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Abstract: DNA-damaging chemotherapy agents such as cisplatin have been the first line of treatment
for cancer for decades. While chemotherapy can be very effective, its long-term success is often
reduced by intrinsic and acquired drug resistance, accompanied by chemotherapy-resistant secondary
malignancies. Although the mechanisms causing drug resistance are quite distinct, they are directly
connected to mutagenic translesion synthesis (TLS). The TLS pathway promotes DNA damage tol-
erance by supporting both replication opposite to a lesion and inaccurate single-strand gap filling.
Interestingly, inhibiting TLS reduces both cisplatin resistance and secondary tumor formation. There-
fore, TLS targeting is a promising strategy for improving chemotherapy. MAD2L2 (i.e., Rev7) is a
central protein in TLS. It is an essential component of the TLS polymerase zeta (ζ), and it forms a regu-
latory complex with Rev1 polymerase. Here we present the discovery of two small molecules, c#2 and
c#3, that directly bind both in vitro and in vivo to MAD2L2 and influence its activity. Both molecules
sensitize lung cancer cell lines to cisplatin, disrupt the formation of the MAD2L2-Rev1 complex and
increase DNA damage, hence underlining their potential as lead compounds for developing novel
TLS inhibitors for improving chemotherapy treatments.

Keywords: TLS; MAD2L2; small molecules

1. Introduction

DNA-damaging platinum-based chemotherapeutics (cisplatin, carboplatin, oxali-
platin) have been the first line of treatment for cancer for decades. They act by binding or
modifying DNA and blocking replication, generating cytotoxicity and apoptosis of rapidly
dividing cancer cells [1,2]. While chemotherapy can be very effective, its long-term success
is often reduced by intrinsic and acquired drug resistance. Moreover, chemotherapy pro-
motes the formation of treatment-based mutations that can lead to chemotherapy resistance
of secondary malignancies, increasing morbidity in many cancer patients. Although the
mechanisms causing intrinsic and acquired drug resistance are quite distinct, they are di-
rectly connected to mutagenic translesion synthesis (TLS). The TLS pathway is an essential
cellular mechanism that allows DNA damage tolerance by supporting DNA replication
and single-strand gap filling opposite to DNA lesions without repairing the damage [3–6].
Therefore, cells rely on an active TLS pathway to survive cisplatin cytotoxicity despite the
cost of introducing new mutations. The TLS family contains error-prone specialized poly-
merases. Specifically, it includes Y-family polymerases such as Rev1, Pol eta (η), Pol iota (ι),
Pol kappa (κ) and the B-family polymerase Pol zeta (ζ). TLS is divided into a two-step
mechanism, in which usually a Y-family polymerase replicates through the lesion, followed
by the extension of the distorted DNA structure by Pol ζ. The Pol ζ core complex contains
two proteins, the polymerase catalytic subunit Rev3 and a regulatory subunit MAD2L2
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(i.e., Rev7) that stabilizes the polymerase and facilitates its interaction with Rev1 [7–10].
TLS activity in vivo depends on MAD2L2 homodimerization and binding to Rev1 for
recruitment of the proper Y-family polymerase [9,11]. Although the TLS activity of specific
insertion DNA polymerases over their matching lesions can be relatively accurate [12],
the major mutagenesis generated by Rev1 and Pol ζ activity can cause intrinsic and acquired
drug resistance and reduce chemotherapy success. Overall, the TLS pathway allows cells
to tolerate DNA damage, which has a net benefit, as mutagenic replication is preferable to
fork collapse and incomplete replication, which may cause chromosomal instability [13].
Indeed, the loss of proteins involved in TLS can lead to diseases that exhibit DNA instability,
such as Fanconi anemia or a variant of xeroderma pigmentosum (XP-V) [14,15]. Therefore,
inhibiting TLS during chemotherapy treatment can suppress lesion bypass, increase DNA
damage and accelerate cell death. Recent studies showed that genetic inhibition of TLS
through RNA-mediated depletion of Rev1, Rev3 or MAD2L2 indeed sensitizes a variety of
cancer cells to DNA-damaging chemotherapeutics and suppresses the emergence of new
tumor chemoresistance both in cancer cell lines and animal models [16–19]. Identifying
small molecules with an efficient in-vivo effect on TLS inhibition is a challenging task
with very few successes. The JH-RE-06 molecule is an excellent example of a very potent
molecule. It causes Rev1 dimerization, preventing MAD2L2-Rev1 binding and inhibiting
TLS activity [16]. Here, we present two small molecules, c#2 and c#3, that were identified
out of close to five million possible lead compounds and potentially cause TLS inhibition.
We used high-throughput virtual screening against a model of the MAD2L2 homodimer
generated by molecular dynamics simulation. We found that both molecules disrupt
MAD2L2 activity by binding to MAD2L2 and preventing the MAD2L2-Rev1 complex
formation. In addition, combined treatment of cisplatin and c#2 or c#3 sensitizes the cells
and enhances DNA damage and cell death. Further development of these lead compounds
offers a new therapeutic strategy as TLS inhibitors for the improvement of cancer therapy.

2. Results
2.1. MAD2L2-MAD2L2-Rev1 Model and Docking Simulations

The dimeric form of MAD2L2 in complex with a CAMP [20,21] fragment and Rev1 was
built as described in Methods. The complex was placed in a box of water, and a 30 ns-
long molecular dynamics simulation (MD) was conducted to determine the structural
changes that occur upon binding of Rev1 to the MAD2L2 dimer. A representative con-
formation (see Methods) from the last 1ns was selected (Figure 1A). Most of the inter-
actions between Rev1 and the MAD2L2 dimer are at residues L186-K198 of one of the
MAD2L2 monomers and K198-Y202 of the other monomer. K190 is one of the residues
important for MAD2L2 dimerization [22]. Thus, despite the 2-fold symmetry of the
MAD2L2 dimer [21], Rev1 binds to it asymmetrically. During the MD simulation,
the cavity between the two MAD2L2 proteins became slightly wider. Binding of Rev1 re-
sults in an induced fit of the MAD2L2 dimer. The Cα-Cα distance between K190 of the
2 monomers increases from 15.86 to 18.10 Å, and the sidechains undergo reorientation for
optimal binding of MAD2L2 (Figure 1B).

High-throughput virtual screening was conducted using DOCK6 software with the
ZINC12 Clean Leads subset to identify potential lead compounds that bind to the reshaped
cavity. Docking was done in two stages. Initially, all molecules were docked to the cavity
using the fast anchor-and-grow algorithm with a rigid receptor and flexible ligand. The top
5000 ranked compounds were docked and rescored using AMBER force files with default
scoring parameters allowing flexibility for the ligand and receptor amino acids contacting
the ligand (see Methods). The best-ranking ligands were manually selected based on their
ability to interfere with the interaction of Rev1 with the MAD2L2 dimer. Representative
docking and biochemical interactions of two selected compounds, ZINC97017995 (c#2)
(Figure 2A) and ZINC25496030 (c#3) (Figure 2B), in the MAD2L2 dimer cavity are presented.
Two-dimensional drawings of c#2 and c#3 are presented in Figure 2C,D, respectively.
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Figure 1. MAD2L2 dimer in complex with a CAMP fragment and Rev1. (A) MAD2L2 proteins are 
shown in cartoon representation: MAD2L2 (yellow and green), CAMP fragment (orange and cyan) 
and Rev1 (Pink). (B) Surface representation of the cavity between the MAD2L2 monomers after 
binding Rev1. MAD2L2 monomers are colored yellow and green, and K190 of each monomer is 
colored magenta. 
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Figure 1. MAD2L2 dimer in complex with a CAMP fragment and Rev1. (A) MAD2L2 proteins are
shown in cartoon representation: MAD2L2 (yellow and green), CAMP fragment (orange and cyan)
and Rev1 (Pink). (B) Surface representation of the cavity between the MAD2L2 monomers after
binding Rev1. MAD2L2 monomers are colored yellow and green, and K190 of each monomer is
colored magenta.
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Figure 2. Small molecules docked in the cavity of the MAD2L2 dimer. The coloring scheme for
MAD2L2 follows that of Figure 1. Molecules are shown using stick representation. (A) The small
molecule ZINC97017995 (c#2) docked in the cavity of the MAD2L2 dimer. Met199 and Leu197 form
Van der Waals or hydrophobic interactions with ZINC97017995. Lys129 forms two hydrogen bonds
with the molecule. Met199 forms one hydrogen bond through its backbone. Hydrogen bonds are
marked with a cyan line. (B) The small molecule ZINC25496030 (c#3) docked in the cavity of the
MAD2L2 dimer. Met199 forms two hydrogen bonds with ZINC25496030. Pro188, Leu189, Lys197,
and Gln200 each form one hydrogen bond with the molecule. (C) Two-dimensional drawing of
ZINC97017995 (c#2). (D) Two-dimensional drawing of ZINC25496030 (c#3).
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2.2. Both c#2 and c#3 Sensitize Cells to Cisplatin

In order to assess the ability of c#2 and c#3 to sensitize cells during cisplatin treatment,
we established a colony survival assay to compare the relative survival rate of cells treated
with cisplatin alone or with combined treatment of cisplatin and 50 µM c#2 and c#3. Sur-
vival was assessed in two lung cancer cell lines: human non-small cell lung carcinoma
H1975 cells and epithelial lung adenocarcinoma A549 cells. Notably, treatment with c#2 or
c#3 alone caused no toxicity during the colony survival assay (Figure S1A). However,
when cells were exposed to a combined treatment of cisplatin and 50 µM of c#2 or c#3,
an approximately twofold sensitization effect was observed. Interestingly, both cell lines
presented close to 100% relative survival rate during 5 µM cisplatin treatment; however,
their sensitivity was significantly reduced to 50% relative survival rate when exposed to
combined treatment (Figure 3A,B). H1975 cells exhibit similar behavior following doxoru-
bicin treatment (Figure S1B). The A549 cells presented partial cisplatin resistance and failed
to completely die, even at high concentrations of cisplatin. Interestingly, the A549 cells
also presented doxorubicin resistance (not shown). The relative enhanced cell death can
also be observed by the reduction of cisplatin’s IC50 in all treatments. Notably, we focused
on enhancing cell death while using low cisplatin concentrations, which normally have
little effect on cell death. Lowering drug concentration during treatment has clear benefits
for the patient in reducing side effects. To conclude, these results suggest that combined
treatment of cisplatin with c#2 or c#3 is indeed effective in enhancing cell death at low
cisplatin concentrations.
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Figure 3. Compounds #2 and #3 sensitize cells to cisplatin treatment. (A) Colony survival assay
of A549 cell line. (B) Colony survival assay of H1975 cell line. Both cell lines were treated with
50 µM of compound and the indicated concentration of cisplatin for 48 h; then, growth media was
replaced with normal growth media with no compound. Cells were allowed to recover 4–5 days
before staining. For both cell lines, colony survival assay n = 3 independent experiments, SD = 1, error
bars represent 1 SD. p-value < 0.01 (**) was calculated by two-way ANOVA multiple comparisons.
IC50 was calculated using linear regression. A representative colony survival assay is presented
in Figure S1C.

2.3. DNA Damage Is Elevated after Co-Treatment of Cisplatin Together with c#2 or c#3

Next, we examined whether combined cisplatin treatment with c#2 or c#3 correlates
with an increase in DNA damage, which might explain the compound’s sensitization
effect. Levels of γ-H2AX foci, a marker for DNA double-strand breaks, were compared
in A549 and H1975 cell lines 16 h after treatment with cisplatin or combined treatment
(Figure 3A; A549 left panel, H1975 right panel). Combined treatment presented a 2-fold in-
crease in γ-H2AX foci/cell compared to cisplatin treatment only (Figure 3B; A549 left panel,
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H1975 right panel). Conversely, 16h treatment of c#2 or c#3 on their own had no effect on
γ-H2AX signal, and no cell death was observed. Interestingly, we noticed that the combined
treatment induced the appearance of cells with more than 75–80 foci or very bright signal.
These cells were quantified using ImageJ after careful threshold settings and excluding cells
that presented apoptotic bodies. Here, we were able to quantify about 2000 cells for each
treatment, presenting a 1.5-fold increase in γ-H2AX signal in the combined treated cells
(Figure 3C; A549 left panel, H1975 right panel). Cell treated with c#2 or c#3 did not exhibit
high foci number/cell or bright signal and were similar to DMSO treatment; therefore,
they are not presented here. These results suggest that combined treatment indeed causes
an increase in DNA damage, which correlates with enhanced cell death.
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Figure 3. Compounds #2 and #3 increase DNA damage after combined treatment. (A) Representative
figures of γH2AX in A549 (left panel) cells and H1975 (right panel) with different treatments as
indicated. (B) Quantification of A549 and H1975 cells foci/cell in each treatment. The total number
of cells scored is indicated. Error bars = 1 SD, error bars represent 1 SD. p-value was calculated by
two-tailed t-test. (C) Quantification of A549 (left panel) and H1975 (right panel) cells with more than
80 foci/cell in each treatment. The total number of cells scored is indicated. These data were derived
from four captures, in each of which at least 400 cells were scored. SD = 1, error bars represent 1 SD,
for the independently determined percentages from the two experiments. p-value was calculated
using a one-tailed t-test. A549 cells were treated with 10 µM cisplatin and H1975 cells with 5 µM
cisplatin. Both cell lines were treated with 50 µM of c#2 or c#3.

2.4. MAD2L2-Rev1 Interaction Is Reduced after Exposure to c#2 or c#3

In order to validate that MAD2L2 is a direct target of c#2 and c#3, we tested the
compounds’ binding kinetics to a recombinant protein by field-effect biosensing (FEB)
technology. Briefly, purified GST-MAD2L2 was immobilized onto a graphite chip, and the
current across the chip was measured to determine the baseline current. Then, a soluble
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compound flowed over the chip. Interaction of the soluble and immobilized molecules
yields a detectable change in conductance of the biosensor. The kon and koff of the inter-
action were measured over time and were used to calculate the kD. The binding of both
c#2 and c#3 to MAD2L2 is in the micromolar range: 310.8 µM and 44.88 µM, respectively
(Figure 4A). The affinity of c#3 to MAD2L2 is approximately seven-fold higher in compari-
son to the affinity to c#2. Next, the in vivo binding of c#2 or c#3 to MAD2L2 was validated
using a cellular thermal shift assay (CETSA), which is a reliable reporter showing whether
a molecule enters the cell and the nucleus and binds to the protein of interest [20]. Briefly,
under normal conditions, most of the MAD2L2 protein unfolds, aggregates and disappears
from the soluble fraction of the lysate between 46 ◦C and 49 ◦C. A change in the aggregation
temperature is expected upon direct binding of a compound, as the compound will affect
the relative stability of the folded protein and either promote or delay its unfolding and
subsequent aggregation. In this assay, we show that both c#2 and c#3 stabilize the folded
MAD2L2 protein through direct binding, raising the aggregation temperature. Figure 4C
presents the temperature-induced aggregation generated after 1 h of compound treatment
and exposure of cells to a temperature gradient of 40–55 ◦C. Under normal conditions,
MAD2L2 aggregates in the shift between 46 ◦C and 49 ◦C. However, when c#3 is added,
MAD2L2 remains soluble until higher temperatures, and the aggregation occurs between
49 ◦C and 52 ◦C (Figure 4B,C). These data suggest that c#3 binds MAD2L2 and changes its
solubility. C#2 caused a milder change in MAD2L2′s aggregation temperature, suggesting
a weaker binding to MAD2L2.

In order to determine whether both compounds interfere with MAD2L2-Rev1 com-
plex formation in vivo, we performed co-immunoprecipitation (co-IP) of the complex.
HEK293 cells were co-transfected with YFP-Rev1 together with myc-MAD2L2. Trans-
fected cells were treated with either DMSO or with the compounds for 24 h before the
MAD2L2-Rev1 complex was IP’ed using α-GFP-Trap beads, which recognize YFP. While
YFP-Rev1 presented a clear binding to myc-MAD2L2 when no compound was added,
a clear reduction was observed in MAD2L2-Rev1 binding after 24 h exposure to c#2 or
c#3 (Figure 4D). A difference between c#2 and c#3 was observed: while c#2 did not re-
duce complex formation significantly, c#3 was extremely effective and reduced MAD2L2-
Rev1 binding by close to 80% (Figure 4E). The biochemical data support the idea that
c#3 binds better to MAD2L2 than c#2, and c#3 is probably more efficient in disrupting the
MAD2L2-Rev1 complex in vivo. Hence these compounds’ biological effect is due to their
direct binding to MAD2L2.
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Figure 4. Compounds #2 and #3 reduce Rev1-MAD2L2 interaction. (A) Binding activity of the com-
pounds c#2 and c#3 to MAD2L2 in vitro. Binding assay of increasing concentrations of compounds
c#2 and c#3 to MAD2L2. c#2 kD = 310.8 ± 32.96 µM; c#3 kD = 44.88 ± 2.062 µM. (B) MAD2L2′s
cellular thermal shift assay (CETSA) in 293T cells after 1-h treatment with DMSO or 50 µM of c#2 or
c#3. Relative MAD2L2 levels at each temperature compared to DMSO are indicated. (C) Aggrega-
tion curve generated by quantification and comparison of MAD2L2 in each cellular thermal shift
assay. n = three independent experiments. p-value < 0.0001 (****) was calculated for row factor of
c#3 compared to DMSO using a two-way ANOVA. The additional blots contributing to this analysis
are shown in Figure S2A. (D) HEK293 cells were co-transfected with YFP-Rev1 together with myc-
MAD2L2, and an α-GFP IP was performed to assess Rev1-MAD2L2 binding when treated with 50 µM
of each compound. (E) Quantification of the relative amount of myc-MAD2L2 bound to YFP-Rev1.
For DMSO and c#3 n = 3 independent experiments, for c#2 n = 1 independent experiment, SD = 1,
error bars represent 1 SD. p-value< 0.0001 (****) was calculated by two-tailed t-test. The additional
co-IP blots contributing to this analysis are shown in Figure S2B.
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3. Discussion

In this study, we discovered two small molecules that potentially disrupt the assembly
of MAD2L2-Rev1 and the formation of an active TLS complex. Using molecular dynam-
ics simulation, we generated a new model of the MAD2L2 homodimer together with
one Rev1 protein. This model exposed a unique cavity formed upon MAD2L2 homod-
imerization, which could serve as a new binding interface for small molecules. Hence,
the MAD2L2 homodimer model was applied to a docking simulation to identify small
molecules that potentially bind in this unique cavity. We performed an unbiased bioinfor-
matics screen of approximately 5 million molecules that are available in the ZINC12 subset
library. Two small molecules, c#2 and c#3, were selected for further analysis. Both compounds
have lead structures, MW ≤ 350 and the predicted octanol-water partition coefficient
XlogP [23] ≤3.5. Thus, both serve as a good starting point of lead optimization in order to
improve their potency, selectivity, and pharmacokinetic parameters. Hence, our approach
demonstrates the importance of high-resolution structures of protein complexes that can be
used for in silico drug design.

First, we observed that both c#2 and c#3 sensitized lung cancer cell lines to cisplatin,
resulting in significant cell death. In H1975 cells, a clear reduction in the measured IC50 of
cisplatin and doxorubicin was observed. However, A549 cells were less sensitive to the
compounds, as IC50 was reduced by about one-third after combined treatment, while in
the H1975 cells, combined treatment reduced IC50 by half (Figure 3). The source of the
sensitivity difference between cell lines is not determined; however, it could be related to
different expressions of multidrug resistance (MDR), or differences in basal TLS activity
and other DNA damage complexes.

MAD2L2 is important for DNA damage tolerance and repair. Therefore, we hypoth-
esized that the hypersensitization of the cells to cisplatin in the presence of c#2 or c#3 is
the result of persistent cisplatin-induced DNA damage. Indeed, both molecules caused
an increase in DNA damage only when combined with cisplatin. Moreover, combined
treatment caused a significant increase in the number of cells with more than 80 γH2AX
foci/cell and extremely high signal, indicating that these cells suffer from severe levels of
DNA damage (Figure 3C,D). Importantly, most of the cells with high γH2AX presented
round and intact nuclei, suggesting that they suffer from DNA damage, but they are not
fully apoptotic cells. Notably, c#3 and c#2 alone did not cause any increase in γH2AX signal,
and cell nuclei remain intact. Interestingly, this effect was more prominent in c#3 than
c#2, as c#2 increased the highly damaged cells only in A549 cells. This might be due to
the higher cisplatin concentration used in the assay for A549 cells (10 µM instead of 5 µM
cisplatin), as A549 cells presented intrinsic resistance to the combined treatment.

The binding of c#2 and c#3 to MAD2L2 has been confirmed in vitro. We determined
the kD of the compounds to be in the micromolar range (Figure 4A). Interestingly, the affin-
ity of c#3 to MAD2L2 is sevenfold higher than c#2. Furthermore, the R squared value of
c#2 is lower than c#3, suggesting that its binding to MAD2L2 is less stable. Next, we per-
formed in vivo CETSA to assess the binding affinity of c#2 and c#3 in cells (Figure 4B,C).
In agreement with our in vitro measurements, c#3 presented a stronger binding affinity to
MAD2L2 than c#2. Finally, we explored whether the biochemical interaction affects the
MAD2L2-Rev1 binding. Both molecules interfere with MAD2L2-Rev1 binding; however,
as expected from the measured affinities, c#3 is more potent than c#2 in preventing complex
formation (Figure 4D,E). Interestingly, despite the superior binding of c#3 to MAD2L2,
no significant difference was observed between the molecules in cell sensitization. One po-
tential explanation might be that the weak binding of c#2 to MAD2L2 may reduce the
number of active TLS complexes, slowing TLS activity and potentially slowing the turnover
of TLS proteins. This might explain the reduction of highly damaged cells when exposed to
low cisplatin concentration, as TLS might still be functioning and preventing their appear-
ance. The c#3 molecule efficiently prevents MAD2L2-Rev1 complex formation and may
inhibit TLS activity better than c#2, causing accumulation of highly damaged cells, even at
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a low cisplatin concentration. More research is still needed to gain a better understanding
regarding the nature of the interaction of these molecules with MAD2L2.

Finally, in addition to its role in TLS, MAD2L2 has central roles in different cellular
pathways [24]. Recently, it was found to be part of the shieldin complex, promoting non-
homologous end-joining and inhibiting homologous recombination (HR) [25–27]. In the
shieldin complex, MAD2L2 homodimerization and the activity of TRIP13 were found to be
crucial for its proper regulation [22,28–30]. Moreover, recent evidence links mutations in
the shieldin complex to resistance to PARP inhibitors in BRCA 1/2-deficient cells [30,31].
Moreover, MAD2L2 overexpression was found in several cancer types and is correlated
with poor prognosis [24,32,33].

In addition, MAD2L2 was found to be involved in several aspects of mitotic regulation.
MAD2L2 inhibits the anaphase-promoting complex/cyclosome (APC/C) [34–36] and has
been shown to bind RAN GTPase and the chromosomal alignment protein CAMP [20,37,38],
helping to stabilize the mitotic spindle. However, the influence of both compounds on
other MAD2L2-related pathways is yet to be evaluated.

Thus far, inhibition of TLS has been done using genetic methods, strengthening the
concept that TLS inhibition is a promising target for cancer treatment. Inhibiting Rev1 using
JH-RE-06 or Rev3 presented promising results for cancer treatment [16,25,39]. However,
the beneficial effect of these inhibitors is still under debate [40]. Considering these recent
results, identifying and developing additional TLS inhibitors is proving to be crucial in the
ongoing effort of improving cancer patient therapy and prognosis.

4. Materials and Methods
4.1. Generating MAD2L2-MAD2L2-Rev1 Model

The dimeric form of the structure of MAD2L2 in complex with a CAMP fragment
was built from the monomeric structure (PDB code 5XPT [21]) using the crystal symmetry
matrix as shown in the above paper. Rev1 was added to one of the MAD2L2 monomers by
the superimposition of the MAD2L2-Rev1 complex structure (PDB 3VU7 [41]). The position
of Rev1 was further refined by performing local docking of Rev1 to the MAD2L2 dimer
using the Rosetta Online Server [42–44]. The top five docking results were examined,
and three of them were similar. The middle pose of the three similar results was selected
for molecular dynamics simulation, and missing amino acids in the structure were added
using Modeller [45]. Molecular dynamics simulations were carried out using GROMACS
software using the AMBER36 force-field and TIP3P water model with an ionic strength of
100 mmol/L NaCl. The system was backbone-restrained and energy-minimized. This was
followed by a two-step equilibration process of 100 ps to the target temperature and
pressure of 310 K and 1 bar. Backbone restraints were lifted, and a 30 ns-long full MD
simulation with a 2-fs time step under constant pressure and temperature was conducted.
Snapshots were taken every 0.1 ns. The last 10 frames were compared by RMSD, and the
conformation that showed the highest similarity to the other frames was selected for
docking simulations.

4.2. Docking Simulations

High-throughput virtual screening virtual docking of small molecules was carried
out in the cavity of the MAD2L2 homodimer interface of the above conformation after
removing Rev1. Docking simulations were done using the University of California at San
Francisco, San Francisco, CA, USA (UCSF Dock; v6.8 with ZINC12 Clean Leads subset of
small ligands (Subset ID 11) [46–48]. This dataset contains 4,591,276 molecules selected
according to the following criteria: p.mwt ≤ 350 and p.mwt ≥ 250 and p.xlogp ≤ 3.5 and
p.rb ≤ 7. First, all molecules were docked using the flex anchor-and-grow (fast) method
for a rigid receptor and flexible ligand with grid-based scoring. After an initial large-scale
scanning, the best 5000 compounds were docked and rescored using AMBER force files,
with default scoring parameters allowing flexibility for the ligand and receptor amino acids
with a cut-off distance of 2.5 Å from the ligand. Molecules making less than 2 Hb with the



Molecules 2022, 27, 636 11 of 15

MAD2L2 homodimer or having an Amber_Score binding energy of less than −10 were
filtered out. The final selection step was done via manual selection, in which the remaining
candidate ligand-protein complexes were visually scanned and ranked from 1 (compound
binding at residues not essential for MAD2L2-Rev1 binding) to 4 (compound binding tightly
at residues essential for MAD2L2-Rev1 binding). Specifically, the compounds predicted
by visual estimation to bind most closely to the K1203 and L1205 interface residues of
Rev1 (essential MAD2L2 binding residues) were ranked highest (4). Of the compounds
ranked as 4, the 10 compounds available for purchase from suppliers were selected for
experimental validation.

4.3. Protein Induction, Purification and Field Effect Biosensing (FEB)

E. coli BL21 Star cells were transfected with GST-MAD2L2 vector. Protein induction
was done for 4 h at 30 ◦C with 1 mM IPTG. Purification was done according to standard
GST protocol.

The binding, kinetics of MAD2L2 to the small molecule compounds were measured
by the field-effect biosensing (FEB) Agile R100 label-free binding assay (Nanomedical
Diagnostics Inc, San Diego, CA, USA), following their standard protocol [49,50]. Briefly,
500 nM of purified MAD2L2 was immobilized on a graphene sensor chip through amine
groups. The current baseline level for the chip was recorded in PBS. Next, PBS was
aspirated, and the changes in the baseline current induced by 50 µL of 1, 10, 20, 30, 40 and
50 µM droplets of the tested compound were recorded. kD values were calculated by the
DataLine 2.0 software by either a Hill equation fit or by using the kon and koff values at a
single concentration. The kD values obtained by these two methods were almost identical.

4.4. Cell Culture, Plasmids and Transfections

The A549, HEK293, and 293T cells were cultured in Dulbecco’s modified Eagle
medium/DMEM (Biological Industries, Kibbutz Beit-Haemek, Israel; 01-052-1A) with
4.5 g/L D-glucose, 4 mM L-glutamine, 10% fetal bovine serum (Biological Industries Israel
Beit Haemek; 04-007-1A), and 1% penicillin/streptomycin. The H1975 cells were cultured
in RPMI 1640 medium (Biological Industries, Kibbutz Beit-Haemek, Israel; 01-100-1A)
with 4.5 g/L D-glucose, 4 mM L-glutamine, 10% fetal bovine serum (Biological Industries,
Kibbutz Beit-Haemek, Israel; 04-007-1A), and 1% penicillin/streptomycin. MAD2L2-myc
was constructed in pcDNA3.1(+) (Life Technologies) by fusion of a myc tag to the C termi-
nus of full-length human MAD2L2. REV1-YFP plasmid was a gift from Prof. Zvi Livneh,
Weizmann institute, Rehovot, Israel. Transfections of HEK293 cells with plasmid DNA were
performed using the Avalanche Everyday Transfection Reagent (EZT-EVDY-1) according
to the manufacturer’s protocol. Briefly, cells were passaged the day before transfection
to reach a confluency of 60–70%. The next day, the selected plasmid DNA was incubated
in serum-free media with the recommended volume of transfection reagent for 20 min at
room temperature. This transfection mix was gently added to the prepared cell culture
plate(s) for continued incubation at 37 ◦C. For co-IP experiment plates, after 24 h, the rel-
evant compound (DMSO vehicle, c#2, or c#3) was added in pre-warmed media, and the
transfected plates were incubated for another 24 h at 37 ◦C until harvesting.

4.5. Colony Survival Assay

Cells were plated in 24-well plates at 50,000 cells/well (H1975 line) or 10,000 cells/well
(A549 line). The next day, cells were treated with varying concentrations of cisplatin
(0–10 µM), with or without 50 µM compound. For the untreated control wells containing
only cisplatin, DMSO was applied in place of the compound. After 48 h of cisplatin +
compound treatment, the cells were washed 3 times with PBS, and fresh media was applied.
After 4 days of recovery, the cells were stained with methylene blue and imaged using a
Nikon SMZ25 stereomicroscope. The images were analyzed using the ImageJ (National
Institutes of Health, Bethesda, MA, USA) area measurement tool to quantify the total colony
size in each well.
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4.6. Western Blot and Co-Immunoprecipitation

HEK293 cells were harvested 48 h following co-transfection and lysed in extraction
buffer (50 mM Tris pH 8, 150 mM NaCl, 20 mM EDTA, 50 mM NaF, 1% TritonX) sup-
plemented with Merck 1000× protease inhibitor (539,134). Cells were lysed on ice for
30 min and centrifuged at 20,000× g for 30 min at 4 ◦C. For immunoblotting, extracts
were boiled in Laemmli buffer for 5 min. Equal amounts of protein sample (30 µg) were
loaded on 8–12% acrylamide gel and transferred to a nitrocellulose membrane (Amersham).
For immunoprecipitations, clarified lysates were supplemented with 7 µL of equilibrated
GFP-Trap antibody-conjugated agarose beads (Chromotek; gta-20, Munich, Germany) and
incubated for 1–2 h at 4 ◦C. Beads were washed 3 times in PBS buffer and boiled in Laemmli
buffer for 5 min. The following primary antibodies were used for immunoblotting: Myc
(Santa Cruz; SC-40, Santa Cruz, CA, USA) 1:1000 dilution, GFP (Santa Cruz, SC-9996)
1:1000 dilution, MAD2L2 (ProteinTech; 12683-1-AP, Rosemont, IL, USA). Appropriate light-
chain-specific secondary antibodies were used at 1:10,000 for all membranes: anti-mouse
(Jackson ImmunoResearch Laboratories, Inc; 115-035-174, West Grove, PA, USA) and anti-
rabbit (EMD Millipore; MAB201P, Burlington, MA, USA). The membranes were developed
with the BioRad biomolecular imager, and band densitometry was performed using the Im-
ageJ (National Institutes of Health, Bethesda, MA, USA) Gel Analyzer function. All statistical
analysis was performed with Prism 9.1.2 (GraphPad Software, San Diego, CA, USA).

4.7. Immunofluorescence

H1975 and A549 cells were grown on glass coverslips in 12-well plates with the
appropriate media and fixed in 4% paraformaldehyde for 10 min at room temperature.
Cells were permeabilized in 0.5% Triton×100 in PBSx1 for 10 min at room temperature and
then blocked in 5% BSA in 0.1% PBSx1-Tween for 1 h at room temperature. Anti-phospho-
Histone H2A.X primary antibody (Mercury; 05-636-25UG) diluted 1:400 in 5% BSA in
0.1% PBSx1-Tween was added for 1 h at room temperature. Fluorescent-dye conjugated
secondary antibody was applied for 1 h at room temperature. The coverslips were washed
between each step with PBSx1. Nuclei were stained with DAPI (1:2000 dilution) at room
temperature in the dark for 3 min. Coverslips were mounted on glass slides and imaged
using an Olympus 1 × 81 microscope. For all treatments, cells with fewer than 80 foci
were scored manually (Figure 3B), and cells with more than 80 foci and very bright signals
were scored automatically by using the “Analyze Particles” function in ImageJ (National
Institutes of Health) after setting a suitable threshold.

4.8. Cellular Thermal Shift Assay (CETSA)

The in vivo binding of MAD2L2 to the small molecule compounds was detected
using the cellular thermal shift assay (CETSA) following their standard protocol [51,52].
Briefly, 293T cells were grown to confluency and treated for 1 h with the DMSO or selected
compounds at 50 µM. Cells were collected and centrifuged for 3 min at 300 g, washed
once with PBS, and each pellet was resuspended in 1ml of PBS supplemented with Merck
1000× protease inhibitor (539134). The cell suspensions were aliquoted and incubated for
3 min in the VWR XT96 thermal cycler using a gradient from 40–55 ◦C. Following heating,
the tubes were incubated at room temperature for 3 min and then snap-frozen in liquid
nitrogen. The samples were then lysed via 2 subsequent freeze-thaw cycles with vortexing,
and the lysates were centrifuged at 20,000× g for 20 min at 4 ◦C. Finally, the cleared lysates
were boiled in Laemmli buffer for 5 min.

5. Patents

Patents resulting from the work: USA Provisional 63/109,521.

Supplementary Materials: The following supporting information can be downloaded. Figure S1:
Compounds #2 and #3 sensitize cells to cisplatin treatment. (A) Compounds #2 and #3 present
no toxicity. (B) Compound #2 sensitizes cells to doxorubicin treatment. (C) Representative colony
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survival assay. Figure S2: Compounds #2 and #3 reduce Rev1-MAD2L2 interaction. (A) Additional
blots that have been included in the CETSA quantification in Figure 4C. (B) Additional co-IP blots
that have been included in the quantification in Figure 4E.

Author Contributions: Conceptualization and supervision, T.L., D.T. and I.O.; investigation, N.P.
and M.E.; T.L., D.T. and I.O. wrote the manuscript with input from all authors. Writing—original
draft preparation, T.L.; writing—review & editing, T.L., D.T. and I.O.; funding acquisition, T.L., D.T.
and I.O. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by a grant of the ASI (Ariel Scientific Innovations) (T.L.) and the
Israel Cancer Association 20210048, 20221266 (I.O.).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We thank Nir Qvit, the Azrieli Faculty of Medicine, Bar Ilan University, Israel,
for his support in the Agile R100 binding assays and Zvi Livneh, Department of Biomolecular
Sciences, Weizmann Institute of Science, Rehovot, Israel, for the YFP-Rev1 plasmid. We thank Gabi
Gerlitz, Molecular biology, Ariel University for his critical review of the manuscript.

Conflicts of Interest: T.L., D.T. and N.P. are inventors of a patent on c#2 and c#3.

Sample Availability: Samples of the compounds are available from the authors.

References
1. Wang, D.; Lippard, S.J. Cellular processing of platinum anticancer drugs. Nat. Rev. Drug Discov. 2005, 4, 307–320. [CrossRef]

[PubMed]
2. Jung, Y.; Lippard, S.J. Direct cellular responses to platinum-induced DNA damage. Chem. Rev. 2007, 107, 1387–1407. [CrossRef]
3. Yamanaka, K.; Chatterjee, N.; Hemann, M.T.; Walker, G.C. Inhibition of mutagenic translesion synthesis: A possible strategy for

improving chemotherapy? PLoS Genet. 2017, 13, e1006842. [CrossRef]
4. Xie, K.; Doles, J.; Hemann, M.T.; Walkera, G.C. Error-prone translesion synthesis mediates acquired chemoresistance. Proc. Natl.

Acad. Sci. USA 2010, 107, 20792–20797. [CrossRef]
5. Ghosal, G.; Chen, J. DNA damage tolerance: A double-edged sword guarding the genome. Transl. Cancer Res. 2013, 2, 107–129.

[CrossRef]
6. Chang, D.J.; Cimprich, K.A. DNA damage tolerance: When it’s OK to make mistakes. Nat. Chem. Biol. 2009, 5, 82–90. [CrossRef]
7. Sale, J.E.; Lehmann, A.R.; Woodgate, R. Y-family DNA polymerases and their role in tolerance of cellular DNA damage.

Nat. Rev. Mol. Cell Biol. 2012, 13, 141–152. [CrossRef]
8. Jansen, J.G.; Tsaalbi-Shtylik, A.; de Wind, N. Roles of mutagenic translesion synthesis in mammalian genome stability, health and

disease. DNA Repair 2015, 29, 56–64. [CrossRef] [PubMed]
9. Rizzo, A.A.; Korzhnev, D.M. The Rev1-Polζ Translesion Synthesis Mutasome: Structure, Interactions and Inhibition, 1st ed.; Elsevier Inc.:

Amsterdam, The Netherlands, 2019; Volume 45, ISBN 9780128173961.
10. Sale, J.E. Translesion DNA synthesis and mutagenesis in eukaryotes. Cold Spring Harb. Perspect. Biol. 2013, 5, a012708. [CrossRef]

[PubMed]
11. Rizzo, A.A.; Vassel, F.-M.; Chatterjee, N.; D’Souza, S.; Li, Y.; Hao, B.; Hemann, M.T.; Walker, G.C.; Korzhnev, D.M. Rev7 dimeriza-

tion is important for assembly and function of the Rev1/Polζ translesion synthesis complex. Proc. Natl. Acad. Sci. USA 2018,
115, E8191–E8200. [CrossRef] [PubMed]

12. McCulloch, S.D.; Kokoska, R.J.; Chilkova, O.; Welch, C.M.; Johansson, E.; Burgers, P.M.J.; Kunkel, T.A. Enzymatic switching for
efficient and accurate translesion DNA replication. Nucleic Acids Res. 2004, 32, 4665–4675. [CrossRef]

13. Zeman, M.K.; Cimprich, K.A. Causes and consequences of replication stress. Nat. Cell Biol. 2014, 16, 2–9. [CrossRef] [PubMed]
14. Masutani, C.; Kusumoto, R.; Yamada, A.; Dohmae, N.; Yokol, M.; Yuasa, M.; Araki, M.; Iwai, S.; Takio, K.; Hanaoka, F. The XPV

(xeroderma pigmentosum variant) gene encodes human DNA polymerase η. Nature 1999, 399, 700–704. [CrossRef] [PubMed]
15. Bluteau, D.; Masliah-Planchon, J.; Clairmont, C.; Rousseau, A.; Ceccaldi, R.; D’Enghien, C.D.; Bluteau, O.; Cuccuini, W.; Gachet, S.;

de Latour, R.P.; et al. Biallelic inactivation ofREV7 is associated with Fanconi anemia. J. Clin. Investig. 2017, 127, 1117. [CrossRef]
[PubMed]

16. Wojtaszek, J.L.; Chatterjee, N.; Najeeb, J.; Ramos, A.; Lee, M.; Bian, K.; Xue, J.Y.; Fenton, B.A.; Park, H.; Li, D.; et al. A Small
Molecule Targeting Mutagenic Translesion Synthesis Improves Chemotherapy. Cell 2019, 178, 152–159. [CrossRef]

17. Niimi, K.; Murakumo, Y.; Watanabe, N.; Kato, T.; Mii, S.; Enomoto, A.; Asai, M.; Asai, N.; Yamamoto, E.; Kajiyama, H.; et al.
Suppression of REV7 enhances cisplatin sensitivity in ovarian clear cell carcinoma cells. Cancer Sci. 2014, 105, 545–552. [CrossRef]
[PubMed]

http://doi.org/10.1038/nrd1691
http://www.ncbi.nlm.nih.gov/pubmed/15789122
http://doi.org/10.1021/cr068207j
http://doi.org/10.1371/journal.pgen.1006842
http://doi.org/10.1073/pnas.1011412107
http://doi.org/10.3978/j.issn.2218-676X.2013.04.01
http://doi.org/10.1038/nchembio.139
http://doi.org/10.1038/nrm3289
http://doi.org/10.1016/j.dnarep.2015.01.001
http://www.ncbi.nlm.nih.gov/pubmed/25655219
http://doi.org/10.1101/cshperspect.a012708
http://www.ncbi.nlm.nih.gov/pubmed/23457261
http://doi.org/10.1073/pnas.1801149115
http://www.ncbi.nlm.nih.gov/pubmed/30111544
http://doi.org/10.1093/nar/gkh777
http://doi.org/10.1038/ncb2897
http://www.ncbi.nlm.nih.gov/pubmed/24366029
http://doi.org/10.1038/21447
http://www.ncbi.nlm.nih.gov/pubmed/10385124
http://doi.org/10.1172/JCI92946
http://www.ncbi.nlm.nih.gov/pubmed/28248207
http://doi.org/10.1016/j.cell.2019.05.028
http://doi.org/10.1111/cas.12390
http://www.ncbi.nlm.nih.gov/pubmed/24597627


Molecules 2022, 27, 636 14 of 15

18. Vassel, F.; Bian, K.; Walker, G.C.; Hemann, M.T. Rev7 loss alters cisplatin response and increases drug efficacy in chemotherapy-
resistant lung cancer. Proc. Natl. Acad. Sci. USA 2020, 117, 28922–28924. [CrossRef] [PubMed]

19. Sakurai, Y.; Ichinoe, M.; Yoshida, K.; Nakazato, Y.; Saito, S.; Satoh, M.; Nakada, N.; Sanoyama, I.; Umezawa, A.; Numata, Y.; et al.
Inactivation of REV7 enhances chemosensitivity and overcomes acquired chemoresistance in testicular germ cell tumors. Cancer
Lett. 2020, 489, 100–110. [CrossRef]

20. Wang, X.; Pernicone, N.; Pertz, L.; Hua, D.; Zhang, T.; Listovsky, T.; Xie, W. REV7 has a dynamic adaptor region to accom-
modate small GTPase RAN/Shigella IpaB ligands and its activity is regulated by RanGTP/GDP switch. J. Biol. Chem. 2019,
294, 15733–15742. [CrossRef]

21. Hara, K.; Taharazako, S.; Ikeda, M.; Fujita, H.; Mikami, Y.; Kikuchi, S.; Hishiki, A.; Yokoyama, H.; Ishikawa, Y.; Kanno, S.; et al.
Dynamic feature of mitotic arrest deficient 2-like protein 2 (MAD2L2) and structural basis for its interaction with chromosome
alignment maintaining phosphoprotein (CAMP). J. Biol. Chem. 2017, 292, 17658–17667. [CrossRef]

22. Liang, L.; Feng, J.; Zuo, P.; Yang, J.; Lu, Y.; Yin, Y. Molecular basis for assembly of the shieldin complex and its implications for
NHEJ. Nat. Commun. 2020, 11, 1–15. [CrossRef]

23. Cheng, T.; Zhao, Y.; Li, X.; Lin, F.; Xu, Y.; Zhang, X.; Li, Y.; Wang, R.; Lai, L. Computation of Octanol-Water Partition Coefficients
by Guiding an Additive Model with Knowledge. J. Chem. Inf. Model. 2007, 47, 2140–2148. [CrossRef]

24. De Krijger, I.; Boersma, V.; Jacobs, J.J.L. Cell Biology REV7: Jack of many trades. Trends Cell Biol. 2021, 31, 686–701. [CrossRef]
25. Boersma, V.; Moatti, N.; Segura-Bayona, S.; Peuscher, M.H.; van der Torre, J.; Wevers, B.A.; Orthwein, A.; Durocher, D.; Jacobs,

J.J.L. MAD2L2 controls DNA repair at telomeres and DNA breaks by inhibiting 5′ end resection. Nature 2015, 521, 537–540.
[CrossRef]

26. Ghezraoui, H.; Oliveira, C.; Becker, J.R.; Bilham, K.; Moralli, D.; Anzilotti, C.; Fischer, R.; Deobagkar-Lele, M.; Sanchiz-Calvo, M.;
Fueyo-Marcos, E.; et al. 53BP1 cooperation with the REV7–shieldin complex underpins DNA structure-specific NHEJ. Nature
2018, 560, 122–127. [CrossRef] [PubMed]

27. Xu, G.; Chapman, J.R.; Brandsma, I.; Yuan, J.; Mistrik, M.; Bouwman, P.; Bartkova, J.; Gogola, E.; Warmerdam, D.; Barazas, M.;
et al. REV7 counteracts DNA double-strand break resection and affects PARP inhibition. Nature 2015, 521, 541–544. [CrossRef]
[PubMed]

28. de Krijger, I.; Föhr, B.; Pérez, S.H.; Vincendeau, E.; Serrat, J.; Thouin, A.M.; Susvirkar, V.; Lescale, C.; Paniagua, I.; Hoekman, L.;
et al. MAD2L2 dimerization and TRIP13 control shieldin activity in DNA repair. Nat. Commun. 2021, 12, 1–15.

29. Xie, W.; Wang, S.; Wang, J.; De, M.J.; Xu, G.; Scaltriti, M. Molecular mechanisms of assembly and TRIP13-mediated remodeling of
the human Shieldin complex. Proc. Natl. Acad. Sci. USA 2021, 118, 1–10. [CrossRef] [PubMed]

30. Clairmont, C.S.; D’andrea, A.D. REV7 directs DNA repair pathway choice. Trends Cell Biol. 2021, 31, 965–978. [CrossRef]
31. Dev, H.; Chiang, T.W.W.; Lescale, C.; de Krijger, I.; Martin, A.G.; Pilger, D.; Coates, J.; Sczaniecka-Clift, M.; Wei, W.; Ostermaier, M.;

et al. Shieldin complex promotes DNA end-joining and counters homologous recombination in BRCA1-null cells. Nat. Cell Biol.
2018, 20, 954–965. [CrossRef] [PubMed]

32. Rimkus, C.; Friederichs, J.; Rosenberg, R.; Holzmann, B.; Siewert, J.R.; Janssen, K.P. Expression of the mitotic checkpoint gene
MAD2L2 has prognostic significance in colon cancer. Int. J. Cancer 2007, 120, 207–211. [CrossRef]

33. Pernicone, N.; Peretz, L.; Grinshpon, S.; Listovsky, T. MDA-MB-157 Cell Line Presents High Levels of MAD2L2 and Dysregulated
Mitosis. Anticancer Res. 2020, 40, 5471–5480. [CrossRef]

34. Chen, J.; Fang, G. MAD2B is an inhibitor of the anaphase-promoting complex. Genes Dev. 2001, 15, 1765–1770. [CrossRef]
[PubMed]

35. Pfleger, C.M.; Salic, A.; Lee, E.; Kirschner, M.W. Inhibition of Cdh1-APC by the MAD2-related protein MAD2L2: A novel
mechanism for regulating Cdh1. Genes Dev. 2001, 15, 1759–1764. [CrossRef]

36. Listovsky, T.; Sale, J.E. Sequestration of cdh1 by mad2l2 prevents premature apc/c activation prior to anaphase onset. J. Cell Biol.
2013, 203, 87–100. [CrossRef] [PubMed]

37. Bhat, A.; Wu, Z.; Maher, V.M.; McCormick, J.J.; Xiao, W. Rev7/Mad2b plays a critical role in the assembly of a functional mitotic
spindle. Cell Cycle 2015, 14, 3929–3938. [CrossRef] [PubMed]

38. Itoh, G.; Kanno, S.I.; Uchida, K.S.K.; Chiba, S.; Sugino, S.; Watanabe, K.; Mizuno, K.; Yasui, A.; Hirota, T.; Tanaka, K. CAMP
(C13orf8, ZNF828) is a novel regulator of kinetochore-microtubule attachment. EMBO J. 2011, 30, 130–144. [CrossRef]

39. Chatterjee, N.; Whitman, M.A.; Harris, C.A.; Min, S.M.; Jonas, O.; Lien, E.C.; Luengo, A.; Heiden, M.G.V.; Hong, J.; Zhou,
P.; et al. REV1 inhibitor JH-RE-06 enhances tumor cell response to chemotherapy by triggering senescence hallmarks.
Proc. Natl. Acad. Sci. USA 2020, 117, 28918–28921. [CrossRef]

40. Yoon, J.H.; Johnson, R.E.; Prakash, L.; Prakash, S. Implications of inhibition of Rev1 interaction with Y family DNA polymerases
for cisplatin chemotherapy. Genes Dev. 2021, 35, 1256–1270. [CrossRef]

41. Hara, K.; Hashimoto, H.; Murakumo, Y.; Kobayashi, S.; Kogame, T.; Unzai, S.; Akashi, S.; Takeda, S.; Shimizu, T.; Sato, M. Crystal
structure of human REV7 in complex with a human REV3 fragment and structural implication of the interaction between DNA
polymerase ζ and REV1. J. Biol. Chem. 2010, 285, 12299–12307. [CrossRef]

42. Chaudhury, S.; Berrondo, M.; Weitzner, B.D.; Muthu, P.; Bergman, H.; Gray, J.J. Benchmarking and Analysis of Protein Docking
Performance in Rosetta v3.2. PLoS ONE 2011, 6, e22477. [CrossRef]

43. Lyskov, S.; Gray, J.J. The RosettaDock server for local protein-protein docking. Nucleic Acids Res. 2008, 36, W233–W238. [CrossRef]

http://doi.org/10.1073/pnas.2016067117
http://www.ncbi.nlm.nih.gov/pubmed/33144509
http://doi.org/10.1016/j.canlet.2020.06.001
http://doi.org/10.1074/jbc.RA119.010123
http://doi.org/10.1074/jbc.M117.804237
http://doi.org/10.1038/s41467-020-15879-5
http://doi.org/10.1021/ci700257y
http://doi.org/10.1016/j.tcb.2021.04.002
http://doi.org/10.1038/nature14216
http://doi.org/10.1038/s41586-018-0362-1
http://www.ncbi.nlm.nih.gov/pubmed/30046110
http://doi.org/10.1038/nature14328
http://www.ncbi.nlm.nih.gov/pubmed/25799992
http://doi.org/10.1073/pnas.2024512118
http://www.ncbi.nlm.nih.gov/pubmed/33597306
http://doi.org/10.1016/j.tcb.2021.05.009
http://doi.org/10.1038/s41556-018-0140-1
http://www.ncbi.nlm.nih.gov/pubmed/30022119
http://doi.org/10.1002/ijc.22155
http://doi.org/10.21873/anticanres.14558
http://doi.org/10.1101/gad.898701
http://www.ncbi.nlm.nih.gov/pubmed/11459826
http://doi.org/10.1101/gad.897901
http://doi.org/10.1083/jcb.201302060
http://www.ncbi.nlm.nih.gov/pubmed/24100295
http://doi.org/10.1080/15384101.2015.1120922
http://www.ncbi.nlm.nih.gov/pubmed/26697843
http://doi.org/10.1038/emboj.2010.276
http://doi.org/10.1073/pnas.2016064117
http://doi.org/10.1101/gad.348662.121
http://doi.org/10.1074/jbc.M109.092403
http://doi.org/10.1371/journal.pone.0022477
http://doi.org/10.1093/nar/gkn216


Molecules 2022, 27, 636 15 of 15

44. Lyskov, S.; Chou, F.C.; Conchúir, S.Ó.; Der, B.S.; Drew, K.; Kuroda, D.; Xu, J.; Weitzner, B.D.; Renfrew, P.D.; Sripakdeevong, P.; et al.
Serverification of Molecular Modeling Applications: The Rosetta Online Server That Includes Everyone (ROSIE). PLoS ONE 2013,
8, e63906. [CrossRef] [PubMed]

45. Šali, A.; Blundell, T.L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 1993, 234, 779–815.
[CrossRef]

46. Kuntz, I.D.; Blaney, J.M.; Oatley, S.J.; Langridge, R.; Ferrin, T.E. A geometric approach to macromolecule-ligand interactions.
J. Mol. Biol. 1982, 161, 269–288. [CrossRef]

47. Shoichet, B.K.; Kuntz, I.D.; Bodian, D.L. Molecular docking using shape descriptors. J. Comput. Chem. 1992, 13, 380–397.
[CrossRef]

48. Irwin, J.J.; Sterling, T.; Mysinger, M.M.; Bolstad, E.S.; Coleman, R.G. ZINC: A free tool to discover chemistry for biology.
J. Chem. Inf. Model. 2012, 52, 1757–1768. [CrossRef] [PubMed]

49. Qvit, N.; Kornfeld, O.S.; Mochly-Rosen, D. Engineered Substrate-Specific Delta PKC Antagonists to Enhance Cardiac Therapeutics.
Angew. Chemie-Int. Ed. 2016, 55, 15672–15679. [CrossRef] [PubMed]

50. Qvit, N.; Disatnik, M.H.; Sho, E.; Mochly-Rosen, D. Selective Phosphorylation Inhibitor of Delta Protein Kinase C-Pyruvate
Dehydrogenase Kinase Protein-Protein Interactions: Application for Myocardial Injury in Vivo. J. Am. Chem. Soc. 2016,
138, 7626–7635. [CrossRef] [PubMed]

51. Jafari, R.; Almqvist, H.; Axelsson, H.; Ignatushchenko, M.; Lundbäck, T.; Nordlund, P.; Molina, D.M. The cellular thermal shift
assay for evaluating drug target interactions in cells. Nat. Protoc. 2014, 9, 2100–2122. [CrossRef] [PubMed]

52. Molina, D.M.; Jafari, R.; Ignatushchenko, M.; Seki, T.; Larsson, E.A.; Dan, C.; Sreekumar, L.; Cao, Y.; Nordlund, P. Monitoring
drug target engagement in cells and tissues using the cellular thermal shift assay. Science 2013, 341, 84–87. [CrossRef] [PubMed]

http://doi.org/10.1371/journal.pone.0063906
http://www.ncbi.nlm.nih.gov/pubmed/23717507
http://doi.org/10.1006/jmbi.1993.1626
http://doi.org/10.1016/0022-2836(82)90153-X
http://doi.org/10.1002/jcc.540130311
http://doi.org/10.1021/ci3001277
http://www.ncbi.nlm.nih.gov/pubmed/22587354
http://doi.org/10.1002/anie.201605429
http://www.ncbi.nlm.nih.gov/pubmed/27860071
http://doi.org/10.1021/jacs.6b02724
http://www.ncbi.nlm.nih.gov/pubmed/27218445
http://doi.org/10.1038/nprot.2014.138
http://www.ncbi.nlm.nih.gov/pubmed/25101824
http://doi.org/10.1126/science.1233606
http://www.ncbi.nlm.nih.gov/pubmed/23828940

	Introduction 
	Results 
	MAD2L2-MAD2L2-Rev1 Model and Docking Simulations 
	Both c#2 and c#3 Sensitize Cells to Cisplatin 
	DNA Damage Is Elevated after Co-Treatment of Cisplatin Together with c#2 or c#3 
	MAD2L2-Rev1 Interaction Is Reduced after Exposure to c#2 or c#3 

	Discussion 
	Materials and Methods 
	Generating MAD2L2-MAD2L2-Rev1 Model 
	Docking Simulations 
	Protein Induction, Purification and Field Effect Biosensing (FEB) 
	Cell Culture, Plasmids and Transfections 
	Colony Survival Assay 
	Western Blot and Co-Immunoprecipitation 
	Immunofluorescence 
	Cellular Thermal Shift Assay (CETSA) 

	Patents 
	References

