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AbSTrACT
Introduction Transient ischaemic attack (TIA) may be a 
warning sign of stroke and difficult to differentiate from minor 
stroke and TIA- mimics. Urgent evaluation and diagnosis 
is important as treating TIA early can prevent subsequent 
strokes. Recent improvements in mass spectrometer 
technology allow quantification of hundreds of plasma 
proteins and lipids, yielding large datasets that would benefit 
from different approaches including machine learning. Using 
plasma protein, lipid and radiological biomarkers, our study 
will develop predictive algorithms to distinguish TIA from 
minor stroke (positive control) and TIA- mimics (negative 
control). Analysis including machine learning employs more 
sophisticated modelling, allowing non- linear interactions, 
adapting to datasets and enabling development of multiple 
specialised test- panels for identification and differentiation.
Methods and analysis Patients attending the Emergency 
Department, Stroke Ward or TIA Clinic at the Royal Adelaide 
Hospital with TIA, minor stroke or TIA- like symptoms will 
be recruited consecutively by staff- alert for this prospective 
cohort study. Advanced neuroimaging will be performed 
for each participant, with images assessed independently 
by up to three expert neurologists. Venous blood samples 
will be collected within 48 hours of symptom onset. Plasma 
proteomic and lipid analysis will use advanced mass 
spectrometry (MS) techniques. Principal component analysis 
and hierarchical cluster analysis will be performed using MS 
software. Output files will be analysed for relative biomarker 
quantitative differences between the three groups. Differences 
will be assessed by linear regression, one- way analysis of 
variance, Kruskal- Wallis H- test, χ2 test or Fisher’s exact test. 
Machine learning methods will also be applied including deep 
learning using neural networks.

Ethics and dissemination Patients will provide written 
informed consent to participate in this grant- funded 
study. The Central Adelaide Local Health Network Human 

Strengths and limitations of this study

 ► This prospective cohort study of transient ischaemic 
attack (TIA), minor stroke and TIA- mimics recruits 
patients through the main capture paths in the larg-
est public hospital in South Australia at which TIA 
patients usually arrive, providing a representative 
hospital sample population.

 ► Find A Simple Test—In TIA uses mass spectrometry 
discovery proteomics with candidate lipid analysis, 
a combination not used in previous studies, with the 
potential to identify novel biomarkers of TIA and minor 
stroke, and to differentiate these from TIA- mimics.

 ► Machine learning will also be applied to interpret the 
quantitative biomarkers, clinical and demographic 
data to further distinguish patterns for the develop-
ment of more powerful diagnostic algorithms.

 ► Advanced radiological imaging, increasingly used in 
treatment decisions, will be both included and ex-
cluded in the machine learning models to explore 
development of algorithms appropriate not only for 
advanced centres with these capabilities, but also 
for rural and remote regions without radiological im-
aging capacity.

 ► Although a limited number of patients may be excluded 
due to inability to give informed consent, the planned 
sample size provides adequate power to apply conven-
tional statistical analysis and predict diagnosis.
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Research Ethics Committee approved this study (HREC/18/CALHN/384; 
R20180618). Findings will be disseminated through peer- reviewed 
publication and conferences; data will be managed according to our Data 
Management Plan (DMP2020- 00062).

InTroduCTIon
Transient ischaemic attack (TIA) is defined as a transient 
episode of neurological dysfunction caused by focal brain, 
spinal cord or retinal ischaemia without acute infarction 
(tissue death due to inadequate blood supply).1 Following 
TIA, there is a high risk of stroke and a large proportion 
of strokes occur in the first 48 hours following TIA.2 
Correct diagnosis of TIA and early treatment reduces the 
subsequent risk of stroke by up to 80%.3

Stroke is a major cause of death and adult disability 
globally, and up to 23% of strokes are preceded by TIA.4 
The diagnosis of TIA is based on clinical presentation 
but is highly subjective with disagreement of diagnosis 
between trained neurologists.5 This variability is due 
partly to the myriad of possible clinical presentations 
depending on which areas of the brain are affected.6 7 A 
number of mimic conditions exist including migraine and 
seizures.8 The heterogeneity and transience of symptoms, 
often absent on presentation, creates a heavy reliance on 
patient history, which may be distorted by poor observa-
tion of the symptoms or difficulties in recalling the event 
(recall bias), making the diagnosis of TIA imprecise.9

Numerous clinical studies have clearly demonstrated 
that even among neurologists a diagnosis of TIA has at 
best 70% agreement, depending on the measurement 
scales used.5 Following neurological review and inves-
tigation, from 30% to 60% of patients referred to TIA 
clinics may be diagnosed as having other causes including 
migraine, seizure, psychiatric disturbance, peripheral 
vertigo, presyncope or a metabolic condition.8 9 It would 
be of major clinical significance to be able to differentiate 
TIA from TIA- mimic conditions. A plasma biomarker for 
the diagnosis of TIA would provide an objective measure 
to differentiate TIA from TIA- mimics rapidly. Enhanced 
diagnostic accuracy would allow us to take early preven-
tative measures against stroke and reduce harm to the 
patient from misdiagnosis and subsequent unsuitable 
management. An ideal biomarker or biomarker panel 
would be rapidly measurable, reproducible, reliable and 
accurate10 and have a scientifically plausible association 
with TIA. It would also have high sensitivity and specificity, 
could be efficiently implemented clinically, and would 
provide cost- effective benefit when incorporated into 
diagnostic algorithms. An example of such a biomarker, 
although cardiac, that optimises diagnostic ability is the 
use of troponin to diagnose acute heart attack rapidly.11

Mass spectrometry
Proteins, lipids and panels of these are important 
biomarkers of disease. With recent improvements in 
proteomic and lipidomic analysis technology, it is now 
possible to quantify hundreds of proteins and lipids from 
plasma in large numbers of patients, thus opening up 

the possibility of discovering new circulating biomarkers 
and developing a diagnostic tool.7 12 Mass spectrometry 
(MS)- based proteomic and lipidomic assays already play a 
prominent role in the diagnosis of disease conditions. Of 
note is the MS- based amyloid- typing assay that has been 
accredited clinically and is routinely used to differentiate 
between the various types of amyloidosis. Amyloid typing 
involves identifying amyloid- associated proteins and the 
core constituents of fibrils to enable diagnostic charac-
terisation for the correct treatment of systemic amyloi-
dosis.13 14

Many candidate blood biomarkers for TIA have been 
investigated but none have been used in routine clinical 
practice due to inherent study or protocol limitations.15 
Discovery research using more sensitive high- throughput 
MS assays allows improved identification of plasma 
proteins.16 Standard methods of analysis include peptide/
protein identification of MS/MS spectra by database 
searches, protein and lipid quantitation in combination 
with multivariate statistical analysis and conventional 
descriptive statistical analyses using protein and lipid 
abundance data. Liquid chromatography- tandem MS 
(LC- MS/MS) has relatively short run times, higher sensi-
tivity and selectivity and has been shown to be powerful 
for simultaneous measurement, for example, isoprostane 
isomers which are biologically active lipids that appear to 
be indicative of oxidative stress in stroke.17 While accurate 
isoprostane quantities at extremely low concentrations are 
commonly measured in plasma by well- established and 
sensitive gas chromatography- MS (GC- MS) or ELISA, the 
procedure is considered tedious and time- consuming.18–20

The inclusion of machine learning in stroke and TIA 
can apply more sophisticated modelling, allowing for 
non- linear interactions, while adapting to the nature 
of the dataset used, enabling the development of 
multiple specialised test panels for identification and 
differentiation.

Machine learning
The application of machine learning techniques is 
growing rapidly and recent applications of both classical 
machine learning techniques and neural networks have 
been reported in the area of TIA and minor strokes.21–23 
These have shown promising results for a range of clinical 
and radiological data from small to medium- sized data-
sets.24 25 They have been applied for a range of different 
purposes (eg, risk stratification, screening and short- 
term mortality prediction) and indicate how flexible the 
machine learning approach is and how much it has to 
offer in the study and treatment of TIA.

Depending on the size and complexity of the data, 
different machine learning methods will have different 
advantages and disadvantages, especially when it comes 
to robust generalisation. Classical machine learning tech-
niques such as random forests, support vector machines, 
Orthogonal Projections to Latent Structures (OPLS)26 
and Canonical Correlation Analysis (CCA)27 are evalu-
ated alongside neural networks, which span the realms of 
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small to huge datasets and are at the core of deep learning 
applications. Given the nature and size of the data, it is 
important to cover a suitably wide range of techniques to 
ensure the greatest chance of finding one that best suits 
the available data and problem, while carefully employing 
cross- validation methodology to ensure unbiased perfor-
mance estimates and maximise the generalisability of the 
outcome. This is important for future applications to data 
from different hospitals, countries and demographics.

Preliminary work and new study
An earlier pilot project in our laboratory tested a small 
number of patient plasma samples and found several 
likely candidate TIA proteins including lipid- binding 
proteins and blood- clotting factors that appeared to 
be differentially expressed in TIA patients.28 29 We now 
propose to use large datasets with a global biomarker 
discovery proteomic approach and also include candi-
date lipid profiling, using MS as a sensitive, reproduc-
ible and robust tool for identification of TIA biomarkers 
and patterns. Our investigations are distinguished from 
previous TIA biomarker research in that we also examine 
lipid biomarkers of the isoprostane family and include 
the use of machine learning to further analyse our data-
sets, including neuroimaging data, to distinguish patterns 
and develop diagnostic algorithms.

Study objectives
Primary objective
The primary objective of this study is to identify plasma 
protein, lipid and/or radiological biomarkers that change 
in response to a TIA, assessing these diagnostic methods 
using a range of techniques including formal statistical 
analysis and machine learning.

Secondary objective
To develop an algorithm of the most significant 
biomarkers for use as a diagnostic tool to distinguish TIA 
from minor stroke and TIA- mimics.

METhodS And AnAlySIS
Find A Simple Test- In TIA (FAST- IT) is a prospective 
cohort protein discovery and candidate lipid biomarker 
study using MS to identify novel TIA and minor stroke 
biomarkers, and incorporating radiology. Machine 
learning is applied in addition to conventional statistical 
analysis, in order to explore development of algorithms 
appropriate not only for advanced neuroimaging centres, 
but also for rural and remote regions without radiological 
imaging capacity.

The design, conduct and reporting of this study are 
guided by the Strengthening the Reporting of Obser-
vational Studies in Epidemiology30 and Transparent 
Reporting of a multivariable prediction model for Indi-
vidual Prognosis or Diagnosis31 statement checklists. 
Project collection started on 23 July 2019 and will run 
through to the end of 2024.

Participants
We will recruit patients consecutively by staff- alert from 
the Royal Adelaide Hospital (RAH) Emergency Depart-
ment, Stroke Unit or TIA Clinic, aiming for a minimum 
of 518 patients. These will be distributed between three 
groups with up to three expert vascular neurologists 
in diagnostic agreement: (1) a TIA study group, (2) a 
minor stroke (clinically definite, positive control) group 
with transient neurological symptoms and (3) a negative 
control group of patients with transient neurological 
symptoms, being TIA- mimics. We aim to enrol mimic and 
minor stroke cohorts that are age, gender and vascular 
risk- matched to the presenting TIA group. A standard 
control group with the absence of neurological symptoms 
is not included in the study as the TIA- mimic control 
group provides our comparative clinical standard. Staffing 
limitations and temporary halts during COVID- 19 restric-
tions have interrupted this consecutive collection. We will 
exclude patients who are outside a 48- hour window since 
the start of their medical episode (TIA, minor stroke or 
TIA- mimic).

Inclusion criteria
 ► Patients who attend either the RAH Emergency 

Department or Stroke Ward or TIA Clinic with TIA or 
minor stroke or TIA- like symptoms.

Exclusion criteria
 ► Pregnancy or age <18 years.
 ► Patients with haemorrhagic stroke (intracerebral or 

subarachnoid haemorrhage).
 ► Patients without imaging studies (non- contrast CT 

and CT- angiogram or MRI scans).
 ► Patients who are outside the 48- hour window since 

their episode.
 ► Unable to give informed consent or inability to 

comprehend English (we will not engage translators 
for non- English- speakers).

 ► Patients who are highly dependent on medical care 
who may be unable to give consent.

Clinical assessment
Demographic and clinical data will be collected at the 
Emergency Department, Stroke Unit or TIA clinic at the 
time of presentation. Basic demographic data includes 
age, gender, ethnic background, smoking, alcohol history 
and diabetes history. Clinical data from initial assessment 
includes medical history (presenting symptoms, cardio-
vascular risk factors and medications), modified Rankin 
Score (mRS)32 and ABCD2 stroke- risk stratification 
score.33 Diagnosis of TIA will be performed independently 
by two experienced expert vascular neurologists from the 
Stroke Unit at the RAH on the basis of clinical presen-
tation, radiological imaging (baseline non- contrast CT 
and CT- angiogram and/or multi- modal MRI (diffusion, 
T1, T2 and MR angiography)) and the neuroradiolo-
gist’s report, using the RAH Stroke Unit’s Code Stroke 
diagnostic protocol.34 Routine blood biochemistry results 
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and radiological data (non- contrast CT and CT- angio-
gram and/or MRI scans) will be collected to assist diag-
nosis. Follow- up data are collected at or shortly after 
3 months (accepting occasional logistical limitations) by 
telephoning the patient and using a scripted telephone 
survey to determine their mRS status in their recovery.35

radiological assessment
All patients will undergo, as a minimum, baseline non- 
contrast CT and CT- angiogram (from the aortic arch 
to vertex) on admission, followed by multi- modal MRI 
(diffusion, T1, T2 and MR angiography) within the first 48 
hours of their event, with acceptance of occasional logis-
tical limitations. Not all patients will have an MRI because 
of contraindication (ie, known contrast allergy, unstable 
or rapidly deteriorating renal function) and occasional 
resource time constraints, but approximately 95% of our 
patients will have both CT/CTA and MRI. Images will be 
achieved digitally and viewed on local servers by an expert 
neuroradiologist and vascular neurologist. The imaging is 
reported by the radiologist and reviewed by the vascular 
neurologist with reference to a senior neuroradiologist as 
required. We will assess the standard radiological measures 
for infarction or vascular abnormalities at the presumed 
site of the lesion, which provide aetiological evidence for 
a possible TIA, minor stroke or TIA- mimic, allowing for 
recruitment into FAST- IT subject to informed consent.

Final diagnostic group classification
For our research analysis purposes, a panel of two expe-
rienced vascular neurologists will subsequently inde-
pendently assess the images of all patients consented 
in the FAST- IT study as well as all available clinical data 
including follow- up data if available and the neuroradiol-
ogist’s report for the final study classification as either 
TIA, minor stroke or TIA- mimic, with any disagreement 
resolved by a third, expert senior vascular neurolo-
gist (TK), the Head of the Stroke Unit at the RAH, to 
obtain consensus. The endorsed definition of TIA is per 
the AHA/ASA Scientific Statement: ‘TIAs are transient 
episodes of neurological dysfunction caused by focal 
brain, spinal cord, or retinal ischaemia, without evidence 
of acute infarction’.1 Minor stroke is diagnosed per the 
Stroke Unit’s Code Stroke diagnostic protocol with a 
National Institutes of Health Stroke Scale score less than 
or equal to 3.34 36 Minor stroke can be either imaging- 
proven stroke or imaging negative stroke but with 
persisting neurological deficit (for practical purposes 
greater than 24 hours).34 36 The final group classification 
of TIA versus TIA- mimic is based on these studies, all 
available clinical data and expert opinion.

blood sample collection, preparation and analysis
Sample collection and preparation
Venous blood samples will be collected within 48 
hours of symptom onset into ice- chilled plastic blood- 
collection tubes containing EDTA in accordance with 
Human Proteome Organisation Proteomics Standard 

Initiative standard protocols.37 Samples will be inverted 
10×, placed on ice and transferred to the laboratory 
immediately. Subsequent steps will be performed at 4°C 
or on ice with all samples handled with gloved hands. 
Samples will be centrifuged at 1300g for 10 min (Heraeus 
Megafuge 40R, Thermo Scientific, USA) to separate the 
plasma. Low- protein- bind pipette tips and tubes (Eppen-
dorf, Australia) will be used for all sample handling and 
storage. Plasma supernatant will be collected into a single 
5 mL tube and then stored as 500 µL aliquots in five or 
more separate tubes (marked with sample number+‘A’ 
to ‘E’). Remaining blood and plasma will be sealed and 
discarded appropriately. All samples will be stored at 
−80°C in designated freezer storage. For every sample, 
we record the time of collection postevent and the time 
before sample freezing. Subsequent laboratory analysis 
for plasma proteomics and lipids will use only deidenti-
fied sample numbers; laboratory scientists are blinded to 
any group classification.

Plasma proteomics MS analysis and data acquisition
A tube containing 500 µL of patient plasma sample will be 
thawed on ice and used for MS analysis. Proteins will be 
precipitated with ice- cold acetone using 10 µL of sample, 
then denatured, reduced and alkylated before digestion 
with trypsin to generate peptides. Resulting peptides will 
be processed and analysed by MS.

 ► Peptide samples will be analysed by nano- liquid chro-
matography (nLC) using a Dionex Ultimate 3000 
RSLCnano system (ThermoFischer Scientific, USA) 
coupled online to a timsTOF (trapped ion mobility 
spectrometry Time of Flight) Pro mass spectrometer 
(Bruker Daltonics, Germany).

 ► Proteomic analysis using MS yields large amounts 
of spectral data that need to be de- coded reliably to 
extract protein abundance information. Peak picking 
and interpretation of mass spectra are complex 
and time- consuming, but there are several software 
packages that automate and expedite this process. 
We will use Peaks X+ (Bioinformatics Solutions 
Inc, Waterloo, Ontario, Canada) and MaxQuant 
(Max- Planck- Institute of Biochemistry) for raw 
data processing and databank searching combined 
with Perseus for basic multivariate statistical anal-
yses between sample groups (Max- Planck- Institute 
of Biochemistry).38–42 We will conduct differential 
protein abundance analysis to identify proteins or 
panels of proteins that are differentially expressed 
between patient groups.

 ► Data will be searched against the UniProt Homo 
sapiens reference proteome (https://www.uniprot. 
org/). Only proteins with a false discovery rate 
of ≤1% will be reported. Principal component analysis 
and hierarchical cluster analysis will be performed 
using Perseus software. Output files will also be 
analysed for relative protein quantitative differences 
between the three patient groups.

https://www.uniprot.org/
https://www.uniprot.org/
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Plasma isoprostane LC-MS/MS analysis and data acquisition
A modified method from Dupuy43 and Sánchez- Illana44 
will be followed. A tube containing 500 µL of plasma 
sample will be thawed on ice and used for MS analysis. 
Conjugated isoprostanes will be base- hydrolysed prior to 
extraction. To thawed plasma we will add BHT (1% vw 
in methanol), internal standard mixture (1000 ng/mL), 
potassium hydroxide solution (1 M) and, when preparing 
a standard curve for quantitation, standards mix of 
varying concentrations. Tubes will be vortexed briefly, 
incubated at 40°C for 30 min and centrifuged at 1300g 
for 5 min. Supernatant will be loaded onto a precondi-
tioned SPE cartridge (Bond Elut Plexa PAX 60 mg, 3 mL, 
Agilent) inserted in a suitable SPE vacuum manifold 
(24- port VISIPREP, Supelco). Conditioning consists of 
washing the cartridge with methanol followed by water. 
Loaded extract will be washed with water, then methanol, 
then hexane/ethyl acetate (75:25) and briefly suction 
dried (2 min). Sample elution into 10 mL glass test tubes 
will be with hexane/ethyl acetate (25:75) and methanol, 
both acidified with formic acid (5%). Eluant fractions will 
be combined, dried under nitrogen and reconstituted for 
UPLC (ultra- performance liquid chromatography)- MS/
MS analysis.

 ► The following lipid and isoprostane standards will 
be used; 5- F2t- IsoP; 2,3- dinor- 15- F2t- IsoP; 4(RS)- F4t- 
NeuroP; D4- 10- F4t- NeuroP; 14(RS)- 14- F4t- NeuroP; 
20- F4t- NeuroP; 17- F2t- dihomo- IsoP; Ent- 7(RS)- 
F2t- dihomo- IsoP; 7(RS)- ST-Δ8- 11- dihomo- IsoF; 
5- F3t- IsoP; 8- F3t- IsoP and 18- F3t- IsoP—all gifted 
by Dr Thierry Durand, Institut Des Biomolecules 
Max Mousseron (IBMM, France). 8- Iso PGf2al-
pha- d4; 5- iPF2alpha- Vi- d11 and 8- iso PGf2alpha were 
purchased from Cayman Chemical (Ann Arbor, Mich-
igan, USA).

 ► UPLC will be performed on the Sciex Exion- LC UPLC 
system, consisting of an AD Multiplate autosampler, 
Exion- LC Degassing unit, Communications Bus 
module, Column Oven and x2 UPLC Binary Pumps. 
Samples will be kept at 4°C in the autosampler unit. 
Separation is performed with an Agilent Poroshell 120 
EC- C18 column with a flow rate of 400 µL/min and 
column oven temperature of 50°C. Mobile Phase- A 
(MP- A) consists of 5% of acetonitrile while Mobile 
Phase- B (MP- B) consists of 95% of acetonitrile. Both 
solvents include formic acid and ammonium formate. 
Runs will start at 25% MP- B and will be held for 20 s 
then ramped to 50% MP- B for 6 min then further to 
65% for 6.5 min; then wash at 100% MP- B from 6.8 
to 8.5 min. The column will be equilibrated at 25% 
between sample injections.

 ► MS will be performed with the 6500+ Triple Quadru-
pole Mass Spectrometer (Applied Biosystems Sciex, 
Australia) using Analyst Software. Ionisation will be 
performed by an Electrospray Ionisation in negative 
ion mode. MS recordings are conducted in multiple 
reaction monitoring scan mode. Duration of data 

acquisition will be 10 min. Data will be analysed with 
MultiQuant Software.

data monitoring body
A Data Management Plan (DMP2020- 00062) was lodged 
with the University of Adelaide Research Grants Office on 
31 October 2018; amended to include lipids on 6 August 
2020.

Primary outcomes
 ► Identification of plasma protein, lipid and/or radio-

logical biomarkers that change in response to a TIA 
and minor stroke.

 ► Development of a panel of the most significant 
plasma, lipid and radiological biomarkers of TIA and 
minor stroke for use as a diagnostic tool to distinguish 
TIA from minor stroke and TIA- mimics.

Secondary outcome
 ► Determine the best diagnostic method using a range 

of techniques including formal statistical analysis and 
machine learning.

Sample size
A two- sample pooled t- test of mean ratio with lognormal 
data was used for the sample size calculation since 
biomarker outcomes are likely to have a skewed distribu-
tion for which a logarithmic transformation would create 
normally distributed residuals. The coefficient of varia-
tion was estimated from preliminary work in our labora-
tory to have a value of 0.2.28 29 To detect a 10% change 
in biomarker abundance (mean1 is 10% greater than 
mean2 such that the mean ratio between the two groups 
is 1.1) with coefficient of variation 0.2, 80% power and 
alpha=0.05, each group requires 69 samples. The vascular 
neurologists will assign patients to one of the three groups 
based on all diagnostic information and the study will 
continue to recruit until there is a minimum of 69 partic-
ipants in the smallest group. With three groups in our 
study, the total sample size will be a minimum of 3×69, that 
is, n=207 for adequate power to achieve statistical signif-
icance. We double this number to provide more data to 
train machine learning models and to compensate for 
any unforeseen deviations from our assumptions on the 
effect size and distribution. Allowing 20% to account for 
potential mismatches through recruitment, withdrawal or 
loss to follow- up, a minimum of 518 patients need to be 
enrolled. Statistical software: SAS 9.4 (SAS Institute).

Statistical analysis and machine learning methods
Figure 1 gives an overview of the data flow for statistical 
analysis and machine learning.

Statistical analysis methods
Descriptive statistics of clinical and demographic variables 
will be presented in data tables by group (TIA, minor 
stroke or TIA- mimic). The mean and SD will be given 
for normally distributed continuous variables, median 
and IQR will be given for non- normally distributed 
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continuous variables, and frequency and percentage will 
be given for categorical variables. A one- way Analysis of 
variance (ANOVA), Kruskal- Wallis H- test, χ2 test or Fish-
er’s exact test will be performed as appropriate to identify 
any significant differences in these variables between the 
three groups. We will also combine TIA and minor stroke 
as part of our analysis, as previously reported in Dolmans 
et al.15

As the biomarker variables are likely to have a skewed 
distribution, median plasma biomarker levels by group 
(and IQR) will also be presented in a data table. A univar-
iate linear regression with logarithmic transformation 
of the outcome will be performed for each biomarker 
outcome, with the predictor being group: TIA, minor 

stroke or TIA- mimic. Post- hoc comparisons will be calcu-
lated when the global p value is less than 0.05.

The multiple- comparison correction (eg, Bonferroni 
or similar) will take into account that the protein/lipid 
abundances are not truly independent variables. We 
will perform factor analysis on the data, determine the 
number of substantial independent factors and correct 
for this number.

If statistically significant linear regression results are 
found for a given biomarker, the receiver operating char-
acteristic (ROC) curve can be used to determine each 
biomarker’s use as a diagnostic accuracy tool. Logistic 
regression will estimate the probability of having TIA 
or minor stroke (or just TIA), with the logarithmic 

Figure 1 Data flow diagram. *Target labels are both the diagnostic groups and the labels on the images. Target label data 
flow is indicated by black arrows. LC- MS/MS: liquid chromatography- tandem mass spectrometry; LC- timsTOF- MS, liquid 
chromatography- trapped ion mobility spectrometry- time of flight- mass spectrometry.
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transformation of the biomarker being included as a 
predictor in the model. The area under the curve (AUC), 
and specificity and sensitivity for predicting the correct 
diagnosis for each patient as well as calibration plots will 
be calculated for each biomarker. From this, the most 
appropriate cut- off levels for diagnosis can be found. 
Biomarker ROC curves can also be combined within the 
above model and graph. Sensitivity analyses including 
only imaging- proven stroke will also be performed.

Machine learning methods
While FAST- IT uses conventional statistics for optimal 
comparability, machine learning (classical and deep 
learning) will also be applied to interpret the quantitative 
demographic, clinical and biomarker (including protein, 
lipid and radiological imaging) data to further distin-
guish patterns for the development of more powerful 
diagnostic algorithms.

Three different applications of machine learning 
methods will be pursued, based on the primary input 
data: (1) proteomic and lipid data; (2) radiological 
imaging data and (3) proteomic, lipid and radiological 
imaging data. In each case, relevant demographic and 
clinical data will also be made available to the methods. 
For smaller or highly noisy datasets, methods based on 
smaller, less complex models are often advantageous 
as they have improved generalisation to new datasets 
and demographics. Therefore we will perform a model 
comparison across a range of methods, including random 
forests, support vector machines, OPLS,26 CCA27 and 
neural networks, in conjunction with (or without) dimen-
sionality reduction methods such as principal compo-
nent analysis and manifold learning. In order to avoid 
biases and improve performance through hyperparam-
eter optimisation, suitable nested cross- validation will be 
performed in all cases. Performance of the methods will 
be assessed in the same way as for the statistical analyses, 
using ROC curves, the AUC metric and calibration plots 
along with additional reporting of accuracies and confu-
sion matrices.

Another consideration for machine learning methods 
is the degree to which the model yields additional inter-
pretable information. This is often a trade- off between the 
simpler, linear models that provide highly interpretable 
information versus more complex, non- linear models that 
are harder to interpret but often perform better. State- of- 
the- art methods, such as attention gates and saliency maps 
are available for probing the information captured by the 
models, thus moving away from a ‘black box’ model. This 
will be important in order to understand the nature of 
image- related features that are most relevant as well as the 
impact that the different proteins and lipids have in the 
discrimination and predictions made by these methods.

Missing data
During statistical analysis, participants with missing data 
for variables of interest in a given regression will be 
excluded only when that missing data would be required 

for an analysis. With machine learning, small amounts 
of missing data will be labelled as such and handled 
by method- specific solutions. During deep learning, 
drop- out layers can be used to train neural networks 
to be missing- value tolerant. If a radiological or other 
biomarker section is missing, then this participant dataset 
will only be used in the analysis streams that do not 
require the missing data section. The number of missing 
values or data sections will be reported.

EThICS And dISSEMInATIon
Project approved by the CALHN Human Research Ethics 
Committee (HREC/18/CALHN/384 on 19 October 
2018) and Royal Adelaide Hospital (site- specific approval 
R20180618 on 17 April 2019); amendment for lipids 
approved by both on 1 May 2020. Signed informed 
consent will be obtained from all participants. Findings 
will be disseminated through peer- reviewed publication 
and conference presentations. Data (including depo-
sition and curation) will be managed according to our 
Data Management Plan (DMP2020- 00062), lodged with 
the University of Adelaide Research Grants Office on 31 
October 2018 and amended to include lipid analysis on 
6 August 2020.
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