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Aims CD1d-restricted natural killer T (NKT) cells function by regulating numerous immune responses during
innate and adaptive immunity. Depletion of all populations of CD1d-dependent NKTcells has been shown by
several groups to reduce atherosclerosis in two different mouse models of the disease. In this study, we
determined if removal of a single (Va14) NKTcell population protects mice from the disease.
Methods and results Targeted deletion of the Ja18 gene results in selective depletion of CD1d-
dependent Va14 NKTcells in C57BL/6 mice without affecting the population of other NKT, NK, and conven-
tional Tcells. Therefore, to study theeffect ofVa14NKTcell depletion on theprogression of atherosclerosis,
we examined the extent of lesion formation using paired littermate LDL receptor null mice that were
either þ/þ or 2/2 for the Ja18 gene following the feeding of these mice a cholesterol- and fat-enriched
diet for 8 weeks. At the end of the study, we found no difference in either serum total- or lipoprotein-
cholesterol distributions between groups. However, quantification of atherosclerosis revealed that Va14
NKT cell deficiency significantly decreased lesion size in the aortic root (20–28%) and arch (28–38%) in
both genders of mice. By coupling the techniques of laser capture microdissection with quantitative real-
time RT–PCR, we found that expression of the proatherogenic cytokine interferon (IFN)-g was significantly
reduced in lesions from Ja182/2 mice.
ConclusionThis study is thefirst to identify a specific subpopulation ofNKTcells thatpromotesatherosclero-
sis via a mechanism appearing to involve IFN-g expression.
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1. Introduction

Atherosclerosis is an inflammatory vascular disease that is
now known to involve components of both the innate and
acquired immune systems.1–4 Studies aimed at defining the
role of distinct populations of lymphocytes in the develop-
ment of atherosclerosis have indicated that natural killer
(NK) cells and T helper 1 (Th1) cells are proatherogenic,5–9

whereas Th2 cells and B cells are antiatherogenic.7,8,10,11

These findings are further supported by research which has
found that cytokines released from NK cells and Th1 cells
[e.g. interferon (IFN)-g and interleukin (IL)-6] are
proatherogenic,9,12–16 and that among cytokines released
by Th2 cell, IL-10 is antiatherogenic.17–21

Lipid antigens are presented to unique groups of T cells as
part of a complex with the non-classical, non-polymorphic
MHC class Ib molecule CD1d displayed on certain antigen
presenting cells such as dendritic cells and monocyte-
derived macrophages.22 The ability of one unique subset of
T cells to interact with CD1d results from the expression
on these cells of a highly biased, evolutionarily conserved,
T cell receptor (TCR) consisting of an invariant a-chain (a
Va14 segment joined to a Ja18 segment) that pairs prefer-
entially with one of three b-chains (Vb8.2, Vb-7, and
Vb-2).23,24 This unique subset of T cells also expresses the
classical NK cell marker NK1.1 (CD161) and, as such, these
Tcells are known as invariant NKTcells25 or Va14 NKTcells.26

Upon stimulation, all NKT cell populations have the
capacity to exert immunoregulatory functions by releasing
large amounts of inflammatory cytokines, including the* Corresponding author. Tel: þ1 613 761 4289; fax: þ1 613 761 4237.
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proatherogenic cytokine IFN-g.9,12–14 This release of cyto-
kines will in turn cause the activation of adjacent NK
cells, B cells, conventional CD4þ and CD8þ T cells,24,27 as
well as adjacent antigen presenting cells.28 Although the
natural ligand(s) for CD1d-restricted NKT cells (including
Va14 NKT cells) still remain to be characterized, NKT cells
have a strong response to and are selectively activated by
the exogenous synthetic glycolipid a-galactosylceramide
(a-GalCer), which binds specifically to CD1d.29 A number
of recent studies have shown that a-GalCer specifically
enhances atherosclerosis in apolipoprotein E null
(Apoe2/2) mice30–32 and has a significant impact on the
cytokine profile (including, but not limited to, IFN-g) of
these mice. Interestingly, not only have NKT cells been
shown to be present in the atherosclerotic lesions of
Apoe2/231 and LDL receptor null (Ldlr2/2)33 mice but
CD1d has also been detected in human atherosclerotic
lesions,34 underscoring the probable involvement of NKT
cells in the disease process. These findings, and the capacity
of NKTcells to produce IFN-g, an established proatherogenic
cytokine,9,14 suggest that CD1d-restricted NKT cells might
play a participatory role in the atherogenic process. In this
current study, we use Ldlr2/2 mice to further examine the
potential proatherogenic role of one unique population of
NKT cells that recognizes CD1d; these cells are the Va14
NKT cells and are reported to represent the largest popu-
lation of CD1d-restricted NKT cells.35

2. Methods

2.1 Animals and diet

Male Ja182/2 (formally called Ja2812/2) mice were a generous gift
from Drs Malcolm S. Duthie and Stuart J. Kahn, Infectious Disease
Research Institute, Seattle, WA, USA. Ja182/2 mice were found
to reproduce normally and otherwise are healthy in appearance.
As cited by Cui et al.,36 the development of the lymphoid organs
in Ja182/2 mice is macroscopically normal, and the numbers of
total lymphocytes are not significantly different from Ja18þ/þ

mice with the exception of a complete loss of the Va14 NKT sub-
population of NKT cells. Male Ja182/2 mice were bred with
female Ldlr2/2 mice originally obtained from The Jackson Labora-
tory, USA, and maintained in the Animal Care Facility at the Univer-
sity of Ottawa Heart Institute. Both strains of mice have been
backcrossed for more than 10 generations to the C57BL/6 back-
ground. F1 heterozygotes were mated with Ldlr2/2 mice to
obtain an F2 generation of breeding mice that are Ja18þ/2

�

Ldlr2/2. Genetic screening for the LDL receptor and Ja18 genes
was carried out by PCR on DNA from mouse-tail samples (see Sup-
plementary material online).
Ldlr2/2 mice that were either Ja18þ/þ or 2/2 were fed a stan-

dard laboratory mouse diet supplemented with 21% (wt/wt) butter-
fat and 0.15% (wt/wt) cholesterol, 19.5% (wt/wt) casein and no
sodium cholate (#112286, Dyets Inc., Bethlehem, PA, USA) for 8
weeks. Ldlr2/2 mice fed this particular diet for 8 weeks have pre-
viously been shown to develop early-stage atherosclerotic lesions.37

Both genders of mice were used in this study, and all mice started
the atherogenic diet just after being weaned at 4 weeks of age.
The investigation conforms to the Guide for the Care and Use of Lab-
oratory Animals published by the US National Institutes of Health
(NIH Publication No. 85-23, revised 1996).

2.2 Blood collection

Terminal blood samples were collected by puncture of the right ven-
tricle. Blood was allowed to clot at room temperature for 30 min
and then centrifuged at 1000 g for 25 min at 48C.

2.3 Plasma cholesterol and lipoprotein profiles

See legend to Figure 1, and Supplementary material online.

2.4 Tissue collection

Mice were perfused with PBS via a cannula placed in the left ventri-
cle, with perfusate drained from a severed right atrium. Hearts
were separated from the aorta at the base, embedded in optimum
cutting temperature medium, and snap-frozen on a metal plate
that was cooled with liquid nitrogen.

2.5 Quantification of atherosclerotic lesions in
tissue sections

The size of atherosclerotic lesions in the ascending aorta was deter-
mined from four Sudan IV stained serial sections, cut 10 mm thick
and separated by 100 mm. Lesion analysis began with the first
section of tissue that contained the ostia for the coronary arteries;
region defining the boundary between the aortic sinus and ascending
aorta. Using the Sudan IV staining as a guide, lesion area defined as
intimal tissue within the internal elastic lamina was determined
using Image-Pro Plus software (V6.2, Media Cybernetics, Silver
Springs, MD, USA) on images that were created using a digital Cool-
SNAP cf camera (Roper Scientific Inc., Duluth, GA, USA). The mean
lesion area derived from the four serial sections was taken as
the average lesion size for each animal as described
previously.5,13,14,38,39

Figure 1 Serum (60 mL) from male (A) and female (B) Ldlr2/2 mice that were either Ja18þ/þ (circular symbol) or Ja182/2 (square symbol) was resolved by size
exclusion chromatography using a Superose 6 column. Total cholesterol concentrations were determined in fraction numbers 11–40, with each fraction having a
total volume of 500 mL. Symbols represent the means and bars the SEM of values obtained from the serum of 5 mice/curve.
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2.6 Quantification of atherosclerotic lesions
in the aortic arch

The percentage of atherosclerotic lesion area covering the aortic
arch in an en face preparation of the vessel was quantified as
described previously.14,40,41 In this process, no lipophylic dye was
used to aid in the visualization of discernable lesions.

2.7 Histological staining

It was performed as described previously,5,14 using sequential sec-
tions of the ascending aorta to detect neutral lipid, macrophages,
CD3þ T cells, MHC class II, IFN-g, and extracellular collagen (for
more detail, see Supplementary material online). Since immunos-
taining for CD3 and MHC class II leads to discrete staining of defin-
able cells, lesion-associated cells expressing either antigen were
counted and the mean number of cells reported as described
previously.5,13,14,38

2.8 Quantification of the per cent lesion-associated
lipid within macrophages

The lesion area staining positive for macrophages and for neutral
lipid was quantified using Image-Pro Plus. An imprint was then
made for each area and superimposed using Adobe Photoshop CS2
(Version 9.0.2). Both imprints are still distinguishable at this
point, only the overlapping areas appeared darker. The superim-
posed image is then imported to Image-Pro Plus to measure the
amount of overlap and the percentage of lipid associated within
macrophages is calculated by dividing the overlapping area with
the total area of lesion-associated lipid. It is important to note
that each section used for the overlay of lesion-associated lipid
and macrophage areas was only separated by 10 mm.

2.9 Laser capture microdissection
and RNA extraction

Using laser capture microdissection (LCM), we were able to extract
the atherosclerotic lesions from our control and experimental mice.
The PixCell IIe LCM system was set at the following parameters:
30 mm laser spot size, 50 mW power, and 10 ms duration. Total
RNA was extracted from dissected tissue using the Qiagen RNeasy
Micro Kit (Qiagen) as per manufacturer’s instructions.

2.10 Quantitative real-time RT–PCR

Real-time RT–PCR was used to quantify transcription levels of IL-4,
IL-10, IFN-g, and b-actin in total RNA isolated from lesion tissue col-
lected by LCM. A standard curve of each cytokine mRNA was con-
structed using serial dilutions of stock mouse IFN-g, IL-4, IL-10,
and b-actin cDNA. The real-time RT–PCRs were performed using
the reaction conditions, nested TaqMan probes, and a forward and

reverse set of cytokine-specific PCR primers as described by Giulietti
et al.,42 for IFN-g, IL-4, and IL-10 and as provided by Qiagen Life
Sciences for b-actin (QuantiTect Mm b-actin Assay). Resulting
values were normalized to the b-actin values.

2.11 Cytokine production assay

Splenocytes (2 � 105) isolated from Ldlr2/2 mice that were either
Ja18 þ/þ vs. 2/2 were incubated for 72 h in the presence or
absence of 50 ng/mL of a-GalCer (Cedarlane Laboratories, Burling-
ton, ON, Canada) in RPMI 1640 medium supplemented with 10% FCS,
50 mM 2-mercaptoethanol, 2 mM glutamine, and antibiotics. Levels
of IFN-g and IL-4 in the supernatant were determined by ELISA
(R&D Systems).

2.12 Statistics

Data analysis was performed using SigmaStat 2.03 software (SPSS
Inc., Chicago, IL, USA). For each parameter, the mean and standard
error of mean (SEM) were calculated. Statistical analysis between
groups was by a One Way Analysis of Variance on Ranks with all pair-
wise multiple comparison procedures performed using the Dunn
Method, after testing that the data complied with the constraints
of parametric analysis. Values with P � 0.05 were considered stat-
istically significant.

3. Results

Compared with Ja18þ/þ � Ldlr2/2 mice, deficiency of Va14
NKT cells in Ldlr2/2 mice did not affect total serum-
cholesterol concentrations (Table 1) or -cholesterol distri-
bution between various fractions of lipoproteins (Figure 1).

When compared with Ja18þ/þ mice, loss of Va14 NKTcells
decreased lesion size by �20 and 28% within the ascending
aorta of both male (0.103+0.009 mm2 vs. 0.078+
0.007 mm2, respectively, n ¼ 9 per group; P ¼ 0.021) and
female (0.110+0.008 mm2 (n ¼ 9) vs. 0.087+0.006 mm2

(n ¼ 11), respectively; P ¼ 0.026) mice (Figure 2A), and by
28 and 37% in the aortic arch of both males (5.9+0.5% vs.
4.2+0.6%, respectively, n ¼ 9 per group; P ¼ 0.037;) and
females (7.1+1.0% (n ¼ 11) vs. 4.4+0.6% (n ¼ 9), respect-
ively; P ¼ 0.038) mice (Figure 2B). When lesions of the
ascending aorta were measured for the area occupied by
Sudan IV staining and the area occupied by macrophage
staining, loss of Va14 NKT cells resulted in a significant
reduction in the size of lipid staining and macrophage stain-
ing of said lesions (Table 2).

As a marker of lesion-associated foam cell development,
we have devised a computer-assisted way of calculating

Table 1 Serum cholesterol values, quantification of lesion-associated cells expressing CD3, MHC class II, and lesion-associated IFN-g, IL-4,
and IL-10 mRNA concentrations

Gender Ja18
genotype of
Ldlr2/2 mice

Lesion-associated
CD3 positively
stained cells (n)

Lesion-associated
MHC class II
positively stained
cells (n)

Final serum
cholesterol
values (n)

IL-4/b-actin
mRNA ratio
(n) �1023

IL-10/b-actin
mRNA ratio
(n) �1023

IFN-g/b-actin
mRNA ratio (n)
�1023

Male þ/þ 13.3+1.6 (8) 16.1+1.8 (8) 1748+169 (9) ND (6) ND (6) 15.1+1.4 (6)
2/2 15.8+2.0 (8) 12.4+1.3 (8) 2202+204 (9) ND (7) ND (7) 2.0+1.3* (7)

Female þ/þ 9.0+1.3 (9) 15.6+2.2 (9) 1742+60 (9) ND (5) ND (5) 28.3+1.6 (5)
2/2 10.0+2.0 (11) 16.5+2.3 (11) 1981+112 (11) ND (8) ND (8) 2.0+0.61† (8)

ND, not detected.
*P ¼ 0.05 vs. Ja18 þ/þ males.
†P ¼ 0.05 vs. Ja18 þ/þ females.
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the percentage of lesion-associated lipid (Sudan IV positive)
contained within the corresponding area that stained posi-
tive for macrophages. By performing this type of analysis,
we discovered no significant difference in the percentage
of neutral lipid associated within macrophages located in
the ascending aortic lesions of both male and female
Ja18þ/þ vs. 2/2 mice (Table 2).

Detailed histological analysis indicated that all lesions
from both male and female Ja18þ/þ and 2/2 mice were
at the early-stage of development, consisting mainly of
macrophage-derived foam cells (Figure 3). Absent from
these lesions was the presence of a definable necrotic core
or fibrous cap, which would indicate the existence of
complex atherosclerotic plaques.

By coupling the techniques of LCM and quantitative real-
time RT–PCR, we noted a significant reduction (85–93%) in
the amount of IFN-g mRNA expressed in atherosclerotic
lesions extracted from serial sections of the aortic root
of Ja18þ/þ vs. 2/2 mice (Table 1). However, using the
same technique, we could not detect either IL-4 or IL-10
(Table 1). Using Immunohistochemistry, we also detected a
greater staining pattern for IFN-g protein in the lesions
of Ja18þ/þ vs. 2/2 mice (Figure 4). Despite the noted
decrease in lesion-associated IFN-g expression (at both the
mRNA and protein levels), the mean number of
lesion-associated CD3þ T cells and the activation status of
APC (those expressing MHC class II) within the lesions of

Ja18þ/þ vs. 2/2 mice were not significantly different
(Table 1).

Treatment of splenocytes isolated from Ja18þ/þ �
Ldlr2/2 mice with a-GalCer caused a significant increase
in the secretion of both IFN-g and IL-4 by these cells
(Figure 5). However, a-GalCer treatment of splenocytes
from Ja182/2 mice did not cause a significant increase in
the secretion of either IFN-g or IL-4, and that the levels of
both cytokines in the supernatant of splenocytes from
Ja182/2 mice were not significantly different from control
cells (spenocytes isolated from Ja18þ/þ mice) not exposed
to a-GalCer.

4. Discussion

Invariant CD1d-restricted NKT cells function as a ‘bridge’
between innate and adaptive immunity.43 In this capacity,
NKT cells have been shown to regulate numerous immune
responses involving conditions such as autoimmune
disease, tumour surveillance, and infection caused by
microbial pathogens.44–49 Evidence gathered from the
analysis of both human and mouse atherosclerotic lesions
suggests the presence of NKT cells in this disease as well.
First, nested RT–PCR has detected the invariant Va14Ja18
TCR a-chain rearrangement in atherosclerotic lesions from
Apoe2/2 mice.31 Secondly, all four CD1 proteins (a, b, c,
and d) have been detected in human atherosclerotic

Figure 2 Figures show (A) mean lesion size and (B) per cent lesion area. The extent of atherosclerotic lesion development in the (A) ascending aorta and the (B)
aortic arch of male and female Ldlr2/2 mice either þ/þ or 2/2 for the Ja18 gene was determined as described under Section 2. Values of individual mice are
represented as circles (Ja182/2) and triangles (Ja18þ/þ), whereas the mean lesion size of each group of mice is presented as a single horizontal line (to the right
of each symbol grouping) with error bars denoting SEM. *P-values showing significant differences between groups are noted.

Table 2 Lipid-positive stained area values, macrophage-positive stained area, and % overlap of lipid and macrophage stained areas

Gender Ja18 genotype of
Ldlr2/2 mice

Lipid-positive stained area (mean
value mm2) (n)

Macrophage-positive stained area
(mean value mm2) (n)

% overlap of lipid and
macrophage areas (n)

Male þ/þ 0.0997+0.0104 (9) 0.1028+0.0127 (9) 93.3+3.2 (9)
2/2 0.0722+0.0045* (9) 0.0750+0.0048† (9) 95.9+1.2 (9)

Female þ/þ 0.0997+0.0109 (9) 0.1012+0.0116 (9) 93.4+4.2 (9)
2/2 0.0707+0.0047** (11) 0.0733+0.0049‡ (11) 96.2+1.7 (11)

*P ¼ 0.0264 vs. Ja18 þ/þ males.
**P ¼ 0.0251 vs. Ja18 þ/þ females.
†P ¼ 0.0471 vs. Ja18 þ/þ males.
‡P ¼ 0.0465 vs. Ja18 þ/þ females.
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Figure 3 Representative histological sections from a region where the aortic
sinus becomes the ascending aorta of a female (A, C, E, G, I) Ja182/2

�

Ldlr2/2 and a female (B, D, F, H, J ) Ja18þ/þ � Ldlr2/2 mouse. (A, B)
Sudan IV for neutral lipids, (C, D) monoclonal antimouse MHC class II, (E, F)

rabbit antisera to mouse macrophages, (G, H) purified hamster antimouse
CD3þE molecular complex antibody, and (I, J) Gomori trichrome to detect
collagen. Magnification: (A, B) �40; (C–M) �200. (A, inset) and (B, inset)
area contained in C, E, G, I, and D, F, H, J, respectively. Arrows indicate indi-
vidual cells that are staining positive for: (C, D) MHC class II; and (G, H)
CD3þ. Control (negative) slides were performed on serial sections from the
ascending aorta of an Ldlr2/2 mouse (K–M): (K) Staining was performed in
the absence of the biotinylated primary antibody against MHC class II. (L)
Staining was performed in the absence of the primary antibody against
macrophages and the presence of the biotinylated secondary antibody, goat
anti-rat. (M) Staining was performed in the absence of the primary antibody
against CD3 and the presence of the biotinylated secondary goat anti-hamster
antibody. (K–M) Arrowheads are used to outline the luminal boundary of the
atherosclerotic lesion and small arrows are used to outline the internal elastic
lamina.

Figure 4 Representative immunohistological sections staining specifically
for IFN-g using atherosclerotic lesions of a female (A) Ja18þ/þ � Ldlr2/2

mouse and a female (B) Ja182/2
� Ldlr2/2 mouse. (C) Representative

control lesion, where staining was performed in the absence of the primary
antibody against IFN-g and the presence of the biotinylated secondary goat
anti-rat antibody. Black arrows indicate areas of positive staining for IFN-g.
White arrows indicate areas of minor background staining which appear to
be held to the internal elastic lamina.
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lesions associated with both macrophage-derived foam
cells34 and dendritic cells.50 Finally, a number of groups
have recently shown that CD1d deficiency reduces lesion
development in both Apoe2/230,31 and Ldlr2/233 mice.
Together, this evidence strongly implicates the participation
of NKT cells in the disease process, but it does not identify
the specific subpopulation of NKT cell(s) that directly
promote lesion formation. By superimposing the deficiency
of the Ja18 gene onto mice that are already susceptible to
atherosclerosis, we show in this current study that loss of
functionally active Va14 NKT cells significantly reduces the
formation of early-stage lesions in both genders of mice,
without affecting either serum total-cholesterol values or
lipoprotein-cholesterol distributions. Furthermore, by coup-
ling the techniques of LCM with quantitative real-time RT–
PCR and by performing immunohistochemistry, we also
made the important finding that expression of the
proatherogenic cytokine IFN-g is significantly reduced in
lesions from Ja182/2 mice.

By using Cd1d2/2 mice, which effectively depletes the
mouse of all functional CD1d-restricted NKT cells, Nakai
et al.,31 Tupin et al.,30 Major et al.,32 and Aslanian
et al.,33 explored the collective role of CD1d-restricted
NKT cells in the development of atherosclerosis in both the
Apoe2/2 and the LDLr2/2 murine backgrounds. The
Va14Ja18 NKT cells are not the only CD1d-restricted NKT
cells that are rendered functionally deficient in the CD1d
2/2 mouse. However, in C57BL/6 mice, targeted deletion
of the Ja18 gene results in the selective depletion of Va14
NKT cells without affecting the population of other
CD1d-dependent and CD1d-independent NKT cells, or the
populations of NK cells and conventional T and B cells.26,36

By making Ldlr2/2 mice deficient of Va14Ja18 NKT cells,
we saw a significant reduction in lesion formation in this
model of atherosclerosis, which highlights the significant
role this subpopulation of NKTcells plays in lesion formation.
If we focus our attention on the study by Aslanian et al.,33

who chose to study CD1d deficiency on the Ldlr2/2 back-
ground, we find that the results of our study differ from
those of Aslanian et al.33 where we found that compared
with CD1d deficiency, deficiency of Ja18 resulted in a signifi-
cant, yet much smaller reduction in atherosclerosis (20–28%
in our study vs. 47% in the study by Aslanian et al.,33 based
on analysis within the ascending aorta). These are very
important differences between our study and that of Asla-
nian et al.33 and, as such, point out that Va14Ja18 NKT
cells are most likely not the only CD1d-restricted NKT cells
contributing to lesion formation as at least one other cell

type, which has yet to be identified, is contributing an
equal share to the promotion of lesion development. This
comparison highlights that our current study has shown a
specific subpopulation of NKT cells to be proatherogenic,
and it is precisely this unique finding that sets our current
work apart from these earlier cited studies. As other sub-
populations of NKT cells are identified, such as that
described by Skold et al.,51 targeted deletion of these
unique NKT cells within a mouse model of atherosclerosis
will allow for the examination of other subpopulations of
NKTcell with respect to their own contribution to lesion pro-
gression. Although this type of systematic determination of
the per cent contribution of other CD1d-restricted NKT
cells to lesion development is greatly encouraged, especially
given our findings compared with those of Aslanian et al.,33

such a task still remains infinitely too complex since the
existing criteria for the populations of other NKT cells are
still only broadly defined and therefore the possible
number of specific NKT cell types too great. For example,
other CD1d-dependent NKT cells, the non-Va14
CD1d-dependent NKT, includes Va3.2-Ja9/Vb8, Va8/Vb8,
and other species, whereas the CD1d-independent NKT
cells include those that are CD49Bþ or those that are
NK1.1þ and have diverse TCRs and can either be CD8þ,
CD4þ, or CD82CD42.

In order to truly define the participatory role of Va14 NKT
cells in promoting atherosclerosis, it is important to know
whether this particular immune cell resides within athero-
sclerotic lesions. Two independent groups have in fact con-
firmed the presence of Va14-Ja18 transcripts within
atherosclerotic lesions of two different mouse models of
the disease. Nakai et al.31 showed that the development
of atherosclerosis in wild type or Apoe2/2 mice fed an
atherogenic diet was associated with the presence of
Va14-Ja18 transcripts within the developing atheroma. In
the second study, Aslanian et al.33 detected Va14-Ja18
TCR mRNA in lesion-containing segments of the aortic arch
from Ldlr 2/2 mice. Taken together, these independent find-
ings are able to place Va14 NKT cells at the site of lesion
formation.

The noted reduction in both splenocyte-secreted and
lesion-associated IFN-g concentrations in this study upon
Va14 NKT cell deficiency provides strong mechanistic evi-
dence that activated Va14 NKTcells promote atherosclerosis
by producing and/or by mediating the production of IFN-g by
other immune cells, such as NK cells at the site of a devel-
oping lesion. In vitro, IFN-g has been shown to be proathero-
genic by promoting the processes of lipoprotein oxidation,

Figure 5 Spleen cells from Ja18þ/þ � Ldlr2/2 and Ja182/2
� Ldlr2/2 mice were cultured in vitro in the presence or absence of a-GalCer (50 ng/mL). Three

days later, IL-4 (A) and IFN-g (B) levels were measured by ELISA.
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macrophage-derived foam cell formation, and immune cell
activation.52–61 We and others have previously shown that
administration of exogenous IFN-g13 will accelerate early-
stage atherosclerotic lesion development in Apoe2/2 mice
and that endogenous IFN-g promotes lesion development
in both Apoe2/2 mice14 and Ldlr2/2 mice.9 The identifi-
cation of Va14 NKT cells within atherosclerotic lesions of
mice also validates our IFN-g data as it relates to
Va14Ja18 NKT cells as being the most likely mediator for
the production of this pro-inflammatory cytokine and that
IFN-g, produced locally at the site of lesion development,
is a key contributor to lesion formation as noted in earlier
studies that used IFN-g null mice placed on both the
Ldlr2/29 and Apoe2/214 backgrounds. Future studies will
also need to examine whether Va14 NKT cells promote not
only early-stage, but also late-stage lesion development,
and whether Va14 NKT cells accelerate disease by affecting
the activation status of additional populations of
lesion-associated immune cells such as conventional T
cells,62 NK cells,5 and/or the process of macrophage-derived
foam cell formation by interrupting the ability of foam cells
to efflux cholesterol to HDL via ABCA1.63,64 Interestingly, we
discovered no significant difference in the percentage of
neutral lipid associated within macrophages located in the
ascending aortic lesions of Ja18þ/þ vs. 2/2 mice, despite
the fact that the overall size of atherosclerotic lesions in
the same area of the ascending aorta of the Ja182/2 mice
were significantly smaller than their Ja18þ/þ littermates.
These findings could possibly suggest that Va14 NKT cell
deficiency reduced atherosclerotic burden by causing a net
decrease in the population of lesion-associated macro-
phages, rather than a decrease in the ability of macrophages
to undergo lipid-loading. The cellular target of IFN-g
expressed by Va14 NKT cells is currently an area of investi-
gation in our laboratory as the identification of these
target cells would be seen as an important step in the eluci-
dation of this particular proatherogenic pathway.

Supplementary material

Supplementary material is available at Cardiovascular
Research online.
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