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In recent years, Zika virus (ZIKV) has expanded its geographic range and in 2015–2016 caused a substantial epi-
demic linked to a surge in developmental and neurological complications in newborns. Mathematicalmodels are
powerful tools for assessing ZIKV spread and can reveal important information for preventing future outbreaks.
We reviewed the literature and retrieved modelling studies that were developed to understand the spatial epi-
demiology of ZIKV spread and risk. We classified studies by type, scale, aim and applications and discussed their
characteristics, strengths and limitations. We examined the main objectives of these models and evaluated the
effectiveness of integrating epidemiological and phylogeographic data, along with socioenvironmental risk fac-
tors that are known to contribute to vector–human transmission. We also assessed the promising application of
human mobility data as a real-time indicator of ZIKV spread. Lastly, we summarised model validation methods
used in studies to ensure accuracy in models and modelled outcomes. Models are helpful for understanding
ZIKV spread and their characteristics should be carefully considered when developing future modelling studies
to improve arbovirus surveillance.
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Introduction
Zika virus (ZIKV) is transmitted to humans via the bite of infected
Aedes sp. mosquitoes. Since the virus was first isolated in 1947,
ZIKV has circulated for decades without causing large reported
outbreaks or severe disease.1 The first known outbreak occurred
on Yap Island in the Western Pacific in 2007, but no hospitalisa-
tions or deaths were reported.2 ZIKV then reached French Poly-
nesia and the South Pacific in 2013 and was introduced to Brazil
in late 2015, likely through international air travel.3 The Zika epi-
demic in Brazil received global attention when a strong epidemi-
ological link was established with an increase in cases of micro-
cephaly.4 Subsequently ZIKV was declared a Public Health Emer-
gency of International Concern by the WHO5 in 2016. Since its
introduction in the Americas, more than 5.8 million Zika cases
have been reported, as of December 2020,6 and more than 7452
cases were reported in 2020 alone.7 As of July 2019, 87 coun-
tries and territories reported cases of the ZIKV lineage that spread
from French Polynesia.8 No vaccines exist for preventing ZIKV
infections, thus prevention depends solely on the deployment of
effective vector controlmeasures and public health interventions.

Mathematical models can help to determine when and where
future ZIKV outbreaks may occur and can retrospectively eluci-
date the effects of risk factors that facilitate spread. Here, we
reviewed and compared models that have been adopted for
investigating the geographic spread of ZIKV. We described their
shared characteristics and evaluated the integration of various
data sources for improving ZIKV surveillance. Finally, we dis-
cussed how studies have performed model validation to ensure
robustness.

Box 1. Review search strategy

We conducted searches in PubMed and Web of Science for all pub-
lished studies, as of 18 November 2020. We filtered studies using a
combination of search strings (Figure 1) as follows:

� Zika OR ZIKV
� Spatial OR spatio-temporal OR geographic ORmap OR spread OR
dispersal OR transmission
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Figure 1. Flowchart illustrating the process of searching and retrieving the articles used in the review.

� travel OR mobility OR importation
� model OR surveillance OR prediction

We then filtered studies using two exclusion criteria. First, we exam-
ined article abstracts and excluded articles that were (1) identified
as reviews, (2) focused on other arboviruses and (3) did not use
spatial analysis. Second, for the remaining articles, we evaluated
the study content and excluded studies that did not adopt a mod-
elling approach to look at the geographical spread of Zika. In total,
we retained 37 studies that met our inclusion criteria.

Characteristics of Zika modelling studies
We categorised studies by model type (stochastic or determin-
istic), aim, application, temporal and spatial scale. This is illus-
trated in Figure 2 as an alluvial diagram which shows how stud-
ies are connected by these categories. We compared model
features and identifiedwhether eachmodel incorporated surveil-
lance data and factors on human mobility, socioeconomic
conditions, population, environmental conditions, mosquito suit-
ability and mosquito-to-human transmission. We summarised
this information using a network diagram (Figure 3), where each
study is represented by a pie chart that illustrates the model fea-
tures incorporated by that study. The thickness of each link rep-
resents the number of features shared between two studies and

the colours of the links show how studies are clustered based on
shared features.

Model type
Stochastic, deterministic and phylogeographic methods have all
been adopted to investigate ZIKV spread (Figure 2). Determin-
istic models use a set of input parameters, often from exper-
imental findings or from the literature, to generate estimates
on epidemiological characteristics that quantify spread,9–13
whereas stochastic models predict or infer retrospectively the
process (or parameters) of spread using methods based on
statistical theory.14–24 Deterministic models are effective for
estimating mosquito–human interactions that facilitate infec-
tion9–11,15,23,25,26 but they are unable to account for the inher-
ent stochastic nature of disease transmission.10,12,13 The major-
ity of existing studies use stochastic models, which can flex-
ibly integrate high-resolution information about environmen-
tal conditions and vector competence and thereby model fine-
scale spatial heterogeneities in disease spread.14,17,24,27 However,
stochastic models may rely heavily on the availability of suffi-
ciently large and detailed surveillance data, which may not be
available.17,24,28
Several studies have adopted phylogeographic methods,

which have been increasingly adopted to rapidly assess the intro-
duction and circulation of the viruses, including ZIKV. Phylo-
geographic modelling analyses can estimate the frequency and
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Figure 2. Characteristics of reviewed studies, summarised by model type, aim, application and scale.

sources of ZIKV introduction into specific locations and new
regions. Examples of this include studies of ZIKV in Latin America
and the Caribbean3,29,30 and the USA.31,32 Some of these studies
have adopted stochastic models in combination with phylogeog-
raphy to predict ZIKV spread.3,29,33 However, it is worth noting
that phylogeographic inferences may be sensitive to variation in
sampling among locations.

Model aim and application
We distinguished the modelling studies we reviewed according
to two primary study objectives: causal-inference and prediction.
Themajority of studies are causal-inference (Figure 2), which aim
to assess the contribution and interaction of factors in predict-
ing ZIKV transmission.22,26,34,35 Additionally, they aim to iden-
tify the geographical origins of virus spread and epidemic his-
tory using phylogeographicmethods.3,30–32 Predictive studies can
either be stochastic or deterministic and may aim to estimate
Zika incidence,14,24,36 importation of cases,11,12,14 distribution of
risk18,21,37–39 and transmission potential.15,23 Both predictive and
causal-inference models can be applied retrospectively to assess
disease spread, which is the main application identified among
the studies we reviewed. Predictive models can also be used to
track disease spread with potential real-time applications.13–15,20

Spatial and temporal scale
The geographic spread of ZIKV has been assessed extensively
at the country and local level, with time intervals ranging from

weekly to monthly (Figure 2). In addition to conducting analy-
sis at the global level,9,13,18,21,38,40 studies have focused on the
Latin American and Caribbean region,20,28–30,33,36,41 Africa and
Asia-Pacific, Oceania, Europe12,23 and on specific countries such
as the USA,11,15,27,31 Colombia,16,19,34,42 Brazil3,10,37,43 and Singa-
pore.22,44 Multi-scale analysis29,44 andmodels that integrate data
at different temporal and spatial scales27,40,43 can help to infer
risk factors or make accurate predictions on geographic spread.
This is especially useful for countrieswith passive surveillance sys-
tems that experience long delays in releasing official case data.
However, aggregating data at different scales across a region
with high spatial heterogeneity could result in inaccurate esti-
mates of potential ZIKV risk.16

ZIKV modelling objectives
Among the studies that we reviewed, we identified a set of com-
mon objectives that the authors aimed to achieve, which are
elaborated below. Studies with similar objectives are also shown
to be in the same clusters depicted in Figure 3.

Mapping geographical distribution and risk
Prior to the availability of epidemiological data,mapping the envi-
ronmental suitability of ZIKV can elucidate the potential distribu-
tion of exposure and risk of infection. This requires an understand-
ing of the geographical distribution of Aedes sp. mosquito pres-
ence and the competence of vectors in transmitting ZIKV based
on environmental factors, which can be inferred from mapping
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Figure 3. Network of reviewed studies, illustrating how studies are related to each other based on shared features. The pie chart at each node sum-
marises the features incorporated in that particular study. Visualisation created using VOS viewer (v. 1.6.13).

the mosquito’s habitat suitability using ecological niche mod-
els.21 One of the earlier works by Messina et al.21 used ensem-
ble boosted regression trees to map global environmental suit-
ability for ZIKV. Combining this model output with disease occur-
rence, once it becomes available, can help to predict potential
population exposure,38 transmission risk41 and risk factors35 at
both regional and global scales.
In particular, integrating airline data and socioeconomic

factors can help to characterise travel-related spread39 and
the effects of socioeconomic factors on transmission.37 More
recently, machine learning models, such as propagation neural
network, gradient boosting machine and random forests, have
also been applied to identify regions at risk globally.18 Similarly,
spatio-temporal modelling using Bayesian inference can also be
used to identify areas of high risk at the local level19,42 and the
influence of travel history on risk.44

Predicting local and imported infections
The frequency and risk of ZIKV infection, including local and
imported infections, has been predicted using several methods.
The rate of infection per population and region have been pre-
dicted using a stochastic spatial model,24 a dynamic neural net-

work model14 and a deterministic model.36 A SEIR (susceptible,
exposed, infectious, recovered) model framework has also been
adopted to assess infection dynamics by quantifying vector–
human interactions25 and the likelihood of sustaining mosquito-
borne transmission.15 Furthermore, risk models developed by
Gardner et al.40 that considered the vector competence of both
Aedes aegypti and Aedes Albopictus have further revealed the risk
of importation into new regions. Once the number of imported
infections is known, the time and risk of importation from trav-
ellers can be used to understand the dynamics of local transmis-
sion13,27 and to dynamically model epidemic risk in real time.15
Exportation and importation risk profiles can also be generated
to understand the risk of spread between geographical regions.17
The availability of near real-time data sources, such as Google

searches, Twitter microblogs and ProMed (https://promedmail.
org/), has also been leveraged to make timely predictions of ZIKV
infections before official case data become available. Predictions
of weekly ZIKV cases have been made 1–3 wk ahead of pub-
lication date in Latin American countries.20 The accuracy and
geographic coverage of ‘big’ mobile and internet data are highly
dependent on human–computer interactions and participation
dynamics, thus reliability and biases from these sources may be
limited.
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Quantifying transmission using R0
The basic reproduction number (R0) is a key metric used to
define the capability of an infectious agent to proliferate45 and
is commonly adopted in studies to understand transmission in
populations. This number can vary across time (Rt), as an esti-
mate determined during an epidemic driven by human con-
tact will differ as it transitions to an endemic state when
the population has achieved advanced control efforts or herd
immunity.
At the start of an epidemic, when public health interventions

and population immunity are absent, R0 can be adopted as an
effectivemetric to understand rapid spread. This is heavily depen-
dent on the vector capacity of the mosquito, which is driven by
temperature, the extrinsic incubation period of ZIKV, mosquito
biting rate and vector abundance in a location.15,23 Given the opti-
mal conditions for human–vector transmission, integrating data
on local and regional travel can help assess transmission dynam-
ics within and between populations15,23,28 and between human
and vector to dissipate or sustain epidemics.10 Furthermore, by
identifying and modelling Aedes sp. competence and transmis-
sion intensity under various temperature ranges, a range of R0
estimates by region can be derived to understand the distribu-
tion of transmission duration and risk during recent and future
climate scenarios.9,26

Reconstructing transmission pathways
using phylogeography
Phylogeographic analyses can elucidate timely information on
the rapid evolution and spatial spread of viral pathogens. Evo-
lutionary trees combined with genetic and geolocation data
have helped to determine the initial date of ZIKV circulation in
the Americas, highlighting that local circulation began months
before the first confirmed case.32 While it was costly and time-
consuming to sequence large numbers of virus genomes in the
past, more accessible and timely methods of pathogen genome
sequencing are now available using portable genomic technolo-
gies. For example, nanopore instruments such as the MinION46
device can be rapidly and effectively adopted in remote and
resource-low settings. For instance, ZIKV samples collected from
the 2016 outbreaks in Brazil were generated within 48 h.33
Genomic data have been combined with epidemiological data

to detect unreported outbreaks and to understand whether a
virus is driven by importation or local transmission. By analysing
viral genomes and epidemiological data, Faria et al.33 found that
ZIKV was introduced to northeast Brazil as early as February
2014 prior to circulation in Brazil and detection in the Americas.
Grubaugh et al.29 combined genomic data, passenger air travel
information and local and travel-related infections to detect
unreported outbreaks, such as one in Cuba that occurred a
year after peak transmission in neighbouring islands. Applying
genomic data to fill in gaps existing in epidemiological data has
significant potential; however, given limited quantity and quality
of travel data, combining travel surveillance in a joint framework
remains a challenge that merits further exploration.

Identifying risk factors and drivers of spread
Human mobility, climate change, urbanisation and socioeco-
nomic disparities can drive variations in the geographic spread of
ZIKV as well as outbreak intensity. Global human mobility, which
has been increasing at unprecedented rates due to tourism,
trade and migration, is a key determinant of global arbovirus
distribution.47 The role of human mobility as a key predictor of
ZIKV spread has been investigated by several studies, particu-
larly when it concerns the risk of spread due to international
travel13,17,23,29,39 and migration.10,14,22,34,36 Types of data and
models used to quantify human mobility for Zika modelling are
discussed further in the next section.
Climate factors, coupled with travel, can further drive changes

in vector competence, particularly in locations with similar cli-
mate conditions that are conducive to Aedes habitat suitability.
Temperature is a strong determinant of A. aegypti competence
in transmitting Zika48 and has been incorporated in both deter-
ministic and stochastic models to account for its role in driv-
ing Zika infections.16,23,24,26,34,37,43 Other factors such as precip-
itation and relative humidity also play an important role in fos-
tering mosquito growth, which is conducive to Zika transmis-
sion.16,18,21,34,39
The role of socioeconomic factors in facilitating ZIKV spread

remains inconclusive, as it varies by factor and spatial scale.
While a strong negative association between gross domestic
product and ZIKV transmission was found among countries17,35
this remains contested at the subnational level.37 Household
conditions, namely, access to air conditioning, sanitation, piped
water and garbage collection, were found to be linked with ZIKV
spread and risk.24,37 Rees et al.34 found a negative relation-
ship between poverty level and ZIKV detection for Colombia, but
noted that this could be linked to under-reporting in poor areas
due to limited healthcare access. Typically, urban settings have
high landscape heterogeneity, providing optimal conditions for A.
aegyptimosquitoes to thrive and foster arbovirus transmission to
humans.49,50 Urbanisation has high predictive power for estimat-
ing ZIKV risk,18,37 along with population density, which is a signif-
icant risk factor.17,35
Variables relating to healthcare infrastructure have rarely been

included as explanatory variables in existing ZIKVmodelling stud-
ies. Gardner et al.17 used data on the number of hospital beds and
number of physicians per 10 000 people to represent the distribu-
tion of healthcare infrastructure in their model. They found that
these variables did not contribute significantly to country-level
geographic spread and local transmission of ZIKV. Future stud-
ies should focus on incorporating indicators of healthcare access
into their models to understand their role in predicting spread.

Using human mobility to model ZIKV spread
Quantifying mobility using travel data
Human mobility is a key driver of ZIKV spread and integrating
this variable in spatial models can provide a valuable insight into
spread within and across populations in near real time. Infor-
mation on human movement has traditionally been collected
from household travel surveys and censuses51; recently, such
data have been acquired at higher resolutions from new digital
sources. Table 1 summarises the strengths and weaknesses of
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Table 1. Indicators of human mobility for modelling arbovirus spread

Indicator of human
mobility Data source

Open access
(Yes/No) Spatial scale Source

Passenger air travel Global flights network
(OpenFlights)

Yes Global 13*

International air transport
association (IATA)

No Global 39*;17*; 29*;24*; 40*;
14*;23*;12*;3*; 29*

Official aviation guide (OAG) No Global 24*

Call data records Operators and private
companies

No Local, regional 57;22*;59

Night-time lights
brightness

Defense meteorological
satellite program (DMSP)

Yes Global coverage at
1 km x 1 km
resolution

60

Global positioning
system trackers

GPS data loggers used to track
individual movement

No Local (e.g.
neighbourhood level)

61; 62; 63

Google location history (GLH) No
Cell phone towers No

Travel surveys Government agencies Yes Local, regional 51

Infrastructure data Road networks Yes Global 34*; 64
Public transport contactless
cards

No Local 44*

*Studies that examined human mobility and its effects on ZIKV spread.

existing human mobility indicators that have been used to track
the spread of ZIKV and similar arboviruses. A more comprehen-
sive list of data used to quantify human mobility for analysing
disease and health risks has been reviewed elsewhere.52
Data on passenger flights between locations can help to

track ZIKV spread,29,39,40 but limit our understanding of move-
ment to the origin and destination airports and rarely considers
connections made between flights and travel made at the indi-
vidual level.53 Call data records from mobile phones offer large
coverage of populations and areas and can be leveraged tomea-
sure individual-level movement in near real time.22,52 Access to
call data records is currently restricted to research groups and
access is granted via a negotiated agreement with the opera-
tor, which makes their widespread use challenging. The release
of personal individual details via mobile phone records to third
parties is a privacy concern, thus censored via data aggregation
and often provided as a small sample. Given these restrictions,
ongoing research has outlined ways to improve accessibility,54
while initiatives such as the Open Algorithms project (https://
www.opalproject.org) and FlowKit (https://flowkit.xyz) are work-
ing towards scaling the privacy-conscientious use of call data for
research. Moreover, modelling efforts towards understanding the
COVID-19 pandemic have further opened up these data sources
to researchers.

Quantifying mobility using mathematical models
When trip-level data are not available, human mobility can be
quantified using models such as the gravity model of migration,
a deterministic model that assumes that population movement

between locations is proportional to some power of the pop-
ulation sizes of the origin and destination locations.55 O’Reilly
et al.36 used a gravity model to assess the international spread
of ZIKV in the Americas and found this model to be effective in
fitting the data. However, assumptions of the gravitymodel, such
as the lack of theoretical guidance for fitting empirical data, the
requirement of existing traffic data to fit parameters and issues
concerning modelling the flux in travel between two locations56
make it difficult to characterise complex travel behaviour across
a large region.
To address these limitations, Simini et al.56 developed the radi-

ation model, which is parameter-free and is based on a stochas-
tic process that only requires information on population distribu-
tion. This model can be applied to estimate movement patterns
in areas that lack mobility data and its predictions have gener-
ally aligned with observed mobility patterns, including long-term
migration and population diffusion between areas. This method
was widely adopted to estimate population movement between
affected cities in Latin American countries during the 2015–2017
ZIKV outbreaks36 and similar arbovirus outbreaks.57,58 When
information on population travel is limited, radiation models can
effectively infer human mobility behaviour during an outbreak to
estimate the magnitude of spread.

Model validation
A good model for assessing disease spread is often validated for
its accuracy, ensuring that the model, combined with assump-
tions, results in a sufficiently accurate representation of reality.
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Studies of ZIKV that aimed to forecast the number of infections
or R0 at various spatial and temporal scales have validated their
models by comparing the projected outputwith surveillance data
not directly used to calibrate the model15,22–24 or by adopting
statistical analysis to understand whether the predicted relation-
ship was consistent with the data.15,26,34 While this is a simple
way to validate model outputs, it may result in high bias if lim-
ited data were used. When the goal is to find the most suit-
able model among a selection of models, studies that mod-
elled disease risk at the local and regional level have taken a
criterion-based approach by comparing the Akaike Information
Criterion (AIC)16,19 and the Deviance Information Criterion (DIC)
when using Bayesian inference.42,44
When large amounts of data are available, k-fold cross-

validation, a method for testing performance for machine learn-
ing models, and area-under-the-curve (AUC), a measure of pre-
dictive accuracy, can be adopted as quantitative diagnostic tools.
Several studies that have explored ZIKV spread at regional and
global levels have adopted k-fold cross-validation to train their
models,18,21,34,36,38 particularly studies that have adopted an
ecological niche modelling approach. Subsequently, AUC has
been adopted to evaluate the predictive performance of these
models.18,21,34 A subset of randomly selected data can be used
as a test sample and the AUC can be applied to assess predic-
tive accuracy37; when multiple models are present, AUCs can be
compared.13 AUC can also be combined with the receiving oper-
ating characteristic curve analysis to further examine a model’s
predictive ability.14,35

Conclusions
Mathematical models can enhance surveillance and help iden-
tify potential risk factors that drive ZIKV spread. We reviewed
studies that investigated the geographical spread of ZIKV, dis-
cussed common model features and examined the role of var-
ious transmission risk factors. We highlighted the value of adopt-
ing novel data sources that characterise human mobility to
monitor transmission in real time, as well as the potential inte-
gration of such datawith environmental and socioeconomic data
phylogeographic methods. We also summarised model valida-
tion strategies and recommend their implementation. Our review
provides an overview of model characteristics that future studies
should consider when modelling the geographic spread of ZIKV
and other arboviruses to prevent future outbreaks.
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