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DeepSnap-Deep Learning Approach
Predicts Progesterone Receptor
Antagonist Activity With High
Performance
Yasunari Matsuzaka and Yoshihiro Uesawa*

Department of Medical Molecular Informatics, Meiji Pharmaceutical University, Tokyo, Japan

The progesterone receptor (PR) is important therapeutic target for many malignancies

and endocrine disorders due to its role in controlling ovulation and pregnancy via

the reproductive cycle. Therefore, the modulation of PR activity using its agonists

and antagonists is receiving increasing interest as novel treatment strategy. However,

clinical trials using the PR modulators have not yet been found conclusive evidences.

Recently, increasing evidence from several fields shows that the classification of chemical

compounds, including agonists and antagonists, can be done with recent improvements

in deep learning (DL) using deep neural network. Therefore, we recently proposed a

novel DL-based quantitative structure-activity relationship (QSAR) strategy using transfer

learning to build prediction models for agonists and antagonists. By employing this

novel approach, referred as DeepSnap-DL method, which uses images captured from

3-dimension (3D) chemical structure with multiple angles as input data into the DL

classification, we constructed prediction models of the PR antagonists in this study.

Here, the DeepSnap-DL method showed a high performance prediction of the PR

antagonists by optimization of some parameters and image adjustment from 3D-

structures. Furthermore, comparison of the prediction models from this approach with

conventional machine learnings (MLs) indicated the DeepSnap-DLmethod outperformed

these MLs. Therefore, the models predicted by DeepSnap-DL would be powerful tool for

not only QSAR field in predicting physiological and agonist/antagonist activities, toxicity,

and molecular bindings; but also for identifying biological or pathological phenomena.

Keywords: chemical structure, progesterone receptor, DeepSnap, deep learning, QSAR, machine learning

INTRODUCTION

The progesterone receptor (PR: NCBI Gene ID:18667) is a member of the steroid receptor
superfamily and plays essential roles in female reproductive events, such as the establishment
and maintenance of pregnancy, menstrual cycle regulation, sexual behavior, and development of
mammary glands. It is also responsible for developing the central nervous system by the regulation
of cell proliferation and differentiation via a wide range of physiological process modulated
by progesterone-mediated classical ligand-binding or non-classical novel non-genomic pathways
(Garg et al., 2017; Leehy et al., 2018;Wu et al., 2018; Cenciarini and Proietti, 2019; González-Orozco
and Camacho-Arroyo, 2019; Hawley and Mosura, 2019; Rudzinskas et al., 2019). In the clinic,
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steroidal PR agonists have been used in oral contraception
and postmenopasusal hormone therapy (Fensome et al., 2005;
Afhüppe et al., 2009; Lee et al., 2020). In addition, PR antagonists
are gaining attention as a potential anti-cancer treatment due to
their inhibitory effects on cell growth in vitro, affecting ovarian,
breast, prostate, and bone cancer cells (Tieszen et al., 2011; Zheng
et al., 2017; Ponikwicka-Tyszko et al., 2019; Ritch et al., 2019;
Trabert et al., 2019). However, recent clinical trials on ovarian
cancer with a selective progesterone receptor modulator, such
as mifepristone, have largely been unsuccessful, despite high in
vitro antagonist activity in nuclear PR (Rocereto et al., 2010;
Ponikwicka-Tyszko et al., 2019). Recently, it has been shown
that treatment of ovarian cancer with the progesterone agonist
or antagonist may induce similar adverse effects, including
tumor promotion, due to the absence of classical nuclear PRs
in ovarian cancer (Ponikwicka-Tyszko et al., 2019). However,
the classical nuclear PR antagonist activity is important in not
only understanding other tumor propagation such as breast
tumorigenesis through unique gene expression programme
(Mohammed et al., 2015; Check, 2017), but also in regulation
of the central and peripheral nervous systems (González-Orozco
and Camacho-Arroyo, 2019).

In silico computational approaches such as machine learning
(ML) methods are useful tools for discovery agonists and
antagonists, particularly in modeling of ligand-binding
protein activation with an increasing number of new chemical
compounds synthesized (Banerjee et al., 2016; Niu et al., 2016;
Asako and Uesawa, 2017; Wink et al., 2018; Bitencourt-Ferreira
and de Azevedo, 2019; Da’adoosh et al., 2019; Kim G. B. et al.,
2019). Among in silico approaches, both qualitative classification
and quantitative prediction models by quantitative structure-
activity relationship (QSAR) methods were reported using a
large collection of environmental chemicals (Zang et al., 2013;
Niu et al., 2016; Norinder and Boyer, 2016; Cotterill et al., 2019;
Dreier et al., 2019; Heo et al., 2019). However, building high-
performance prediction model requires specialized techniques,
such as selecting appropriate features and algorithms (Beltran
et al., 2018; Khan and Roy, 2018). In addition, the prediction
results of the current model are often difficult to develop the
drug discovery for clinical trials (Gayvert et al., 2016; Neves et al.,
2018; Vamathevan et al., 2019). A deep learning (DL) approach
with convolutional neural networks (CNNs), Rectified Linear
Unit (ReLU), and max pooling is a promising, powerful tool
for the classification modeling (Date and Kikuchi, 2018; Öztürk
et al., 2018; Wang et al., 2018; Agajanian et al., 2019; Idakwo
et al., 2019; Jo et al., 2019), where factors affecting its prediction
performance include sufficient size, suitable representation, and
accurate labeling of supervised input datasets (Bello et al., 2019;
Chauhan et al., 2019; Liu P. et al., 2019). To resolve these issues,
the DL-based QSAR modeling approach using molecular images
produced by 3D chemical structure as input data was previously
developed and referred to as the DeepSnap-DL approach
(Uesawa, 2018). In addition, the Toxicology in the twenty-first
Century (Tox21) 10k library, consisted of ∼10,000 chemical
structures, such as industrial chemicals, pesticides, natural food
products, and drugs, contains corresponding endpoints of the
quantitative high throughput screening to identify agonists

and antagonists of signaling pathways by measuring reporter
gene activities against these chemicals. This serves as a very
useful resource when constructing the prediction model (Huang
et al., 2014; Chen et al., 2015; Sipes et al., 2017; Cooper and
Schürer, 2019). By utilizing datasets from this library, a lot of
the prediction models for agonists and antagonist activities have
been constructed and reported (Ribay et al., 2016; Asako and
Uesawa, 2017; Balabin and Judson, 2018; Banerjee et al., 2018;
Fernandez et al., 2018; Lynch et al., 2018, 2019; Bai et al., 2019;
Idakwo et al., 2019; Matsuzaka and Uesawa, 2019b; Yuan et al.,
2019; Zhang J. et al., 2019).

In this study, we evaluated the prediction performance of the
PR antagonist activity by optimization the DL hyperparameters
and adjusting 3D chemical structure preparation and input
data size. Furthermore, we compared the performance between
DeepSnap-DL and conventional MLs methods, such as
random forest (RF), extreme gradient boosting (XGBoost,
which we denote as XGB), and Light gradient boosting
machine (LightGBM) with Bayesian optimization. We show
the DeepSnap-DL method outperformed the three traditional
MLs approaches. These findings suggest that the DeepSnap-DL
approach may be applied to other protein agonist and antagonist
activities with high-quality and high-throughput prediction.

RESULTS AND DISCUSSION

Contributions of Splits of Dataset Angles in
the DeepSnap-DL Approach for Prediction
Performance
In order to analyze the influence of different splits for the
training, validation, and test (Tra, Val, and Test) datasets and the
angles when capturing Jmol-generated images in the DeepSnap
approach, we randomly divided the input data of a total of 7,582
chemical compounds into five ratios, namely Tra:Val:Test= 1:1:1
to 5:5:1 (Table S1). A total of 25 prediction models, including five
angles (120, 180, 240, 300, and 360◦) and five dataset ratios of
the Tra:Val:Test (1: 1: 1, 2: 2: 1, 3: 3: 1, 4: 4: 1, and 5: 5: 1) were
build using 10-fold cross validation prepared randomly split. The
results, for average loss in Val datasets: loss (Val), accuracy in Val
datasets: Acc (Val), balanced accuracy: BAC, F, area under the
curve: AUC, accuracy in test datasets: Acc (Test), and matthews
correlation coefficient: MCC at 120 to 300◦ and five dataset ratios
were ≤ 0.025, ≥ 99.3, ≥ 0.977, ≥ 0.906, ≥ 0.996, ≥ 0.979, and
≥ 0.898, respectively (Table 1, Table S2). However, at 360◦ angle,
average loss (Val), Acc (Val), BAC, F, AUC, Acc (Test), and MCC
for the five dataset ratios were≤ 0.254,≥ 92. 7,≥ 0.781,≥ 0.378,
≥ 0.855, ≥ 0.712, and ≥ 0.352, respectively (Table 1, Table S2).
The five angles (120, 180, 240, 300, and 360◦) produced 27, 8, 8,
8, and 1 picture(s), respectively, from the 3D structures using the
DeepSnap approach. These results suggest that multiple pictures
produced by the DeepSnap method outperformed single images
derived from at 360◦ angle. In addition, to confirm that this
very high prediction performance was not due to overfitting, a
permutation test was conducted by PR antagonist-non-specific
activity score labeling. The results, for average loss (Val), Acc
(Val), BAC, F, AUC, Acc (Test), and MCC at 120 to 360◦ and
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TABLE 1 | Prediction performances with different dataset sizes and angles on the DeepSnap-Deep Learning.

Angles 120◦ 180◦ 240◦ 300◦ 360◦

tra:val:test Means SD Means SD Means SD Means SD Means SD

AUC 1: 1: 1 0.996 0.004 0.997 0.002 0.997 0.001 0.996 0.002 0.855 0.012

AUC 2: 2: 1 0.997 0.003 0.996 0.002 0.997 0.002 0.996 0.003 0.874 0.016

AUC 3: 3: 1 0.999 0.001 0.999 0.001 0.999 0.001 0.998 0.001 0.905 0.020

AUC 4: 4: 1 0.999 0.001 0.998 0.002 0.999 0.001 0.999 0.001 0.911 0.025

AUC 5: 5: 1 0.997 0.002 0.998 0.002 0.998 0.001 0.998 0.001 0.909 0.017

AUC 5: 5: 1 PMT 0.519 0.028 0.527 0.019 0.527 0.025 0.527 0.014 0.526 0.019

Acc (Test) 1: 1: 1 0.984 0.007 0.982 0.007 0.982 0.006 0.981 0.008 0.712 0.027

Acc (Test) 2: 2: 1 0.985 0.011 0.981 0.009 0.983 0.006 0.979 0.008 0.747 0.025

Acc (Test) 3: 3: 1 0.985 0.007 0.990 0.005 0.986 0.004 0.983 0.011 0.812 0.042

Acc (Test) 4: 4: 1 0.987 0.008 0.986 0.006 0.990 0.005 0.988 0.007 0.836 0.045

Acc (Test) 5: 5: 1 0.989 0.006 0.987 0.008 0.983 0.009 0.981 0.012 0.814 0.055

Acc (Test) 5: 5: 1 PMT 0.408 0.208 0.511 0.183 0.412 0.179 0.457 0.212 0.426 0.193

MCC 1: 1: 1 0.924 0.028 0.911 0.030 0.911 0.026 0.907 0.036 0.352 0.015

MCC 2: 2: 1 0.924 0.049 0.905 0.040 0.914 0.028 0.898 0.035 0.391 0.026

MCC 3: 3: 1 0.927 0.032 0.946 0.025 0.927 0.018 0.916 0.046 0.462 0.053

MCC 4: 4: 1 0.932 0.038 0.930 0.029 0.947 0.022 0.938 0.034 0.489 0.067

MCC 5: 5: 1 0.942 0.028 0.935 0.036 0.917 0.040 0.909 0.050 0.489 0.063

MCC 5: 5: 1 PMT −0.038 0.044 −0.012 0.067 −0.015 0.068 −0.030 0.101 −0.009 0.079

Parameters (MPS:100, ZF:100, AT:23%, BR:14.5mÅ, BMD:0.4Å, BT:0.8Å, LR:0.0008, BS:108, GoogleNet).
5:5:1 PMT showed permutation test using Tra:Val:Test = 5:5:1.
ZF, zoom factor; AT, atom size; BR, bond radius; BMD, minimum bond distance; BT, bond tolerance; LR, learning rate; BS, batch size.

five kinds of datasets ratio were 0.322 or less, 90.4 or less, 0.496
or less, 0.168 or less, 0.527 or less, 0.511 or less, −0.009 or less,
respectively (Table 1, Table S2). These results suggested that the
high-performances in the PR antagonist prediction models may
not be overfitting with the datasets.

Contributions of Combinations of Pictures
From Different Angles in the DeepSnap-DL
Approach for Prediction Performance
In order to investigate whether the combinations of pictures
produced from different angles in the DeepSnap affect the
prediction performance of the PR antagonist, two, three, or four
pictures were randomly selected from eight pictures produced
at 300◦ angle, which is small number of pictures produced in
the DeepSnap and can be expected reduction of calculation
cost. A total of 10 combinations of two, three, and four
pick-up pictures each were used for building the prediction
models using the DL method with a Tra:Val:Test ratio of 5:5:1.
The performance of MCC, Acc (Test), AUC, BAC, F, Acc
(Val), and Loss (Val) at two pictures was lower than those
at three and four pictures (Figures 1A–C, Figures S1A–D). To
compare these seven of indicators for performance between
one and rest nine combinations among total 10 combinations,
multiple comparison test was performed. The AUC and BAC at
the two pictures combinations of [(0,0,0), (0,0,300)] indicated
significantly lower results compared with those of the other
nine combinations (Figure 1C, Figure S1A, Pc< 0.01). However,
the MCC and Acc (Test) did not show significant differences

for any combinations (Figures 1A,B). In addition, the Acc
(Val) and Loss (Val) at two pictures combinations of [(0,0,0),
(0,0,300)] were significantly higher and lower than those
of other nine combinations (Figures S1C,D, Pc < 0.01). In
addition, in order to show the differences of means of the
performance indicator for one combination with means of
the rest nine combinations, the nine delta values, which are
difference of means of one and rest nine combinations and
95% confidence intervals (CIs) were examined (Figures 2A–C,
Figures S2A–D). Two combinations of [(0,0,0), (0,0,300), and
(0,0,0), (0,300,300), (0,300,0)] were showed high positive delta
values (Figures 2A–C, Figures S2A,B). Combined, these results
suggest that the combinations of pictures produced from
different angles in DeepSnap may affect prediction performance
and special combination of images with different angles may
indicates high-performance.

Contributions of Parameters for Prediction
Performance in the DeepSnap-DL
Approach
To optimize prediction performance of the PR antagonist, we
analyzed three kinds of hyperparameters, including learning
rates (LRs), batch sizes (BSs), and solver types (STs) in the
DL process using a Tra:Val:Test ratio of 5:5:1. By employing
two angles, at 300◦ and 360◦, which correspond to eight and
one image(s) per one chemical structure of images captured in
DeepSnap, we studies a total of six LRs from 0.05 to 0.000001
of hyperparameter range in the DL that were fine-tuned by
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FIGURE 1 | Prediction performances for combinations of different angles in DeepSnap. Two (blue boxes in right), three (yellow boxes in middle), and four (green boxes

in left) of pictures were randomly selected from eight pictures produced at angle 300◦, after which 10 kinds of picture combinations were prepared. The means of (A)

MCC, (B) Acc(Test), and (C) AUC were calculated by 10-fold cross validation. *Pc < 0.01.
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FIGURE 2 | Differences in mean levels of performance for combinations of different angles in DeepSnap. Difference between mean levels of performance of one

combination and rest nine combinations for pick-up pictures from eight pictures produced at angle 300◦ in Figure 1 were shown as blue dots with 95% confident

interval (95% CI) as error bars. (A) Delta MCC (95% CI), (B) Delta Acc.Test (95% CI), and (C) Delta_AUC (95% CI) were calculated based on results in Figures 1A–C.
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FIGURE 3 | Performance contribution of prediction models with learning rates (LRs). The means of (A) AUC, (B) Acc(Test), and (C) MCC were calculated for six LRs

from 0.05 to 0.000001 by 10-fold cross validation in the DeepSnap-DL-build prediction models using image produced by DeepSnap with two angles, 300◦ and 360◦,

with a Tra:Val:Test ratio of 5:5:1.

FIGURE 4 | Performance contribution of prediction models with batch sizes (BSs). The means of (A) AUC, (B) Acc(Test), and (C) MCC were calculated for ten BSs

from 5 to 320 by 10-fold cross validation in the DeepSnap-DL-build prediction models using images produced by DeepSnap for two angles, 300◦and 360◦, with a

Tra:Val:Test ratio of 5:5:1.

10-fold cross validation (Figures 3A–C, Figures S3A–D). In
this study, the highest prediction performance at 360◦ angle
was observed on at LR:0.01, which indicated that the mean
MCC, Acc (Test), AUC, Loss(Val), Acc(Val), F, and BAC were
0.689 ± 0.173, 0.910 ± 0.079, 0.959 ± 0.043, 0.016 ± 0.104,
99.72 ± 3.64, 0.705 ± 0.168, and 0.911 ± 0.063, respectively
(Figures 3A–C, Figures S3A–D). Coversely, at 300◦ angle, the
highest performance showed that the mean MCC, Acc (Test),
F, and BAC at LR: 0.001 were 0.934 ± 0.173, 0.987 ± 0.072,
0.940 ± 0.167, and 0.981 ± 0.057, respectively, and the mean
AUC, Loss(Val), and Acc(Val) at LR: 0.01 were 0.998 ± 0.038,
0.011 ±0.094, and 99.71 ± 3.54 respectively (Figures 3A–C,
Figures S3A–D). These findings suggest that the optimal range
of the LR may be from 0.01 to 0.001. Using the same method,
a total of 10 BSs from 5 to 320 were used for optimization
of hyperparameters in the DeepSnap-DL method at two kinds

of angles, at 300◦ and 360◦. The prediction performance at
the two angles decreased with increasing BSs, and the 300◦

angle showed a higher performance compared with a 360◦

angle (Figures 4A–C, Figures S4A–D). The higher prediction
performances at 300◦ and 360◦ angles indicated that the mean
MCC, Acc (Test), AUC, Loss(Val), Acc(Val), F, and BAC at BS:5
were 0.924 ± 0.039 and 0.925 ± 0.046 for the mean MCCs at
300◦ and 360◦ angles, 0.985 ± 0.009 and 0.985 ± 0.010 for the
meanAcc(Test)s at 300◦ and 360◦ angles, 0.999± 0.001 and 0.997
± 0.002 for the mean AUCs at 300◦ and 360◦ angles, 0.012 ±

0.003 and 0.014± 0.004 for the mean Loss(Val)s at 300◦ and 360◦

angles, 99.70 ± 0.055 and 99.63 ± 0.203 for the mean Acc(Val)s
at 300◦ and 360◦ angles, 0.930 ± 0.037 and 0.931 ± 0.044 for the
mean Fs at 300◦ and 360◦ angles, and 0.989 ± 0.006 and 0.979
± 0.005 for the mean BACs at 300◦ and 360◦ angles, respectively
(Figures 4A–C, Figures S4A–D). There are tensions among the
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BS, the LR, and the learning speed and stability (Brownlee, 2018;
Hoffer et al., 2018; Smith et al., 2018; Shallue et al., 2019). These
results show that calculation speed may be reduced by further
optimization of the interractiona among the BS, the LR, and other
parameters. Further, a total of six STs including Adaptive Delta
(AdaDelta), Adaptive gradient (AdaGrad), Adaptive Moment
Estimation (Adam), Nesterv’s accelerated gradient (NAG), Root
Mean Square propagation (RMSprop), and Stochastic gradient
descent (SGD) of hyperparameters in the DL were analyzed
for prediction performance at 300◦ angle in the DeepSnap-DL
approach. The prediction performances used the AdaDelta and
RMSprop indicated a significant decrease and increase compared
with other five STs, respectively (Figures 5A–C, Figures S5A–D).
The AdaGrad calculates the mean of the gradient (Duchi et al.,
2011), but the RMSprop calculates the exponential moving
average of the square of the gradient (Tieleman and Hinton,

2012) so that the LR when building our prediction model may be
adjusted according to the degree of the more recent parameter
update. In this study, a pre-trained GoogLeNet was used as
DL-based argorithms. Consistent with the our results, it was
repored the high classification performance using GoogLeNet
model pre-trained on Image Net as a feature extractor (Zhu
et al., 2019). The deep neural networks (DNNs) are trained using
the optimized SGD algorithm, which calculates a expected error
gradient for the current model state by the training datasets,
corrects the weights of a node in the network each time by
backpropagation, where the amount of weight updated during
the training is a configurable hyperparameter and called the
LR (Mostafa et al., 2018; Zhao et al., 2019). The performance
of the SGD depended on how LRs, which controls the rate or
speed at the end of each batch of trainings are turned over
time (Zhao et al., 2019). In general, when the LR is too large,

FIGURE 5 | Performance contribution of prediction models with solver types (STs). The means of (A) AUC, (B) Acc(Test), and (C) MCC were calculated for six STs

(AdaDelta, AdaGrad, Adam, NAG, RMSprop, and SGD) by 10-fold cross validation in the DeepSnap-DL-build prediction models using images produced by

DeepSnap with angle 300◦ with a Tra:Val:Test ratio of 5:5:1. *Pc < 0.05, ***Pc < 0.001.

FIGURE 6 | Performance contribution of prediction models with background image colors. The means of (A) AUC, (B) Acc(Test), and (C) MCC were calculated for six

background colors (white, red, yellow, green, blue, and black) of image pictures produced by DeepSnap for angles 300 and 360◦ by 10-fold cross validation in the

DeepSnap-DL-build prediction models with a Tra:Val:Test ratio of 5:5:1. *Pc < 0.05, **Pc < 0.01, ***Pc < 0.001.
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FIGURE 7 | Performance contribution of prediction models with different wash conditions for preparation of chemical structures using molecular operating

environment (MOE) software. For the preparation of 3D chemical structures by MOE software, combinations of three kinds of protonation (none, dominate, neutralize)

and three kinds of coordinates (2D, 3D, CORINA) were used. The means of (A) AUC, (B) Acc(Test), and (C) MCC were calculated for nine combinations of wash

conditions (none_2D, none_3D, none_Corina, domi_2D, domi_3D, domi_Corina, neut_2D, neut_3D, and neut_Corina) for images produced by DeepSnap for two

angles, 300◦and 360◦, by 10-fold cross validation with a Tra:Val:Test ratio of 5:5:1. *Pc < 0.05, **Pc < 0.01, ***Pc < 0.001.

weight updates will be diverse by increase of inadvertent gradient
descent, resulted in osillated performance by a positive feedback
loop (Bengio, 2012; Brownlee, 2018). On the other hand, when
the LR is to small, wight updates with a high training error will
be stuck with a slow learning speed. Therefore, it is important
to find optomal LR for the modeling with high-performance
(Bengio, 2012; Brownlee, 2018). However, it is impossible to
estimate the optimal LR on a given dataset a priori. In addtion,
when using probabilitistic gradient descent internally such as
DL, the input dataset split into several subsets, whose numbers
of training detaset used in the calculation of the error gradient
before the weight update is a hyperparameter for the learning
algorithm called the BS, due to the lessening of the influence
of outliers during training (Balles et al., 2017; Brownlee, 2018).
Consisten with previous report that a covariance of the update
width of weight increases with the reduction of the BSs, and
performance is improved by making it easier to converge to
a flat local solution (Keskar et al., 2017; Brownlee, 2018), the
prediction performance in this study was also increased with
reduction of BSs of the SGD. It has been shown that small BS
stimulates a regularizing effects and lower generalization error
by adding a noisy (Li Y. et al., 2019; Wen et al., 2019). In this
study, the error backpropagation for the training and the gradient
descent method for the weight update on this DL were used,
where the optimal solution that is the smallest error is leaded by
adjusting the range of amount of repetitive weight updata based
on the relationship that when the current value is close to the
supervised data, the error becames small. In order not to fall into
a non-optimized local solution, the LRs at the beginning of the
present study is increased, and then decreased with the weight
update at the end of the fine-tine. Futhermore, the performance
in this study was improved by using small BSs, while calculation
cost and memory usage were increased due to update of the
weights in each units of the mini-batch. However, it was reported
that the use of multi-core learning by rejecting unnecessary
weights selection indicates better efficiency and shorter trining
time (Połap et al., 2018). To assesse the contribution of the

background colors of images produced by the DeepSnap method
with the prediction performance, we then used a total of six color
types, including white, red, yellow, green, blue, and black for
both 300◦ and 360◦ in the DeepSnap-DL approach. The prdiction
models built by the two background colors, including white
and black, showed significantly low performance compared with
the other four background colors at 360◦ angle (Figures 6A–C,
Figures S6A–D). Conversely, six background colors at 300◦

angle indicated high performance, but white and black colors
showed slightly lower performances compared with the other
four background colors (Figures 6A–C, Figures S6A–D). These
results suggest that the DeepSnap-DL method could improve the
prediction performance via parameter optimization.

Contributions of Conformational Sampling
of Chemical Compounds for Prediction
Performance of the PR Antagonist in the
DeepSnap-DL Approach
To investigate the contribution of conformational sampling
of the 3D- chemical structures to the prediction performance
of the PR antagonist, the 3D structures were produced by
the combinations of its cleaning rules by adjusting the three
of protonation states (none, dominant, neutralize) and three
coordinating washed species (depict 2D, rebuild 3D, CORINA)
in wash treatment of the MOE software at two angles (300
and 360◦). A total of nine cleaning rules by combining
three protonation states and the three coordinating washed
species was used to build the prediction models with a
Tra:Val:Test ratio of 5:5:1 (Figures 7A–C, Figures S7A–D).
All nine prediction performances at 300◦evaluated by AUC,
Acc(Test), MCC, BAC, and F were higher than those at 360◦

(Figures 7A–C, Figures S7A,B). Of the nine cleaning rules, the
none_2D, which indicates protonation: none and coordinating
washed specie: depict 2D at two angles, 300 and 360◦, showed
lowest prediction performance compared with those of any
other eight combinations (Figures 7A–C, Figures S7A,B). In
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addition, five combinations, including none_3D, none_Corina,
domi_2D, domi_3D, and neut_2D, showed the highest prediction
performances compared with the other four combinations
(Figures 7A–C, Figures S7A,B). These findings suggested the
conformational sampling of the 3D- chemical structures may
be a critical step for improving prediction performance of the
PR antagonist.

Comparison of the Prediction Performance
of the PR Antagonists by the DeepSnap-DL
Approach With the Conventional MLs
To compare the prediction performance of the DeepSnap
approach with conventional MLs, three ML approaches, random
forest (RF), XGBoost (XGB), and LightGBM (LGB) were used to
build the prediction models of the PR antagonists by applying
7,581 of the 3D- chemical structures, which excluded one
chemical (Sodium hexafluorosilicate; PubChem SID: 144212628)
from 7,582 chemicals used in DeepSnap-DL method due to not
enable to be adapted for application of descriptor extraction,
to extract molecular descriptors using by a non-copy left
open-source software application, MORDRED. A total of 687
descriptors were extracted from nine SDF files produced by
nine cleaning rules, including three protonation states and
three coordinating washed species. Principal component analysis
(PCA) calculated eigenvalues, contribution rates (CRs), and
Cumulative CRs of each Principal component (PC) for the nine
cleaning rules (none_2D, none_3D, none_Corina, domi_2D,
domi_3D, domi_ Corina, neut_2D, neut_3D and neut_ Corina)
(Figures S8A–C). The eigenvalues, contribution rates (CRs),
and Cumulative CRs of the nine cleaning rules indicated no
differences (Figures S8A–C). The means CRs of PC1 and PC2 of
the nine cleaning rules were ∼26.7 ± 0.031 and 5.06 ± 0.003%,
respectively (Figures S8A–C). Cumulative CRs from PC1 to
PC10 were∼50.5± 0.059% (Figure S8C). In addition, clustering
analysis of variables in the PCAwere performed using descriptors
extracted from the nine cleaning rules, and calculated number
of variables belonging to the cluster (variables No.), cluster
representative variable with the largest square of correlation
coefficient with cluster component (variables), the percentage
of fluctuation explained by their first PC of the fluctuations of
variables belonging to the cluster (Fluctuation in Cluster), and
percentage of total variation explained by each cluster component
(Fluctuation in Total). All variables of the molecular descriptors
were summarized in cluster by grouping similar variables, in
which the top 15 for the overall percentage of explained variation
were listed (Table S3). The means and total number of variables
in each 15 of clusters were 16.7 ± 10.1 and 235 in none_2D, 15.4
± 8.6 and 231 in none_3D, 15.5 ± 9.6 and 232 in none_Corina,
15.5 ± 9.6 and 232 in domi_2D, 15.2 ± 8.3 and 228 in domi_3D,
15.4 ± 8.6 and 231 in domi_ Corina, 15.5 ± 9.6 and 232 in
neut_2D, 15.5 ± 9.6 and 232 in neut_3D, and 15.5 ± 9.6 and
232 in neut_ Corina, respectively (Table S3). The means and top
of Fluctuation rates in each 15 of clusters were 0.828 ± 0.088
and 0.920 in none_2D, 0.833 ± 0.087 and 0.905 in none_3D,
0.839 ± 0.078 and 0.901 in none_Corina, 0.839 ± 0.078 and
0.901 in domi_2D, 0.838 ± 0.081 and 0.916 in domi_3D, 0.834 T
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TABLE 3 | Prediction performances with different dataset sizes on the four Machine Learnings.

MLs RF XGB LGBM CB NN

tra:val:test Means SD Means SD Means SD Means SD Means SD

AUC 1: 1: 1 0.794 0.015 0.870 0.007 0.870 0.012 0.872 0.009 0.806 0.021

AUC 2: 2: 1 0.807 0.012 0.874 0.012 0.876 0.012 0.877 0.011 0.821 0.019

AUC 3: 3: 1 0.818 0.022 0.887 0.014 0.889 0.013 0.888 0.013 0.831 0.025

AUC 4: 4: 1 0.821 0.010 0.889 0.008 0.893 0.007 0.894 0.010 0.842 0.029

AUC 5: 5: 1 0.811 0.027 0.879 0.020 0.890 0.018 0.886 0.016 0.824 0.024

AUC 5: 5: 1 PMT 0.488 0.038 0.489 0.032 0.482 0.038 0.473 0.025 0.498 0.035

Most high-peformance in each MLs were indicated bt bold.
MLs, RF, XGB, LGBM, CB, and NN indicate machine learnings, random forest, Xgboost, Light GBM, Cat boost, and neural network, respectively.

± 0.081 and 0.908 in domi_ Corina, 0.839 ± 0.078 and 0.901
in neut_2D, 0.847 ± 0.072 and 0.901 in neut_3D, and 0.839 ±

0.078 and 0.901 in neut_ Corina (Table S3). The means and total
of Fluctuation rates in each 15 of clusters were 0.022 ± 0.016
and 0.333 in none_2D, 0.022 ± 0.015 and 0.332 in none_3D,
0.022 ± 0.015 and 0.332 in none_Corina, 0.022 ± 0.015 and
0.332 in domi_2D, 0.022 ± 0.013 and 0.328 in domi_3D, 0.022
± 0.014 and 0.329 in domi_ Corina, 0.022 ± 0.015 and 0.332
in neut_2D, 0.022 ± 0.015 and 0.332 in neut_3D, and 0.022 ±

0.015 and 0.332 in neut_ Corina (Table S3). Three kinds of MLs,
including RF, XGB, and LGB, were applied to predict compound
activity of the PR antagonists and build a total of nine prediction
models of RF, XGB, and LGB, respectively, for three Tra:Test
ratios (0.5:0.5, 0.8:0.2, and 0.9: 0.1) (Table 2). The highest mean
AUC values for RF, XGB, and LGB in five independent tests
that randomly split by sklearn.model_selection were observed
for the domi_3D cleaning rule in the three test dataset sizes
(Table 2). In addition, consistent with recent reports (Zhang J.
et al., 2019), out of three MLs, the LGB showed the highest means
AUC values in five independent tests compared with RF and XGB
in the three test dataset sizes: 0.9267 ± 0.0047 (test dataset size
= 0.5), 0.9309 ± 0.0093 (test dataset size = 0.2), and 0.9407 ±

0.0134 (test dataset size = 0.1) (Table 2). Recent research shows
the performance and speed of the LGB algorithm are mainly
determined by parameters and sample size (Zhang J. et al., 2019).
Therefore, in order to improve the prediction performance of the
PR antagonist, the LGB were applied with optimized parameters
using a Bayesian hyperparameter optimization algorithm from
the HyperOpt package. A total of 27 prediction models for the
nine and three cleaning rules and test dataset sizes, respectively,
were built using the LGB. Similarly, the domi_3D cleaning rule
showed the highest performance compared with the other eight
cleaning rules via HyperOpt optimization, which allows faster
and more robust parameter optimization compared to wither
grid or random search (Bergstra et al., 2011; Zhang J. et al.,
2019) in all three of the test dataset sizes (Table 2). Furthermore,
improved prediction performance of the domi_3D by HyperOpt
was observed in two of the test dataset sizes, 0.9346 ± 0.0069
(test dataset size = 0.2), and 0.9411 ± 0.0126 (test dataset size =
0.1) (Table 2). However, the highest means AUCs optimized by
HyperOpt were lower than mean AUC of the domi_3D prepared
from 300◦ using the DeepSnap-DL approach (AUC = 0.9971

± 0.0021). In, addition, to directly compare the performance
between DeepSnap-DL and conventional MLs using same input
data, the molecular descriptors were extracted from Tra and
Test datasets (tra:test = 1:1 to 5:1) used in DeepSnap-DL by
Moerdred. The means of number of the molecular descriptors
used in MLs were 690 ± 6.85 in tra:test = 1:1, 689 ± 7.24 in
tra:test= 2:1, 694± 14.58 in tra:test= 3:1, 690± 6.82 in tra:test=
4:1, 692± 9.34 in tra:test= 5:1, 709± 0.00 in tra:test= 5:1 PMT,
respectively (Table 3). Four kinds of MLs, including RF, XGB,
LGB, and CatBoost (CB) were applied to construct prediction
models of compound activity of the PR antagonists using these
molecular descriptors by 10-fold cross validation. The highest
mean AUC values for RF, XGB, LGB, and CB in 10-fold cross
validation were observed at dataset ratio of tra:test = 4:1; 0.821
± 0.010 in RF, 0.889 ± 0.008 in XGB, 0.893 ± 0.007 in LGBM,
and 0.894 ± 0.010 in CB, respectively (Table 3). In addition,
the highest mean Acc in test datasets for RF, XGB, LGB, and
CB in 10-fold cross validation were 0.9043 ± 0.0032 at dataset
ratio of tra:test = 2:1 in RF, 0.9121 ± 0.0037 at dataset ratio
of tra:test = 4:1 in XGB, 0.9153 ± 0.0047 at dataset ratio of
tra:test = 4:1 in LGBM, and0.9115 ± 0.0058 at dataset ratio of
tra:test = 4:1 in in CB, respectively (Table S4). Furthermore, in
order to compare the performance of prediction model by the
molecular descriptors as input dataset of neural network (NN)
with DeepSnap-DL, the molecular descriptors extracted from
Tra and Test datasets used in DeepSnap-DL by Moerdred were
applied to NN using JMP pro application. The highest mean AUC
values of five kinds of dataset ratio of tra:test (1:1 to 5:1) in 10-
fold cross validation were observed at dataset ratio of tra:test =
4:1; 0.842 ± 0.029 in (Table 3). Permutation test that randomly
replaced activity scores of the PR in dataset ratio of tra:test = 5:1
showed non-predictive abilities: AUCs were 0.488 ± 0.038 in RF,
0.489 ± 0.032 in XGB, 0.482 ± 0.038 in LGBM, 0.473 ± 0.025 in
CB, and 0.498± 0.035 inNN, respectively (Table 3). These results
demonstrate that the DeepSnap-DL method outperformed the
traditional ML methods such as RF, XGB, LGB, CB, and NN
for predicting the activity of the PR antagonists. However, it
remains unclear which process of the DeepSnap-DL method
affects the performance. Recently, the graph, in which atoms and
molecular bonds are represented by nodes and edges as feature
vector has become a useful tool due to enable capturing the
structural relations among input data (Jensen, 2019; Jippo et al.,
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2019; Takata et al., 2020). However, some problems about this
have been pointed out. The complex and diverse connectivity
patterns for the graph-structured data, such as non-Euclidean
nature often are difficult to gain proper features (Zhang S. et al.,
2019). A low-dimensional representation by embedding in a
low-dimensional Euclidean space for handling such complex
structures (Reutlinger and Schneider, 2012; Li B. et al., 2019).
On the other hand, graph CNN (GCN) using DL, which defined
convolution operations for the graph structures indicates their
powerful capability by using the graph structure data directly as
input data for NN due to convolutions and filtering on the non-
Euclidean characteristic of graph (Coley et al., 2018; Meng and
Xiang, 2018; Eguchi et al., 2019; Liu K. et al., 2019; Miyazaki
et al., 2019; Ryu et al., 2019). Whereas, some drawbacks for
this GCN have also been shown (Kipf and Welling, 2017; Zhou
et al., 2018; Wu Z. et al., 2019). First, if the graph convolution
operation was repeated by increase of the number of layers, the
representation at all nodes would converge to same values, so that
the performance of the GCN was decreased (Wu F. et al., 2019;
Zhang S. et al., 2019). Second, most spectral-based approaches
by transforming the graph into the spectral domain through the
eigenvectors of the Laplacian matrix cannot be performed on
graphs with different size numbers of vertices and Fourier bases
(Bail et al., 2019). Third, the problem of identifying the class
labels of nodes in a graph, in which if the small number of labels
was used, their information cannot be propagated throughout
the graph (Chen et al., 2019; Jiang et al., 2019; Wu F. et al.,
2019). Fourth, since the depiction of the chemical structure by the
graph simply represents a bond between atoms, the GCN lacks
the interatomic distance and 3D-structual information. While,
the DeepSnap-DL method can analyze the 3D-conformational
sampling with multiple angles. In this study, the performance
in the DeepSnap-DL using pictures as input data were higher
compared with that of the NN using descriptors as input. In
addition, the performances between the four conventional MLs
including RF, XGB, LGBM, and CB and the NN using descriptors
as input data showed no differences. These results indicate that
pictures produced 3D-chemical structure may be important for
building the high-performance in the DeepSnap-DL method.
While, since the main factor(s) corresponding to the molecular
descriptors in the constructing of the prediction model remain
unknown, it is difficult to estimate their molecular actions.

In this study, we showed that the DeepSnap-DL approach
enables high-throughput and high-quality prediction of the PR
antagonist due to the automatic extraction of feature values
from 3D-chemical structures adjusted as suitable input data
into the DL, as well as avoiding overfitting through selective
activation of molecular features with integration of multi-layered
networks (Guo et al., 2017; Liang et al., 2017; Kong and Yu,
2018; Akbar et al., 2019). In addition, consist with recent
reports (Chauhan et al., 2019; Cortés-Ciriano and Bender, 2019),
this study indicated both the training data size and image
redundancy are critical factors when determining prediction
performance. In addition, there is long-standing problem of
class imbalanced data for the MLs that resulted in low-
performance by extremely different distribution of labeled input
data (Haixiang et al., 2017). To resolve this issue, adjustment

of sampling (over-sampling, adding repetitive data and under-
sampling, removing data) and class weights in loss functions
(softmax cross-entropy, sigmoid cross-entropy, and focal loss),
where weights are assigned to data in order to match a given
distribution, have been applied, but these countermeasures
have some drawbacks such as overfitting, redundancy, valuable
information loss, and how to assign weights and select loss
functions (Chawla et al., 2002; Chang et al., 2013; Dubey et al.,
2014; Cui et al., 2019). However, despite the excellent predictive
performance, there is still room for improving the DeepSnap-
DL method. First, it is still unclear what and where feature
value(s) are extracted from the input image in the DeepSnap-DL
process. In the DL, the features within an image are extracted
by a convolution process with CNNs. Therefore, by specifying
the convolutional region(s) using combination analysis with
other, new methods to visualize the region(s) of the feature(s)
(Selvaraju et al., 2016; Xu et al., 2017; Farahat et al., 2019;
Oh et al., 2019; Xiong et al., 2019), the important part or
area of the chemical structure necessary for prediction model
construction could be estimated. Secondly, the optimal 3D-
structuring rules have not been defined. In a recent report
(Matsuzaka and Uesawa, 2019b), among ten conformational
samplings of 3D-chemical structures, the combination of
adjusted protonation state by the neutralized and coordinated
washed species by CORINA (neut_Corina) in the MOE database
construction process indicated overperformance of prediction
models compared to nine conformational samplings. However,
in this study, the washing treatment of the chemical structures
by the neut_Corina did not represent highest prediction
performance for the nine conformational samplings examined.
These findings suggest that the conformational sampling method
leading the best predictive performance may vary depending on
the target models.

In conclusion, the DeepSnap-DL approach is a more effective
ML method that could fulfill the growing demand for rapid
in silico assessments of not only pharmaceutical chemical
compounds including agonists and antagonist, but also the safety
evaluations for industrial chemicals.

MATERIALS AND METHODS

Data
The original datasets for a total of 9,667 chemical structures and
the corresponding PR activity scores used in this study were
downloaded as reported previously (Matsuzaka and Uesawa,
2019a,b), in the simplified molecular input line entry system
(SMILES) format from the PubChem database (PubChem
assay AID 1347031). The database consisted of quantitative
high-throughput screening (qHTS) results for PR antagonists
derived from the Tox21 10k library composed of compounds
mostly procured from commercial sources, including pesticides,
industrial chemicals, food additives, and drugs based on known
environmental hazards, exposure concerns, physiochemical
properties, commercial availability, and cost (Huang et al., 2014;
Huang, 2016). Since the dataset includes some similar chemical
compounds, but with different activity scores for different ID
numbers due to the presence of possible stereoisomers or salts,
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these chemical compounds with indefinite activity criteria, non-
organic compounds, and/or inaccurate SMILES were eliminated.
A total of 7,582 chemicals for the PR antagonists were then
chosen for a non-overlapping input dataset (Table S1). In the
qHTS of the Tox21 program to identify the chemical compounds
that inhibit PR signaling, the PR antagonist activity scores were
determined from 0 to 100% based on a compound concentration
response analysis as follows: % Activity = ((Vcompound–
Vdmso)/(Vpos–Vdmso)) × 100, where Vcompound, Vdmso,
and Vpos denote the compound, the median values of the DMSO
only, and the median value of the positive control well values
measuring by expression of a beta-lactamase reporter gene under
the control of an upstream activator sequence, respectively. These
were then corrected by using compound-free control plates, i.e.,
DMSO-only plates, at the beginning and end of the compound
plate measurement (Huang et al., 2014, 2016; Huang, 2016). The
Pubchem_activity_scores of the PR antagonists were grouped
into the following three classes: (1) zero, (2) from 1 to 39, and (3)
from 40 to 100, represented as inactive, inconclusive, and active
compounds, respectively. In this study, compounds with activity
scores from 40 to 100 or from 0 to 39 were defined as active
(760 compounds) or inactive (6,822 compounds), respectively
(Table S1). We then applied a 3D conformational import from
the SMILES format using MOE 2018 software (MOLSIS Inc.,
Tokyo, Japan) to generate the chemical database. To determine
a suitable form of each chemical structure for the building the
prediction models, a databaseWash application was applied. The
protonation menu of the Wash application was set to neutralize
and charged species were replaced if the following conditions
were met: (1) all the atoms are neutral; (2) the species is neutral
overall; or (3) the least charge-bearing form of the structure or
dominant form is present, whereby the molecule was replaced
with the dominant promoter/tautomer at pH 7 used in this study.
In addition, the coordinates of the washed species were adjusted
based on the following conditions: (1) the results of the 2D
depiction layout algorithm if Depict 2D was selected; (2) those
generated by a cyclic 3D embedder based on distance geometry
and refinement if Rebuild 3D is selected; or (3) those generated
by the external program, CORINA classic software (Molecular
Networks GmbH, Nürnberg, Germany, https://www.mn-am.
com/products/corina). The nine types of combinations of the
protonation states (none, dominant, neutralize) and coordinating
washed species (depict 2D, rebuild 3D, CORINA) when washing
the MOE database were investigated: none_2D (none, depict
2D), domi_2D (dominant, depict 2D), neut_2D (neutralize,
depict 2D), none_3D (none, rebuild 3D), domi_3D (dominant,
rebuild 3D), neut_3D (neutralize, rebuild 3D), none_CORINA
(none, CORINA), domi_CORINA (dominant, CORINA), and
neut_CORINA (neutralize, CORINA). The 3D structures were
finally saved in the SDF file format as described previously
(Agrafiotis et al., 2007; Chen and Foloppe, 2008; Matsuzaka and
Uesawa, 2019a,b) To scrutinize how to divide the dataset, we
performed a permutation test for the activity scores randomly
labeled as all chemical compounds. The dataset was split into N
groups, where N is Rt + Rv + 1 (Rt and Rv were integers for
ratio of Tra and Val datasets). Three dataset groups, including
Tra, Val, and Test, were then built with a Rt: Rv: 1 ratio from

N groups of datasets. A prediction model was created by Tra ad
Val datasets, and scrutinized the performance with Test dataset.
Finally, we calculated prediction performance using the Test
dataset. In the following analysis, the other test dataset was
selected from a group that was not used in the first analysis. The
model was built and its calculation of probability was examined
in the same manner. When the N-times analysis was completed,
a new N-segment dataset was prepared. Similarly, the model was
constructed and its performance was evaluated. Finally, a total of
ten tests were performed that is N-fold cross validation, in which
this study used N = 10 for reducing the bias (Moss et al., 2018).

DeepSnap
Using the SDF files prepared by the MOE application, the 3D
chemical structures of the PR antagonist compounds were
depicted as 3D ball-and-stick models by a Jmol, an open-source
Java viewer software for 3D molecular modeling of chemical
structures (Hanson, 2016; Scalfani et al., 2016; Hanson and Lu,
2017). The 3D-chemical models were captured automatically
as snapshots of user-defined angle increments on the x-, y-,
and z-axes, which were saved as 256 × 256 pixel resolution
PNG files (RGB) and split into three types of datasets, Tra,
Val, and Test datasets, as previously reported (Matsuzaka and
Uesawa, 2019a,b). To design suitable molecular images for
their classifications at the next step, some parameters during
the DeepSnap depiction process, such as image pixel size,
image format (png or jpg), molecule number per SDF file to
split into (MPS), zoom factor (ZF, %), atom size for van der
Waals radius (AT, %), bond radius (BR, mÅ), minimum bond
distance (MBD), and bond tolerance (BT) were set based on
the previous study (Matsuzaka and Uesawa, 2019a,b), and
background colors (BC) was examined in this study. Of these
parameters, six BCs including black (0, 0, 0), white (255, 255,
255), red (255, 0, 0), yellow (255, 255, 0), green (0, 255, 0), and
blue (0, 0, 255) were examined. To investigate the combinations
of pictures with prediction performances, two, three, and
four pictures were randomly selected from eight pictures
produced at angle 300◦, after which 10 combinations of pictures
were prepared for the following allocations: two pictures:
[(0,0,0), (0,300,0)], [(0,0,0), (0,0,300)], [(0,0,0), (300,0,0)],
[(0,0,0), (300,300,0)], [(0,0,0), (300,300,300)], [(0,0,300),
(0,300,0)], [(0,0,300), (300,300,0)], [(0,0,300), (0,300,300)],
[(0,300,0), (0,300,300)], [(0,300,0), (300,300,300)]; three pictures,
[(0,0,0), (0,300,0), (0,0,300)], [(0,0,0), (0,300,0), (0,300,300)],
[(0,0,0), (0,300,300), (300,300,300)], [(0,0,0), (300,0,300),
(300,300,300)], [(0,0,300), (300,0,0), (300,300,300)], [(0,0,300),
(300,0,300), (300,300,300)], [(0,0,300), (0,300,0), (300,300,300)],
[(0,300,0), (300,300,0), (300,300,300)], [(0,300,300), (0,300,300),
(300,300,0)], [(0,300,300), (300,0,0), (300,300,300)]; and four
pictures, [(0,0,0), (0,0,300), (0,300,0), (300,0,0)], [(0,300,300),
(300,0,300), (300,300,0), (300,300,300)], [(0,0,0), (0,300,300),
(300,0,0), (300,300,300)], [(0,0,300), (300,0,300), (300,300,0),
(300,0,0)], [(0,0,0), (300,0,0), (300,300,0), (300,300,300)],
[(0,0,300), (0,300,0), (300,0,0), (300,0,300)], [(0,0,300), (0,300,0),
(300,300,300), (0,0,300)], [(0,300,0), (300,300,0), (300,300,300),
(0,0,300)], [(0,300,300), (0,300,300), (300,300,0), (300,0,300)],
[(0,300,300), (300,0,0), (300,300,300), (300,300,300)].
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ML Models
The following four different MLmodels were chosen to construct
the prediction models for PR antagonist activity: (1) DL, (2)
RF, (3) XGB, and (4) LightGBM. For the (1) DL, all the PNG
image files produced by DeepSnap were resized by utilizing
NVIDIA DL GPU Training System (DIGITS) version 4.0.0
software (NVIDIA, Santa Clara, CA, USA), on four-GPU
systems, Tesla-V100-PCIE (31.7 GB) with a resolution of 256
× 256 pixels as input data, as previously reported (Matsuzaka
and Uesawa, 2019a,b). To rapidly train and fine-tune the highly
accurate DNNs using the input Tra and Val datasets based
on the image classification and building the prediction model
pre-trained by using ILSVRC (ImageNet Large Scale Visual
Recognition Challenge) 2012 dataset (http://image-net.org/
challenges/LSVRC/2012/browse-synsets) including 1,000 class
names such as animal (40%), device (12%), container (9%),
consumer goods (6%), equipment (4%), etc., that split into 1.2
million of train, fifty thousand of Val, one million of Test
datasets extracted from ImageNet (http://www.image-net.org/
index), as transfer learning (Matsuzaka and Uesawa, 2019a,b),
we used a pre-trained open-source DL model, Caffe, and
the open-source software on the CentOS Linux distribution
7.3.1611. In this study, the network of GoogLeNet was used
deep CNN architectures comprised complex inspired by LeNet,
and implemented a novel module called “Inception,” which
used batch normalization, image distortions, and RMSprop, and
concatenates different filter sizes and dimensions into a single
new filter and introduces sparsity and multiscale information in
one block (Figure S9). There is a 22 layer deep CNN, comprised
of two convolutional layers, two kinds of pooling layers (fourmax
pools and one avg pool), and nine “Inception” modules, in which
each module has six convolution layers and one pooling layer,
and 4 million of parameters (Table S5; Szegedy et al., 2014; Yang
et al., 2018; Kim J. Y. et al., 2019). At the DeepSnap-DL method,
the predictionmodels were constructed by training datasets using
30 of epochs in DL. Among these epochs, most low of Loss value
in Val dataset was selected for next examination to prediction
using Test dataset.

For the (2) RF based on decision trees, where each tree is
independently constructed and each node is split using the
best among the subset of predictors randomly chosen at the
node, (3) XGB combined weak learners (decision trees) to
achieve stronger overall class discrimination, and (4) LightGBM
modified gradient boosting algorithm by gradient-based
one-side sampling and exclusive feature bundling, molecular
descriptors were calculated using a Python package Mordred
(https://github.com/mordred-descriptor/mordred) (Moriwaki
et al., 2018). Classification experiments were conducted in
the Python programming language using specific classifier
implementations, RF (https://github.com/topics/random-forest-
classifier), XGB (https://github.com/dmlc/xgboost/tree/master/
python-package), and LightGBM (https://github.com/microsoft/
LightGBM) provided by the scikit-learn and rdkit Python
packages (Czodrowski, 2013; Chen and Guestrin, 2016; Ke
et al., 2017; Kotsampasakou et al., 2017; Sandino et al., 2018;
Zhang J. et al., 2019), as previously reported (Matsuzaka and
Uesawa, 2019a,b). In addition, the prediction models build by
LightGBM were optimized by Hyperopt, which is a python

library for the sequential model-based optimization (also
Bayesian optimization) of hyperparameters of ML algorithms
(https://github.com/hyperopt/hyperopt). As for dataset split, all
chemical compounds were randomly separated into two Tra
and Test datasets using train_test_split function (test_size = 0.5,
0.2, 0.1).

Evaluation of the Predictive Model
Using 10-fold cross validation in the DL prediction model,
we analyzed the probability of the prediction results using the
prediction model with the lowest minimum Loss in Val value
among 30 examined echoes. Since we calculated the probabilities
for each image prepared from different angles with the x-,
y-, and z-axes directions calculated for one molecule during
the process of the DeepSnap-DL method, the medians of each
these predicted values were used as the representative values
for target molecules, as described previously (Matsuzaka and
Uesawa, 2019a,b). Classification performance was evaluation
using information retrieved from confusion matrix. Based on the
sensitivity (Equation 1), which is a true positive rate identified
as positive for all the positive samples including true and false
positives, and the specificity (Equation 2), which is a true
negative rate identified as negative for all the negative samples
including true and false negatives, a confusion matrix regarding
the predicted and experimentally defined labels was used to
make the ROC curve and calculate the AUC using JMP Pro
14, which is a statistical discovery software (SAS Institute Inc.,
Cary, NC, USA), as reported previously (Matsuzaka and Uesawa,
2019a,b). Therefore, it follows that where TP, FN, TN, and
FP denote true positive, false negative, true negative, and false
positive, respectively:

Sensitivity =
∑

TPs/
(

∑

TPs+
∑

FNs
)

(1)

Specificity =
∑

TNs/
(

∑

TNs+
∑

FPs
)

(2)

Additionally, since the proportion between the “active” and
“inactive” compounds for the activity scores is biased in the
Tox21 10k library (Huang et al., 2016), the BAC (Equation 3), Acc
(Equation 4), Precision (Equation 5), Recall (Equation 6), F value
(Equation 7), and MCC (Equation 8) were utilized to properly
evaluate imbalanced data by applying a cut-off point calculated
using the JMP Pro 14 and statistical discovery software.

BAC =
(

sensitivity+ specificity
)

/2 (3)

Accuracy = (TP + TN)/(TP + FP + TN + FN) (4)

Precision = TP/(TP+ FP) (5)

Recall = TP/(TP+ FN) (6)

F value = 2× Recall× Precision/
(

Recall+ Precision
)

(7)

MCC = (TP× TN− FP× FN)

/
√

{(TP+ FP) × (TP+ FN) × (TN+ FP) × (TN + FN)}

(8)

For RF, XGB, and LGB, we calculated the AUC using Python 3
and open source ML libraries, including scikit-learn (Pedregosa
et al., 2011; Kensert et al., 2018). Differences in mean levels of
performance for combinations of different angles in DeepSnap.
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Difference between mean levels of performance, including
AUC, BAC, F, MCC, Loss.Val, Acc.Test, and Acc.Val, for one
combination and rest nine combinations for pick-up pictures
from eight pictures produced at angle 300◦ were indicated as
Delta_AUC, Delta_BAC, Delta_F, Delta_MCC, Delta_ Loss.Val,
Delta_ Acc.Test, and Delta_ Acc.Val, respectively with 95% CI
calculated by Microsoft Excel 2016.

PCA
PCA of the molecular descriptors extracted from a total
7,581 of chemical compounds was performed by using JMP
Pro 14. Each set of 687 molecular descriptors derived from
a total of nine SDF files produced based on the cleaning
rules, including protonation and coordinates, were analyzed to
represent multivariate information in a reduced subspace of
principal components (PCs). Eigenvalues, which represent the
amount of variation explained by each PCs were calculated and
the rates of the variation explained by each PCs, whose scores
obtained by linear combination of variables with eigenvector
weights, were displayed as bar graph according to user’s guide
(SAS Institute Inc., 2018).

Statistical Analysis
Differences in prediction performances, including loss (Val), Acc
(Val), BAC, F, AUC, Acc (Test), and MCC were analyzed by
the Mann–Whitney U test (Chakraborty and Chaudhuri, 2014;
Dehling et al., 2015; Dedecker and Saulière, 2017). Finding of
corrected P (Pc) < 0.05 is significant based on corrections from
multiple testing, such as the Bonferroni’s method.
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Figure S1 | Prediction performances with combinations of different angles in the

DeepSnap. Two (blue boxes in right), three (yellow boxes in middle), and four

(green boxes in left) of pictures were randomly selected from eight pictures

produced at angle 300◦, and after which ten picture combinations were prepared.

The means BAC (A), F (B), Acc(Val) (C), and Loss(Val) (D) were calculated by

10-fold cross validation. ∗Pc < 0.05, ∗∗Pc < 0.01, ∗∗∗Pc < 0.001.

Figure S2 | Differences in mean levels of performance for combinations of

different angles in DeepSnap. Difference between mean levels of performance of

one combination and rest nine combinations for pick-up pictures from eight

pictures produced at angle 300◦ in Figure 1 were shown as blue dots with 95%

confident interval (95% CI) as error bars. (A) Delta_BAC (95% CI), (B) Delta F

(95% CI), (C) Delta_Acc.Val (95% CI), and (D) Delta_Loss.Val (95% CI) were

calculated based on results in Figures S1A–D.

Figure S3 | Performance contribution of prediction models with learning rates.

The means of (A) Loss(Val), (B) Acc(Val), (C) BAC, and (D) F were calculated by

10-fold cross validation in the DeepSnap-DL-build prediction models using

images produced by DeepSnap with two angles, 300 and 360◦, with a

Tra:Val:Test ratio of 5:5:1.

Figure S4 | Performance contribution of prediction models with batch sizes (BSs).

The means of (A) Loss(Val), (B) Acc(Val), (C) BAC, and (D) F were calculated for

ten BSs from 5 to 320 by 10-fold cross validation in the DeepSnap-DL-build

prediction models using images produced by DeepSnap for two angles, 300 and

360◦, with a Tra:Val:Test ratio of 5:5:1.

Figure S5 | Performance contribution of prediction models with solver types (STs).

The means of (A) Loss(Val), (B) Acc(Val), (C) BAC, and (D) F were calculated for

six STs (AdaDelta, AdaGrad, Adam, NAG, RMSprop, and SGD) by 10-fold cross

validation in the DeepSnap-DL-build prediction models using images produced by

DeepSnap for angle 300◦ with a Tra:Val:Test ratio of 5:5:1. ∗Pc < 0.05,
∗∗∗Pc < 0.001.

Figure S6 | Performance contribution of prediction models with background

image colors. The means of (A) Loss(Val), (B) Acc(Val), (C) BAC, and (D) F were

calculated for six background colors (white, red, yellow, green, blue, and black) of

images produced by DeepSnap for angles 300 and 360◦ by 10-fold cross

validation in the DeepSnap-DL-build prediction models with a Tra:Val:Test ratio of

5:5:1. ∗Pc < 0.05, ∗∗Pc < 0.01, ∗∗∗Pc < 0.001.

Figure S7 | Performance contribution of prediction models with different wash

conditions for preparation of chemical structures using molecular operating

environment (MOE) software. For the preparation of 3D chemical structures by

MOE software, combinations of three kinds of protonation (none, dominate,

neutralize) and three kinds of coordinate (2D, 3D, CORINA) were used. The

means of (A) BAC, (B) F, (C) Loss(Val), and (D) Acc(Val) were calculated for nine

combinations of wash conditions (none_2D, none_3D, none_Corina, domi_2D,

domi_3D, domi_Corina, neut_2D, neut_3D, and neut_Corina) for images

produced by DeepSnap for two angles, 300 and 360◦, by 10-fold cross

validation with a Tra:Val:Test ratio of 5:5:1. ∗Pc < 0.05, ∗∗Pc < 0.01,
∗∗∗Pc < 0.001.

Figure S8 | Principal component (PC) analysis of 687 molecular descriptors

extracted by MORDRED in nine combinations of wash conditions (none_2D,

none_3D, none_Corina, domi_2D, domi_3D, domi_Corina, neut_2D, neut_3D,

and neut_Corina). (A) Individual plots for all descriptors. (B) Correlation between

descriptors and first principal plane (PC1 + PC2). (C) Eigenvalues, contribution

rate (CR), and cumulative CR od PC1 to PC10.

Figure S9 | The architecture of the CNN model in GoogLeNet. The pre-trained

CNN comprises a 22- layer DNN: (A) implemented with a novel element that is

dubbed an inception module; and (B) implemented with batch normalization,

image distortions, and RMSprop, including a total of 4 million parameters.
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