilitates and exacerbates chromosomal rearrangement in ma-

lignant cells, which through the rearrangement of genes involved in cell survival, growth andmigration may

contribute to cancer progression and metastasis.

One model potentially reconciling the conflicting roles of MCM8 in cancer development requires MCM8

expression levels to remain within a specific reference range for normal functioning, with decreased

expression because of loss of function variants leading to impaired DNA repair, whereas increased expres-

sion (e.g., through amplification) leads to uncontrolled DNA rearrangements (Figure 3). Further studies are

needed to test the plausibility of this model and to gain a better understanding of MCM8 (dys)function dur-

ing cancer development and progression. These studies would likely benefit from analyses of the muta-

tional signatures of DNA from MCM8-deficient and MCM8-enhanced tumors, which has previously proven

effective in identifying underlying mutational mechanisms caused by novel cancer-predisposing genes.109
iScience 26, 106737, June 16, 2023 11



Figure 3. Proposed model for the role for MCM8 in cancer

If the expression of MCM8 must remain within a certain reference range for normal functioning, decreased expression

through loss of function variants may lead to impaired DNA repair, promoting tumor development. Increased expression

levels, through amplifications for instance, may lead to uncontrolled DNA rearrangements, which could similarly promote

tumorigenesis. Of note, although MCM8 shows increased expression levels in a wide variety of cancer types, increased

expression of MCM9 is only reported infrequently. Created with BioRender.com (2022).
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MCM9. Similarly to MCM8, the proposed molecular functions of MCM9 suggest a tumor suppressive

role in cancer development. This is supported by in vivo studies showing thatMCM9-mutant mice are pre-

disposed to cancer, including sex-specific cancers and hepatocellular carcinomas,9,108 as well as by the fact

that human cancers frequently lose theMCM9 allele(s) via homo- and heterozygous deletions or transloca-

tions on 6q22.31, the genomic region containing the MCM9 gene (Table 1).15,100,101,106 In 2015, Goldberg

et al.38 linkedMCM9 variants [p.Glu225Lysfs*4] to a predisposition to hereditary mixed polyposis and CRC,

describing two sisters from consanguineous parents exhibiting primary amenorrhea, multiple types of

colorectal polyps and early onset CRC. Of interest, the CRCs from both sisters were MMR-proficient, con-

tradicting previous studies which implied that loss of MCM9 always leads to MMR deficiency.

However, this proposed role for germlineMCM9 variants as predisposing factors for polyposis and/or can-

cer was not confirmed by numerous later studies. For instance, Liu et al.110 tested the presence of MCM9

variants in 109 patients with LLS, finding 15 variants [p.(Ser191Ser), p.(Gly242Gly), p.(Asn304Ser),

p.(Arg424Arg), p.(Glu507Asp), p.(Ile531Thr), p.(Cys558Ser), p.(Gln658His), p.(Arg666Trp), p.(Thr758Ala),

p.(Met887Arg), p.(Ser898Phe), p.(Asp963Asp), p.(Pro967Pro), p.(Met1096Val)], none of which were pre-

dicted to be (possibly) pathogenic. Similarly, Belhadj et al.111 found no enrichment of MCM9 variants in

a cohort of 473 familial/early onset CRC cases compared to controls, whereas Terradas et al.112 were unable

to detect homozygous or compound heterozygousMCM9 variant carriers in a cohort of 177 unrelated pa-

tients with nonaffiliated polyposis.

More recent findings, however, do support a role for MCM9 as a predisposing gene for (early onset) CRC

and polyposis. In a cohort of 131 Dutch unaffiliated familial cancer cases, Golubicki et al.23 identified a

compound heterozygous MCM9 variant [p.(Arg548Trp), p.(Asn51Ile)] carrier with LLS and POI, as well as

a compound heterozygous MCM9 variant [p.(Lys1142Arg), p.(Leu547Pro)] carrier with MMR-proficient

CRC. Moreover, Golubicki et al.23 identified 12 heterozygous carriers of nine distinct MCM9 variants

[p.(Met1096Val), p.(Glu610*), p.(Glu1012Gln), p.(Glu507Asp), p.(Asp715Val), p.(Lys1142Arg), p.(Ser663fs),

p.(Leu639Val), p.(Asn304Ser)], of which five were affected by LLS, six by MMR-proficient familial cancer

and one by familial CRC of unknown MMR status. Moreover, Goldberg et al.37 described another consan-

guineous family carrying anMCM9 variant [p.(Glu495*)], with two homozygous sisters both affected by POI.

One of these sisters was diagnosed with polyposis and CRC at the age of 31 years, whereas the other sister

was diagnosed with a clear cell carcinoma of the cervix at age 37 years. Both parents were heterozygous

carriers and were diagnosed with three polyps at the ages of 66–68 years, whereas the heterozygous

brother of the two sisters was diagnosed with microsatellite stable CRC at age 35 years, as well as polyps

and severe oligoteratoasthenozoospermia.

Taken together, the studies of Goldberg et al.37,38support a strong association between germline MCM9

variants and the development of (early onset) CRC and/or polyposis, whereas the studies by Liu et al.,110

Belhadj et al.111 and Terradas et al.112 suggest that the prevalence of pathogenicMCM9 variants in cohorts

of patients with unexplained familial CRC, early onset CRC and polyposis is limited. Of interest, Alvarez-

Mora et al.34 described a homozygous MCM9 variant [p.(Thr492Tyrfs*4)] carrier with POI and a germ cell
12 iScience 26, 106737, June 16, 2023
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tumor, suggesting that germline MCM9 variants may potentially predispose carriers to other types of can-

cer as well.

Studies reporting high expression levels of MCM9 in tumors are scarce compared to similar studies of

MCM8 (Table 1). Although higher expressions levels of MCM9 have been associated with poorer outcomes

for human papillomavirus 18 positive cervical cancer (OMIM 603956) patients,87 they were also associated

with better overall survival in patients with non-small cell lung cancer.113 Moreover, lower expression levels

of MCM9 have been associated with resistance to radiotherapy in patients with nasopharyngeal carci-

nomas (OMIM 607107),114 as well as with a favorable prognosis in patients with breast cancer.115

Alzheimer disease (AD)

MCM8. Ratnakumar et al.78 found damagingMCM8 variants in five out of 1208 female AD cases but none

in 2162 female controls, suggesting a link to the development of AD in females (Table 1). These authors

hypothesized that estrogen loss at menopause confers increased vulnerability to AD in women, based

on the fact that estrogen upregulates synapse genes78 and correlates with hippocampal size throughout

themenstrual cycle.116,117 Moreover, surgical menopause was found to increase the lifetime risk for demen-

tia, cognitive decline and AD.118,119 As early menopause is one of the hallmarks of POI, which is frequently

diagnosed inMCM8 variant carriers, this provides a hypothetical underlyingmechanism explaining the pre-

disposition of MCM8 variant carriers to develop AD. The function of MCM8 does, however, substantially

contrast with the functions of other genes that have been associated with AD, which for instance are

involved in amyloid precursor protein metabolism (e.g., PSEN2 (OMIM 600759), APP (OMIM 104760),

PSEN1 (OMIM 104311), etc.), cholesterol metabolism (e.g., APOE4 (OMIM 107741)), immune response

(e.g., TREM2 (OMIM 605086)) and endocytosis (e.g., SORL1 (OMIM 602005), MEF2C (OMIM 600662)).120

Whether or not MCM8 variants may also contribute to AD through low estrogen levels therefore remains

highly speculative, and should be tested in future studies.

Other conditions

MCM8. Two coding variants of MCM8 (rs3761873, rs16991617) were associated with abnormal uterine

bleeding following use of copper intrauterine devices. However, because both variants are synonymous

and no underlying mechanism has been proposed, the level of evidence for this association appears

minimal.77

MCM9. MCM9 variants have also been associated with other diseases and/or clinical features, albeit to a

limited extent (Table 1). For example, Pal et al.79 identified a multitude ofMCM9 polymorphisms in the ge-

nomes of women with a Down syndrome child (OMIM 190685), hypothesizing that the variants may increase

the chance of a child with Down syndrome because of their association with the recombination and nondis-

junction of chromosome 21 at meiosis I stage of oogenesis in a maternal age-independent manner. More-

over, Bally et al.82 detected an MCM9 variant [p.(Arg247Trp)] in a family with hearing loss, balance issues

and tremor. Although the balance and hearing loss were most likely explained by a COCH (OMIM

603196) variant [p.(Pro51Ser)], the tremor was linked to an MCM9 variant [p.(Arg247Trp)], because it was

present in five out of five affected carriers but absent in all five unaffected carriers. The molecular mecha-

nism(s) underlying the association between MCM9 variants and tremor remain to be clarified.
DISCUSSION

Clinical implications and future recommendations

Following two decades of research, the (patho)physiological functions of MCM8 and MCM9 have become

increasingly apparent. Considerable evidence supports a role for MCM8 and MCM9 in DNA replication

(initiation), meiosis, HR and MMR, with potential involvement in more than one step of these complex re-

actions. Future studies are vital to define the exact functionalities of the MCM8-9 complex in each of the

implicated DNA-related processes, but should also evaluate potential individual functionalities of

MCM8 and MCM9, which are implied based on modest differences in associated pathologies of both

proteins.

Consistent with the molecular functions, MCM8 and MCM9 have been associated with a variety of pathol-

ogies, including infertility and cancer. In the event of solid confirmation of the predisposing roles of germ-

lineMCM8/MCM9 variants to infertility and cancer, the clinical implications are numerous. With regards to
iScience 26, 106737, June 16, 2023 13
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infertility, for instance, current evidence suggests a need for universal screening of the MCM8/MCM9

genes in patients with unexplained (fe)male infertility and/or gonadal dysgenesis. This has already been

implemented by a minority of laboratories121 and may result in the identification of additional MCM8/

MCM9 variant carriers, allowing personalized genetic counseling of these otherwise unexplained infertility

cases. The phenotype of infertile MCM8/MCM9 variant carriers, characterized by short stature, gonadal

dysgenesis and hypothyroidism, among other features, should raise suspicion among clinicians regarding

potential MCM8/MCM9 variant carriership. Of interest, several other genomic instability disorders,

including Bloom syndrome (OMIM 210900),122 Nijmegen breakage syndrome (OMIM 251260),123 Ataxia

telangiectasia (OMIM 208900)124 and Fanconi anemia (OMIM 227650),125 have similarly been associated

with short stature, hypogonadism and/or endocrine dysfunctions, suggesting comparable etiologies.43

Despite the abundance of evidence supporting the causative role for MCM8/MCM9 variants in infertility,

several important questions remain before the relevance of these variants to disease can be clearly defined.

For example, it is currently uncertain whether heterozygous MCM8/MCM9 variant carriers face an

increased risk for infertility as compared to the general population, and whether the type or location of var-

iants within theMCM8/MCM9 genes influences the degree of risk. The latter is of special interest as at least

half of reported MCM8/MCM9 variants are missense variants, the effect of which on MCM8-9 function

generally remains unknown. Of interest, a previous review from Griffin et al.6 demonstrated a clear bias

in the number of POI- or cancer-associated variants within the ATPase domain (61%) ofMCM8, with the re-

maining variants located in the DNA binding domain of MCM8. For MCM9, on the other hand, the DNA

binding domain was most commonly (43%) affected, followed by its ATPase (30%) and C-terminal domains

(27%). Consequently, Griffin et al.6 hypothesized that missense variants within the conserved DNA binding

and ATPase domains ofMCM8/MCM9may negatively alter their respective activities, and further proposed

that missense variants within the extended C-terminal domain ofMCM9might affect protein-protein inter-

actions and in this way may perturb the function of the MCM8-9 complex. Additional studies are needed to

explore these proposed genotype-phenotype correlations.

The carrier frequency and lifetime prevalence of infertility among MCM8/MCM9 variant carriers also

remains to be determined. To date, 26 MCM8 and 27 MCM9 variants have been reported in the ClinVar

database,126 of which six and seven variants, respectively, are predicted to result in loss of protein function.

Likewise, 1354 MCM8 and 1155 MCM9 variants are described in the gnomAD database.127 Of these,

respectively 83 and 55 variants are predicted to result in loss of protein function and 498 and 562 variants,

respectively, are missense variants, in-frame insertions or deletions. The estimated carrier frequency, calcu-

lated based on data from the gnomAD database,127 is 2.04 and 2.41 for any MCM8 or MCM9 variant,

respectively. The carrier frequency of predicted loss of function variants is estimated to be 1.4e�3 for

MCM8 and 2.5e�3 forMCM9, whereas the estimated carrier frequency of missense variants, in-frame inser-

tions or deletions is 0.46 forMCM8 and 1.17 forMCM9. These estimates suggest that the carrier frequency

ofMCM8/MCM9 variants is relatively low, although future population-based studies are needed to confirm

this suspicion.

The questions discussed above also apply to the potential role of MCM8/MCM9 variants in cancer.

Currently, the association of homozygous MCM8/MCM9 variants with CRC and/or polyposis is supported

by the strongest evidence, having been described in multiple unrelated families.23,37,38 This association is

of considerable interest, because a sizable proportion of familial CRC aggregation currently remains

unexplained: 16–35% of CRC cases are thought to have a hereditary origin, but variants in any of the

high-penetrance CRC genes explain only 4–8% of cases.37,128,129 This suggests that variants of potential

novel cancer-predisposing genes, such as MCM8/MCM9, may be responsible for at least part of the unex-

plained familial CRC aggregation, arguing for the inclusion of the MCM8/MCM9 genes in diagnostic

testing for these cases, especially when infertility is also diagnosed.

Similarly, the MCM8/MCM9 genes should be included in diagnostic testing for LLS, because germline

MMR variants and MLH1 hypermethylation are undetectable in about 30% of MSI CRCs.130,131 The pres-

ence of MSI in these cases may be explained by double somatic hits in the MMR genes, undetected germ-

line variants in MMR genes or by a germline variant of other genes that are potentially involved in MMR,

includingMCM8/MCM9.23 Moreover, patients with double somatic hits in theMMR genes, explaining their

MSI, could also be evaluated for germline predisposition beyond the canonical genes. Although the exact

role for MCM8-9 in MMR remains to be clarified, illustrated by the fact that multiple MCM8/MCM9 variant
14 iScience 26, 106737, June 16, 2023
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carriers show MMR-proficient/microsatellite stable CRCs, inclusion of the MCM8/MCM9 genes in diag-

nostic testing for LLS cases may potentially resolve a proportion of these cases and at the same time yield

a better understanding of the role of MCM8/MCM9 in MMR.23,37,38 In the latter case, one could argue for

the inclusion of fertility evaluation in the diagnostic algorithm of LLS to identify patients at risk for germline

MCM8/MCM9 variants.

A possible explanation for the lack of MMR-deficiency/MSI in MCM9-deficient tumors may hypothetically

involve the assessment method of MSI and the type of frameshift variants caused byMCM9 deficiency, with

MCM9 deficiency possibly resulting in tri- or tetranucleotide frameshifts rather than mono- or dinucleotide

frameshifts. Such elevated microsatellite instability at selected tetranucleotide repeats (EMAST) is for

example observed in MSH3-deficient tumors and is generally not part of the conventional MSI detection

methods, which focus on mono- and dinucleotide markers.132 Although highly speculative and confirma-

tion in future studies is needed, this would indicate the use of inappropriate MSI tests rather than the

absence of MMR deficiency/MSI in MCM9-deficient tumors. In addition to MSI, MCM8/MCM9-deficienct

tumors may also be characterized by homologous recombination deficiency (HRD), considering their impli-

cated roles in HR.

A predisposing role for germlineMCM8/MCM9 variants in CRC development and polyposis suggests that

MCM8/MCM9 variant carriers may benefit from early surveillance using colonoscopy protocols. This has

already been recommended for all Lynch syndrome carriers (OMIM 120435) as a preventive measure

regarding CRC development, and has proven effective in reducing both CRC incidence and

mortality.133–137

Besides germline variants, high expression levels of MCM8 have been detected in a wide variety of tumor

types, suggesting a Janus-like role for MCM8 in cancer. Although the postulated requirement for MCM8 to

remain within a certain reference range, to maintain control of DNA repair and rearrangements, may

explain the dual role of MCM8 in cancer, this model remains hypothetical and needs to be evaluated in

future studies. This dual role appears less prominent in the case of MCM9, and high expression levels of

MCM9 are far less commonly reported.

The therapeutic implications of MCM8-9 functioning in cancer are an active subject of discussion, because

multiple studies have reported that depletion or loss of function of MCM8/MCM9 hypersensitizes cancer

cells to interstrand crosslinking agents (e.g., cisplatin, oxaliplatin)15,19,23,127 and poly(ADP-ribose) polymer-

ase inhibitor-based chemotherapy (e.g., olaparib).138 This most likely depends on the role of MCM8-9 in

HR, which is responsible for the repair of DNAmodifications induced by both types of therapy. If confirmed

in future studies this could have important clinical implications. Firstly, it suggests that MCM8/MCM9

variant carriers affected by cancer may especially benefit from these types of therapies. The latter predic-

tion is clinically supported by the complete response to interstrand crosslinking agents observed in two

homozygousMCM9 variant [p.(E225Kfs*4)] carriers affected by CRC.38 Secondly, it highlights the potential

clinical use of MCM8/MCM9 inhibitors as interstrand crosslinking agent/poly(ADP-ribose) polymerase in-

hibitor-based chemotherapy sensitizers. The latter approach may be applicable to multiple types of cancer

and should therefore be evaluated in future studies.

For most other pathology associations, for example those linking MCM8 to abnormal uterine bleeding and

Alzheimer disease or MCM9 to tremor and birth of a child with Down syndrome, the level of evidence re-

mains limited, because it is predominantly based on single studies and relatively small numbers of cases. As

such, these associations must be viewed with caution during genetic counseling, and future studies are

essential to further solidify these putative associations.
Conclusions

Although MCM8 and MCM9 are both involved in DNA-related processes, further studies are needed to

clarify their precise molecular functions and to improve our understanding of the mechanisms underlying

associated pathologies. Ultimately, our goal should be to provide a complete picture of MCM8-9 (patho)

physiological functioning and the MCM8/MCM9 variant carrier phenotype, allowing optimization of

MCM8/MCM9 variant carrier management and the potential exploitation of MCM8 andMCM9 in other fac-

ets of scientific research and medical care.
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Recerca, Generalitat de Catalunya, GRPRE2017SGR21). CIBEREHD is funded by the Instituto deSalud

Carlos III. The work was carried out (in part) at the Esther Koplowitz Center, Barcelona. The funders

had no role in the study design, data acquisition and analysis, decision to publish, or preparation of

the manuscript.

AUTHOR CONTRIBUTIONS

N.C.H.: Conceptualization, Writing – Original Draft, Writing – Review and Editing, Visualization; D.T.:

Writing – Review and Editing; L.B.: Writing – Review and Editing; M.G.: Writing – Review and Editing;

M.A.: Writing – Review and Editing; H.M.: Writing – Review and Editing; T.v.W.: Writing – Review and Edit-

ing; S.C-B.: Writing – Review and Editing; Y.G.: Writing – Review and Editing; M.N.: Conceptualization,

Writing – Original Draft, Writing – Review and Editing.

DECLARATION OF INTERESTS

None.
REFERENCES

1. Gozuacik, D., Chami, M., Lagorce, D.,

Faivre, J., Murakami, Y., Poch, O., Biermann,
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