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Redox reactions are imperative to preserving cellular metabolism yet must be strictly regulated. Imbalances between reactive
oxygen species (ROS) and antioxidants can initiate oxidative stress, which without proper resolve, can manifest into disease.
In type 1 diabetes (T1D), T-cell-mediated autoimmune destruction of pancreatic β-cells is secondary to the primary invasion
of macrophages and dendritic cells (DCs) into the islets. Macrophages/DCs, however, are activated by intercellular ROS from
resident pancreatic phagocytes and intracellular ROS formed after receptor-ligand interactions via redox-dependent transcription
factors such as NF-κB. Activated macrophages/DCs ferry β-cell antigens specifically to pancreatic lymph nodes, where they trigger
reactive T cells through synapse formation and secretion of proinflammatory cytokines and more ROS. ROS generation, therefore,
is pivotal in formulating both innate and adaptive immune responses accountable for islet cell autoimmunity. The importance of
ROS/oxidative stress as well as potential for redox modulation in the context of T1D will be discussed.

1. Introduction

Oxidation-reduction or redox reactions are pivotal to main-
taining life through respiration, metabolism, and energy sup-
ply. Mitochondria, which are known to be the powerhouses
of the cell, possess the ability to utilize nutrients to generate
energy (redox potential) via the electron transport chain,
which donates electrons to oxygen to yield ATP and H2O
[1, 2]. Consequently, oxygen free radicals, known as superox-
ide (O2

−), are nonenzymatically leaked from the mitochon-
dria and react with other molecules to create reactive oxygen
species (ROS) such as hydrogen peroxide (H2O2), peroxyni-
trite (ONOO−), and hydroxyl radical (OH−), all of which can
alter DNA, proteins, carbohydrates, and nucleic acids [3–5]
and may eventually lead to irreversible damage. The inability
of a cell’s antioxidant defenses to overcome oxidative injury
and accretion of severe ROS-mediated damage over time will
eventually lead to cell death [5–7]. In order to maintain a

reduced environment, several cellular antioxidant defenses
are in place, including glutathione, glutathione peroxidase,
catalase, and three different superoxide dismutase (SOD)
enzymes: SOD1, 2, and 3, located in different subcellular
and extracellular locations. A basal level of “accidental”
superoxide is accumulated in healthy individuals [1, 8],
which has been widely hypothesized to be responsible
for aging and the associated pathologies [9–11]. However,
oxidative stress occurs from an imbalance between ROS and
antioxidant actions. During chronic oxidative stress caused
by environmental factors (i.e., UV light, ionizing radiation,
toxic substances), infections, or lack of dietary antioxidants,
an inequity of cellular reducing equivalents capable of
detoxifying the increased burden of ROS has marked effects
on normal cellular processes. However, in times of oxidative
stress, normal cellular respiration is also still functioning,
resulting in dysregulated mitochondrial free radical produc-
tion and disparity between ROS generation and antioxidant
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defenses [6, 12]. The combination of stress-induced and
conventional mitochondrial dysfunction can manifest into
disease states, including cancer [13–15], rheumatoid arthritis
[16, 17], neurological disorders [18–21], pulmonary diseases
[22], and type 1 diabetes [23–26].

2. Redox and Inflammation

What once was thought to be solely derived from the
mitochondria, reactive oxygen species have now been shown
to be produced by an important family of primarily immune
system-associated enzymes [27–29]. The NADPH oxidase
(NOX) family of enzymes is designed to combine NADPH
and oxygen to actively generate superoxide. Activated phago-
cytes, such as macrophages, monocytes, and dendritic cells
(DCs), as well as neutrophils, form ROS within the phagoso-
mal membrane for efficient killing of a wide array of invading
pathogens [30]. The protection afforded by the phagocytes
is crucial, but not without side effects. Production of highly
permeable reactive oxygen species (i.e., H2O2) causes leakage
of these molecules from phagocytes and therefore, unwanted
effects on bystander cells [31, 32]. In an environment
high in oxidative stress, these bystander reactions drive
increased activation of the immune system, cell damage,
and progression to disease. For example, NOX-derived ROS
have been shown to stimulate mitogenic signaling and
proliferation [33, 34], which can have potential deleterious
consequences on the promotion of tumorigenesis [35, 36]
and in the context of autoimmunity, can lead to T cell
expansion [37]. Additionally, H2O2 can augment monocyte
chemokine receptor surface expression critical for migration
to sites of infection and inducing inflammation [38] as
well as can promote VEGF signaling to trigger angiogenesis,
with implications in cancer and tumor progression [39].
Furthermore, ROS generated from both mitochondria and
NADPH oxidase complexes can also act intra-cellularly as
well as inter-cellularly as signal transduction molecules.
Hydrogen peroxide has been suggested to inactivate protein
phosphatases [40], as well as to activate protein tyrosine
kinases [41, 42] and metalloproteases through the oxidation
of critical cysteine residues [43, 44]. Phosphatases such as
SHP-1 serve to decrease inflammation by inhibiting tyrosine
kinase activity, yet this type of regulation is lost upon cysteine
oxidation [45–48]. Similarly, latent metalloproteases require
oxidation for activation and, in the presence of hypochlorous
acid (HOCL) and H2O2, secretion of chemotactic mediators
(L-selectin and proinflammatory TNFα) is highly increased
[49], thus enhancing inflammation. In addition, H2O2 has
been demonstrated to freely cross the plasma membrane
and activate NF-κB, a redox-dependent transcription factor
[50, 51]. NF-κB plays a major role in immunity by promoting
proinflammatory cytokine production, cell proliferation,
and inflammation. In general, receptor-ligand interactions
are known to generate ROS [52, 53]. In the immune
system specifically, LPS interaction with Toll-like receptor 4
(TLR4) has been shown to facilitate the binding of TLR4
to NADPH oxidase 4 (Nox4) and subsequently release ROS
[54], resulting in the activation of NF-κB and genera-
tion of proinflammatory cytokines IL-1β and TNFα [53].

In a highly oxidized environment, the binding of pathogens
to innate cell receptors can lead to hyperresponsiveness
[55], suggesting inflammation is secondary to oxidative
stress [25, 56]. Not only are phagocytic cells critical
for early pathogen recognition through receptor-ligand
interaction, they are also necessary for activation of the
adaptive immune response. Following antigen recognition
by phagocytic antigen-presenting cells (APC), an adaptive
immune response is acquired in secondary lymphoid organs
through synapse formation of APCs with lymphocytes, as
well as from critical innate-derived ROS and third signal
proinflammatory cytokines (TNFα, IL-1β) enhancing T-
cell activation, proliferation, and effector function [37, 57].
Within this interaction, the H2O2 made by the phagocytes
is able to traverse the synapse and act upon the T cells, at
concentrations ranging from 10–100 μM [58, 59], resulting
in a feed-forward mechanism stimulating T-cell-specific
NF-κB activity and subsequent proinflammatory cytokine
production. Similar effects of ROS are also seen on B cells
[60]. Moreover, antigen stimulation of the TCR also drives
endogenous production of H2O2 through the T cell’s own
NOX enzyme [28, 61]. Intracellular H2O2 can then signal
and lead to T-cell proliferation, apoptosis [61, 62], and in
conjunction with proinflammatory cytokines, promote T-
cell effector function [37, 52, 63]. Therefore, in the presence
of oxidative stress, an inability to balance the oxidation with
antioxidant enzymes can drive chronic inflammation from
both the innate and adaptive arms of the immune response
[64], manifesting into many clinically relevant diseases,
particularly type 1 diabetes.

3. Oxidative Stress and Type 1 Diabetes

Type 1 diabetes or insulin-dependent diabetes mellitus
(T1D) is an autoimmune disorder involving immune-
mediated recognition of islet β-cells by autoreactive T cells,
which leads to the liberation of ROS and proinflammatory
cytokines, resulting in the destruction of pancreatic β-cells
in the islets of Langerhans and loss of insulin secretion.
Patients with T1D must constantly prevent hyperglycemia
by administering exogenous insulin or in the situation
of severe hyperglycemic unawareness, by undergoing islet
transplantation. Despite a multitude of efforts in trying to
specify the exact etiology, the cause of T1D is still under
debate. The combinatorial effects of genetic susceptibility,
environmental factors, and dietary deficiencies are known to
contribute to disease origin; however, the impact of oxidative
stress in a genetically susceptible individual is of particular
interest. Oxidative stress, as stated above, occurs when the
generation of ROS overcomes the scavenging abilities of
antioxidants. Such instances may be mediated by genetic lack
of antioxidant enzymes as well as environmental triggers like
viral infections. Overall, oxidative stress has been linked to β-
cell cytotoxicity [65–67] and has been suggested to play a role
in T1D pathology [68–71]. Several studies show that the total
serum antioxidant status, as measured by urate, Vitamin C,
and total plasma antioxidant levels, of prediabetic and T1D
patients is lower in comparison to age-matched controls [72,
73], which inevitably leads to greater oxidative modification
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of proteins and lipids [74]. Other literature illustrates a con-
nection between viruses, ROS production, and type 1 dia-
betes onset. Gamble et al. demonstrated a positive correlation
between type 1 diabetes onset and Coxsackie B4 virus infec-
tion through antibody titer measurements [75, 76]. Further-
more, such infections have been shown to cause indirect [77]
and direct β-cell damage [78] and to stimulate the β-cells
into secreting inflammatory mediators themselves [79]. ROS
are made following viral infection from activated phagocytes
[80, 81], as mentioned previously, and work to not only cause
cellular injury but also can activate inflammatory, redox-
dependent transcription factors, such as NF-κB, perpetu-
ating inflammation. Viral-mediated ROS production or a
reduction in antioxidants can have severe consequences as β-
cells are more prone to oxidative damage than most other tis-
sues. The β-cell mitochondria have exceptionally low levels of
glutathione peroxidase, superoxide dismutase, and catalase
activity [24, 82–84]. Because of this low antioxidant defense,
β-cells can be clearly disrupted by oxidative stress and, in
genetically predisposed individuals, results in easy targets for
a subsequent cytokine-mediated autoimmune attack.

Mitochondrial and NOX-derived ROS both have impli-
cations in β-cell destruction and T1D. Increased glucose
causes rapid induction of the tricarboxylic acid (TCA)
cycle within the β-cell mitochondria, which can lead to
augmented ROS production [85]. The superoxide leaked
from mitochondria can then form H2O2 and work to
uncouple glucose metabolism from insulin secretion [86].
Ultimately, high levels of mitochondrial ROS can cause β-cell
death [87, 88]. Intriguingly, models of T1D induce disease
by generating toxic amounts of ROS within the islets (i.e.,
streptozotocin and alloxan) [89]. Alloxan is easily taken
up by β-cells [90], where it is reduced into dialuric acid
and subsequently reoxidized to establish a redox cycle [91].
ROS generated by alloxan treatment have been shown to
promote islet β-cell DNA fragmentation, culminating in
cell death [92]. In contrast, an alloxan-resistant strain of
mice, the ALR mouse, shows increased ROS dissipation and
resistance to islet destruction [23, 93, 94], further implicating
the importance of oxidative stress and T1D. Streptozotocin
(STZ), on the other hand, causes β-cell DNA alkylation and
eventually drains the cellular NAD+ and ATP source in an
effort to repair the DNA [95]. Xanthine oxidase is then able
to utilize dephosphorylated ATP as a substrate for superoxide
production [96]. Additionally, STZ metabolism increases the
levels of islet cell nitric oxide (NO) [97], which together with
superoxide can generate peroxynitrite (ONOO−). Detection
of peroxynitrite in prediabetic nonobese diabetic mouse
(NOD) islets suggests importance of this ROS in β-cell death
[71]. Similarly, NOX enzymes have been detected within the
pancreatic β-cells [98, 99]. Hyperglycemia can increase the
assembly of NOX enzymes through its p47phox subunit, and
therefore, enhance superoxide generation [100] and facilitate
β-cell death.

4. Immunology of T1D

Autoimmune diabetes onset is preceded by infiltration of
immune cells into the pancreatic islets. Ultimately, a breach

in tolerance to self-antigens allows for autoreactive T cells to
become activated and attack the β-cells, resulting in the loss
of insulin secretion. However, innate immune cells, such as
macrophages and DCs, are of the first cells to enter the islets
during insulitis [101, 102]. Although resident macrophages
are present in the pancreas at all times, acquisition of antigen
is required for macrophage activation and the production
of cytokines. As described above, genetic and environmental
factors can lead to cell destruction, releasing β-cell-specific
antigens as well as ROS [103]. Macrophages will phagocytose
dying β-cells and present antigen in the context of their
MHC molecules. In humans, specific HLA molecules HLA-
DR3 and DR4 are correlated with a susceptibility to T1D
[103, 104]. Moreover, the ROS created by the initial insult
to the islets are able to stimulate the activation of redox-
dependent NF-κB and other transcription factors within the
macrophages [105]. Activated macrophages secrete a mixture
of proinflammatory cytokines such as TNFα, IL-6, IL-1β,
and ROS, which can start to damage the pancreatic β-cells
[106–108]. IL-1β can cause extensive cytolysis in β-cells
[109] through the upregulation of iNOS and subsequent
generation of nitric oxide (NO) [110, 111], whereas TNFα
enhances IL-1β-mediated islet destruction and helps activate
APCs and T cells [112–114], but does not cause direct β-cell
apoptosis in vivo [114].

ROS and cytokines released by APCs not only promote
β-cell damage, but also help to generate an adaptive immune
response, which in T1D, is the crucial step in autoimmune
destruction. It is well established that chronic elicitation of
antigens to innate immune cells in a highly oxidized environ-
ment will lead to MHC-peptide presentation, perpetuating
an adaptive immune response [115, 116] (Figure 1).

In the context of continuous β-cell ablation, macro-
phages can phagocytose dying cells and migrate to the
pancreatic lymph node where they interact with naı̈ve T-cells.
It is this aforementioned synapse that enables T-cell prolifer-
ation and effector function to occur. In the presence of all
three necessary signals: (1) MHC-peptide, (2) costimulation,
and (3) soluble third signal, in this case consisting of ROS, IL-
1β, and TNFα, T cells become activated via NFAT and NF-κB
[117–121]. Furthermore, IL-12 released from macrophages
can differentiate CD4+ T cells into the TH1 lineage via signal-
ing through STAT4 [122–125]. CD4+ TH1 cells then home to
the site of antigen production, the β-cells, and call in other T
cells and more APCs through the secretion of IFNγ. IFNγ has
some indirect effects on β-cells, including potentiating the
maturation of pancreatic APCs, which can then elicit an even
greater T-cell response [126]. Additionally, neutralization of
IFNγ in NOD mice has been shown to reduce both diabetes
and insulitis [127], whereas IFNγR-deficient NOD mice
demonstrate delayed insulitis, but do not develop T1D [128].
Proinflammatory cytokines TNFα, IL-1β, and IFNγ all play a
role in β-cell death primarily through activation of redox-
regulated transcription factors NF-κB and STAT1 [129–131].
Combinations of TNFα with IFNγ or IL-1β are necessary
for primary murine β-cell death [132], and TNFα/IFNγ act
synergistically to activate the stress-activated proapoptotic
JNK/SAPK pathway, which promotes β-cell apoptosis via p53
and intracellular ROS [133]. The activation of NF-κB can
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Figure 1: Role of redox in the immunopathology of type 1 diabetes. An initial genetic or environmental insult to the beta cell triggers the release
of beta cell antigens as well as the production of ROS. Beta cell antigens are phagocytosed, and ROS are able to stimulate redox-dependent
transcription factors such as NF-κB, which leads to APC activation and cytokine secretion. ROS and proinflammatory cytokines secreted by
APCs act as the third signal within the T-cell-APC immunological synapse, which occurs in the pancreatic lymph node. ROS play a critical
role in the progression of naı̈ve TH0 cells to cytokine-secreting TH1 cells. Release of IFNγ by TH1 cells then works directly on the beta cells
as well as activates more APCs and CD8 cells, all of which can impart deleterious effects on the islets.

also increase iNOS and Fas expression, potential inducers of
cell death, while downregulating the antiapoptotic Bcl-2 gene
[134]. Apoptosis of β-cells is also mediated partially by T-cell
expression of Fas ligand, TNFα, and perforin/granzyme [114,
134]. Specifically, CD4+ T cells are thought to be sufficient
for T1D onset [135, 136], whereas CD8+ T cells seem to play
a lesser role in the final stage of autoimmune destruction
[137]. It is known, however, that synergy between both CD4
and CD8 T cells results in absolute transfer of diabetes in
rodent models [138, 139]. Although specific to the model
of autoimmune diabetes, TNFα secretion from CD4+ T
cells can activate TNFR1 on β-cells and cause apoptosis
[140], while CD8+ T cells can kill NOD β-cells by a Fas-
dependent mechanism [141] or by perforin release [142].
Ultimately, T-cell exacerbation of β-cell death comes from
endogenous generation of ROS and cytokines following APC
activation [143] that can perpetuate islet destruction through
a feed forward mechanism. Overall, ROS are crucial in not
only activating the initial infiltrating macrophages and DCs
[144] via the common denominator NF-κB, but also for
subsequently driving an adaptive TH1 immune response
that is necessary for total ablation of β-cells and progression
to T1D [134, 136]. Therefore, therapies would be most

beneficial if there was not only protection of the β-cells from
ROS, but also inhibition of the ROS-mediated autoimmune
attack, possibly by preventing NF-κB activation, ensuing
inflammation, and the initiation of the adaptive immune
response.

5. Controlling Redox in T1D

Glutathione peroxidase (GPX), superoxide dismutase
(SOD), and catalase are categorized as the most crucial
antioxidant enzymes; however, islets inherently contain only
a fraction of the enzymatic activities in comparison to liver,
which possesses the highest abundance [145]. Because of
the low antioxidant defenses present in pancreatic islets,
therapeutic strategies to enhance antioxidants and reducing
capabilities are of utmost importance. Studies utilizing
overexpression of GPX1, SOD1 (Cu/Zn SOD), SOD2
(MnSOD), or SOD mimetic administration in insulinoma
cell lines such as NIT-1 and INS-1 afforded protection from
ROS and reactive nitrogen species (RNS) in vitro [25, 146,
147]. Usage of SOD mimetics in other inflammatory models
has also demonstrated diminutions in proinflammatory
cytokines [148, 149]. Furthermore, stable transfection of
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insulin-producing RINm5F cells with GPX, catalase, and
Cu/Zn SOD resulted in defenses against cytokine toxicity
imparted by the combination of IL-1β, TNFα, and IFNγ
[150]. Antioxidant overexpression has been linked to not
only protection against ROS and cytokines, but also to
enhanced cell proliferation and decreased death. PDX1,
a transcription factor necessary for β-cell differentiation,
survival, and insulin synthesis [151], is also very responsive
to ROS [152], where high oxidation causes a cytoplasmic
relocation of PDX1 out of the nucleus, increased degradation
of the protein, and subsequent dysfunction of β-cells [153,
154]. By alleviating ROS within the islets, PDX1 protein has
exhibited stability and enhanced function in type 2 diabetes
models [155], which can also have implications in T1D for
stabilizing β-cell function and survival. Other experiments
utilize transgene or adenoviral technology to overexpress
antioxidant genes within the β-cells to specifically show
islet-mediated versus autoimmune protection from T1D.
These studies have elicited conflicting results. For example,
overexpression of metallothionein and catalase in β-cells was
unable to delay or inhibit spontaneous diabetes onset within
NOD mice and promoted reduced activation of the PDX1
survival pathway [156]. Metallothionein proteins are intra-
cellular, cysteine-rich molecules with high redox potential
[157]. Similarly, transgenic expression of extracellular SOD
in β-cells does not confer any difference in T1D incidence
in comparison to control NOD mice [158]. These results
suggest that basal levels of ROS production are necessary for
β-cell function, possibly by triggering appropriate insulin
signaling and regulating cell survival [159]. In contrast,
overexpression of thioredoxin, a redox-regulated protein
which helps repair ROS-damaged proteins and DNA,
constitutes protection of β-cells from autoimmune and STZ-
induced diabetes [160]. β-cell-specific transgenic expression
of catalase and metallothionein is also able to shield isolated
islets from hydrogen peroxide and reduce the effects of
STZ treatment [161–163]. Transgenic expression of heme
oxygenase-1, which has crucial cytoprotective functions
against oxidative stress and inflammation, can improve
insulitis and spontaneous diabetes in NOD mice [164],
and alloxan-induced diabetes is also reduced following
overexpression of Cu/Zn SOD in β-cells [165]. Moreso,
precedence for the importance of enhancing islet-associated
antioxidant levels has been demonstrated at the genetic level,
in which mice resistant to alloxan treatment (ALR mice)
exhibit protection from diabetes [94, 166]. This finding
particularly helps further justify the need for therapeutic
discovery and necessary experiments to determine druggable
targets based upon modulation of antioxidant function.

Systemic administration of antioxidants, in comparison
to overexpression studies, shows more consistency in ame-
liorating T1D. Administration of 16 mg/kg/day of a potent
antioxidant to young NOD mice resulted in a reduction
of diabetes incidence from 89% in controls to 44% in the
treated animals [167]. Furthermore, after a multiple low
dose administration of STZ, addition of zinc sulphate to
the drinking water of animals was able to increase metal-
lothionein levels, inhibiting the onset of T1D [168], whereas
intraperitoneal injections of butylated hydroxyanisole (BHA)

antioxidant were able to attenuate the production of proin-
flammatory cytokines by islets and macrophages, thereby
lowering insulitis and hyperglycemia [169]. Such uniformity
in these results versus the transgenic expression of multiple
antioxidants, as discussed above, may relate to the ability of
systemic therapies to not only protect the β-cells but to also
inhibit immune system activation and inflammation. Ade-
noviral delivery of systemic heme oxygenase to NOD mice
decreased insulitis and T1D incidence; however, this allevia-
tion was associated with a decrease in mature DCs and TH1
effector function [170]. Additionally, ALR mice resistant to
alloxan-induced diabetes contain specific genetic modifica-
tions conferring systemic elevation of antioxidants, resulting
in neutrophils with reduced superoxide bursts [171]. In an
in vitro system using the antioxidant probucol, which can
delay alloxan-induced [172] and spontaneous diabetes in
rats [173], macrophages exhibit decreased H2O2 production,
thus maintaining islet viability [174]. Further reports on
the effects of systemic antioxidants on innate immunity
include studies from our lab utilizing metalloporphyrin-
based catalytic antioxidants (CA) with bone marrow-derived
macrophages. The CA houses a metal center that catalyzes
superoxide dismutation, mimicking SOD activity [175, 176],
and is able to scavenge a broad range of ROS including
O2
−, H2O2, ONOO−, and lipid peroxyl radicals [53, 177,

178]. Following treatment with CA and LPS stimulation of
macrophages, the production of nitrite (NO2

−), O2
− TNFα,

and IL-1β was significantly reduced in comparison to control
[25, 53]. This effect was mediated by the ability of CA to oxi-
dize the p50 subunit of NF-κB within the nucleus, inhibiting
its binding to DNA and subsequent transcription of proin-
flammatory cytokines [53]. Redox modulation of transcrip-
tion factor DNA binding has previously been demonstrated
for NF-κB as well as other eukaryotic molecules [179, 180].
Inhibition of NF-κB has been well established as an effective
method of thwarting the immune response and resolving
inflammation to maintain β-cell integrity [181, 182]; how-
ever, we are the first to illustrate a link between metallopor-
phyrin catalytic antioxidants, blockade of NF-κB activation,
and delayed autoimmune diabetes, as described below.

The activation of macrophages and T cells relies on
oxidative stress, which ultimately leads to the progression
of T1D. Based upon this fact, CA was also investigated in
the context of CD4 and CD8 T cells. The BDC-2.5 TCR-
Tg TH1 cell clone, which has recently been described as
specific for the protein ChgA, a member of the granin
family of neuroendocrine secretory proteins [183], causes
rapid transfer of diabetes into NOD.scid recipients [184]. By
utilizing this method, pretreatment of NOD.scid mice with
CA prior to adoptive transfer of the BDC-2.5 clone inhibits
the infiltration of T cells into the pancreas, significantly
delaying T1D onset. Moreover, APC-dependent BDC-2.5
T cell proliferation and IFNγ production are also reduced
after in vitro CA treatment [25]. To further delineate
the mechanism of diminished T-cell effector function,
in vivo treatment of NOD and BDC-2.5 TCR-Tg mice
with CA was able to decrease innate-derived third signal
synthesis, primarily consisting of TNFα, resulting in antigen-
specific T cell hyporesponsiveness [37]. Similar results were
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found upon CA treatment in the context of CD8 T cells,
reducing proliferation, cytokine production, and cytolytic
effector molecules of CTLs [185]. Interestingly, by inhibiting
NADPH oxidase in NOD animals (NOD.Ncf1m1J) in an effort
to genetically mimic systemic CA administration, not only is
NOX-derived superoxide production eliminated, but T cells
show reduced TH1 responses, granting protection from T1D
onset [120]. Earlier studies by Chaudhri et al. supported
our experimentation by demonstrating attenuation of T-
cell proliferation and IL-2R expression following antioxidant
treatment [186, 187]. Such findings point to the possibility
and importance of redox modulation in not only regulating
the innate immune cells, but also impacting the T cells
which formulate an adaptive immune response crucial for
the autoimmune attack in T1D (Figure 2).

In addition to decreasing oxidative stress imposed on
the islets, which can directly damage β-cells or indirectly
stimulate the autoreactive immune response to become acti-
vated, redox modulation may also be useful for decreasing
the unyielding ER stress within the β-cells. Because the β-
cells are a constant source of insulin and insulin must be
folded properly for secretion, the importance of balancing a
high protein-folding load with survival of the cells increases
substantially in comparison to other nonsecretory cells
[188]. An overload of misfolded proteins may eventually
result in cell death, if not properly resolved. An early study
by Lo et al. highlighted the susceptibility of β-cells to ER
stress by overexpressing MHC class II proteins in islets,
essentially overwhelming the protein folding machinery
and leading to apoptosis [189]. Other more recent studies
show biochemical connections between ER stress-induced
apoptosis and β-cell death, through both calcium-dependent
and independent molecules [190–192]. To reconcile protein
misfolding within the ER, the unfolded protein response, or
UPR, is consequently triggered [193, 194]. The UPR acts
as a backup mechanism to protect cells from accumulating
unfolded proteins and to restore the balance between the
protein folding machinery and the secretory pathway [195].
However, an accumulation of unfolded proteins during
severe ER stress is sometimes unable to be resolved by the
UPR, as characterized in the Akita mouse which contains
a mutation in the proinsulin 2 gene that disrupts insulin
folding, retains it within the ER, activates UPR, yet still
eventually leads to β-cell death [196, 197]. Moreover, ROS
have been suggested in supporting the UPR towards a more
proapoptotic than proadaptive level [198], further illustrat-
ing the importance of regulating oxidative stress to maintain
β-cell survival. Although the UPR paradoxically utilizes
an oxidative environment within the ER to correctly fold
proteins (i.e., disulfide bond formation), sustained oxidative
stress can perpetuate the UPR to a level that promotes apop-
tosis [198, 199]. Additionally, the abundance of ROS present
during continued unadapted ER stress can trigger apoptosis
in neighboring cells as well. This is especially critical in islet
β-cells, where their ability to handle oxidative stress is already
reduced because of low levels of antioxidants [24, 82–84].
More pertinent is when unresolved ER stress leads to dying
β-cells containing the misfolded proteins. These cells can
be taken up by resident pancreatic APCs and presented

to autoreactive T cells within the pancreatic lymph nodes.
This type of event may stimulate the reactivity of T cells to
formerly tolerated “neo-autoantigens,” which can ultimately
promote more β-cell destruction and eventual development
of autoimmune diabetes [200, 201]. A study conducted by
Malhotra, et al. shows that antioxidant treatment of CHO
cells results in not only decreased oxidative stress, but also
decreased misfolded proteins, reduced activation of the UPR,
and enhanced secretion of proteins [188]. Thus, it appears
that a temporal or redox balance is essential for optimal β-
cell function. In situations where the β-cell may experience
environmental stressors that lead to disruption of the ER-
machinery, the results may set in motion both ER-stress-
induced UPR and the expression of misfolded proteins in
an oxidative environment, further providing an optimal
milieu for driving autoreactive T cells to become activated.
Therefore, redox modulation may serve yet another purpose:
to help reduce ER stress and subsequently maintain β-cell
viability.

Although the ability to predict susceptibility to type
1 diabetes is becoming increasingly accurate [202], and
therefore, prophylactic treatment of patients with antioxi-
dant therapeutics is not out of the realm of possibilities,
currently a more feasible option for individuals with chronic
hyperglycemia is to undergo islet transplantation. Islets, like
any other transplantable organ, are in short supply; however,
maintaining function and viability of transplanted islets is
the major drawback of the procedure [161]. Not only are
islets susceptible to immune rejection, but hypoxia during
isolation and transplantation is the primary cause of β-cell
death [203]. Because of their low resistance to ROS [24, 82–
84], β-cells are especially vulnerable to oxidative damage
and ischemia-reperfusion injury [204, 205]. In order to
combat this weakness, the application of antioxidants seems
a suitable alternative, as they have shown promise in liver and
kidney transplantations [206, 207]. Longer allograft survival
times have been demonstrated with mouse islets soaked
with hydroxyl-radical inhibitors prior to transplantation
[208] and with multiple in vivo administrations of SOD
and catalase prior to and after islet transplantation [209].
Likewise, transduction of islets with heme oxygenase-1 or
SOD2 genes was able to improve viability and insulin
secretion in vitro [210] and elicit greater functionality
upon transplantation in comparison to controls [211],
respectively. Furthermore, we have also demonstrated benefit
using the catalytic antioxidant approach, whereby adding
CA during and after human islet isolation enhanced cell
survival and function, allowing for normalization of STZ-
induced diabetic NOD.scid mice [212]. Additionally, CA is
not only able to protect human islets from STZ cell damage,
but can also protect murine islets from both antigen-
independent innate-mediated inflammation and antigen-
dependent T-cell-mediated allograft rejection [204]. Overall,
unlike common antirejection drugs, which are outstanding
at protecting against the adaptive immune response but
fail to shield islets from ROS/inflammation [213, 214],
our CA treatment is nontoxic to islets and can alleviate
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Figure 2: Role of redox modulation in controlling ROS-mediated beta cell destruction. Redox modulation has shown promise in blocking the
production of ROS and its ability to activate APCs, resulting in diminished TH1 cell activation and effector function, which ultimately may
help regulate beta-cell destruction.

both the alloimmune [204] and autoimmune responses
[25, 37, 53, 185].

6. Conclusion

Although redox has been extensively studied in the context
of both T1D and type 2 diabetes [85, 215], the plethora
of literature discussed above shows the implications of
ROS in all stages of autoimmune T1D, including the
primary “trigger”, the initiation of insulitis by the innate
immune system, and the acquisition of T-cell-mediated
autoreactivity. These studies open the door to novel ideas
of redox modulation, such as targeting ROS-dependent
immunological metalloproteases [43, 44, 49] or disrupting
the autoreactive T-cell pool, as described [37, 120, 185].
Moreover, a study evaluating self-antigen-primed T cells
demonstrates how NO is able to reduce FOXP3 expression
and subsequently decrease Tregs in autoimmune disorders
[216], illustrating how intricate and vast the role of redox
is in the immune response and where future studies may
focus. In addition to effects on the target organ(s) and the
immune system, autoimmunity also gives rise to systemic
problems, and in the context of diabetes, ROS have been
characterized as crucial elements promoting hyperglycemia-
induced diabetic complications, especially those involving

the vasculature [6, 217]. One important study conducted by
Ling et al. provided evidence of oxidative stress-mediated
vascular complications in prediabetic NOD mice [218],
which exemplifies the importance of ROS in not only
exacerbation of disease, but also on initiation of T1D and
nonhyperglycemic associated pathologies. Furthermore, uti-
lizing antioxidants, such as Vitamin E, cannot only assuage
vascular activation [219], but can also grant protection from
the loss of secondary target organ function, such as the
kidneys [220]. Therefore, oxidative stress affects every aspect
of T1D and the benefit of redox modulation may be more
important than once thought. Optimal treatments may have
to incorporate antioxidants with anti-inflammatory agents,
such as inhibitors of NF-κB activation, and must also take
into consideration the limitations associated with utilization
of intact enzyme/protein therapies, including bioavailability,
immunogenicity-limited cellular accessibility, and cost of
production. However, with the advent of newer nonpep-
tidyl small compounds, alleviating oxidative stress through
antioxidant therapy appears to be a plausible druggable
target. This therapy should restore balance between oxida-
tion and reduction, leading to resolution of inflammation,
thus reducing the autoimmune destruction of the islet
β-cells.
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