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Abstract

Recent studies have explored the potential of tissue‐mimetic scaffolds in

encouraging nerve regeneration. One of the major determinants of the regenerative

success of cellular nerve repair constructs (NRCs) is the local microenvironment,

particularly native low oxygen conditions which can affect implanted cell survival

and functional performance. In vivo, cells reside in a range of environmental

conditions due to the spatial gradients of nutrient concentrations that are

established. Here we evaluate in vitro the differences in cellular behavior that such

conditions induce, including key biological features such as oxygen metabolism,

glucose consumption, cell death, and vascular endothelial growth factor secretion.

Experimental measurements are used to devise and parameterize a mathematical

model that describes the behavior of the cells. The proposed model effectively

describes the interactions between cells and their microenvironment and could in

the future be extended, allowing researchers to compare the behavior of different

therapeutic cells. Such a combinatorial approach could be used to accelerate the

clinical translation of NRCs by identifying which critical design features should be

optimized when fabricating engineered nerve repair conduits.

K E YWORD S

glucose, hypoxia, mathematical modeling, microenvironment, tissue engineering, VEGF

1 | INTRODUCTION

Peripheral nerve injuries (PNIs) are associated with high socio-

economic and personal costs; the mean patient age is ~30 years so

they can greatly impact lifetime health and productivity (Lad et al.,

2010). Although nerves exhibit some regenerative capacity, the

degree of reinnervation and subsequent recovery is dependent on

many factors. In the case of incomplete regeneration, patients might

not achieve meaningful functional recovery and the resulting

disability may be highly debilitating with long‐term effects on them

and their families (Grinsell & Keating, 2014; Panagopoulos

et al., 2017).

The current “gold standard” of treatment for large gap PNIs is an

autograft, where a sensory nerve is harvested and sutured to bridge

the gap. However, autografts exhibit success rates that are far from

ideal (Yang et al., 2011), as well as causing donor site morbidity and
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being limited in their availability. Recently, research in PNI treatment

has focused on nerve repair constructs (NRCs), that combine

therapeutic cells and biomaterials. When implanted in the injury site,

NRCs can provide mechanical support, guidance cues and a growth‐

permissive environment to modulate regeneration (Carriel et al.,

2014; Hsu et al., 2013; Schuh et al., 2018). Research into the design

of NRCs has so far focused predominantly on the choice of

biomaterial, cell type and proregenerative cues. For NRCs that

include a cellular component, key aspects that require optimization

include spatial distribution of embedded cells and long‐term nutrient

supply.

The conditions in the local microenvironment, particularly the

native low oxygen levels, are a major determinant of the regenerative

success of cellular NRCs that are often overlooked. Under physio-

logical conditions the characteristic penetration length of oxygen in

tissue is considered to be around 100–200 μm, depending on the

proximity to blood vessels, cell type, and density (Carrier et al., 2002;

Rouwkema et al., 2008). PNIs cause acute damage and disruption to

microvascular networks thereby obstructing tissue perfusion (Lim

et al., 2015). The resulting local tissue hypoxia and absence of

neovascularisation can affect oxygen diffusion and distribution within

implanted NRCs. As a result, the core of the NRC, which often lies at

a distance beyond the diffusion distance of oxygen away from the

nerve stumps, may become severely hypoxic compared to the ends of

the NRC. Besides the physical characteristics of the biomaterial used,

oxygen consumption rates are also determined by the type of cells

embedded in the construct (Cheema et al., 2012; Magliaro et al.,

2019; McMurtrey, 2015). For instance, pluripotent stem cells tend to

have low metabolic rates, while progenitor and differentiated cells

have higher metabolic rates (Teslaa & Teitell, 2015). Additionally, the

consumption rate of three‐dimensional (3D) cultures appears to

change based on the cell seeding density (Magliaro et al., 2019;

Patzer II, 2004; Sielaff et al., 1997).

The formation of oxygen gradients has been found to correlate

with gradients in viable cell density (Lewis et al., 2005; Radisic et al.,

2006) and increased metabolic loads of the embedded cells (Carrier

et al., 2002). Besides cell viability, oxygen availability is also linked to

vascular regeneration. Cells in hypoxic environments often respond

by the activation of multiple proangiogenic pathways and the

upregulation of factors that encourage new vessel formation (Fong,

2008; Hashimoto & Shibasaki, 2015). Therefore, the presence of

oxygen gradients within an NRC can lead to the formation of growth

factor gradients, such as vascular endothelial growth factor (VEGF),

which in turn can result in a more distinct directional chemotactic

response of migrating endothelial cells. This can have further

implications for PNIs as VEGF expression and neovascularisation

have been found to induce axonal regrowth and Schwann cell

proliferation and promote neural regeneration (Cattin et al., 2015;

Donzelli et al., 2016; Hobson et al., 2000).

Improving our understanding of the impact of the local

microenvironment on implanted cells is therefore beneficial for

informing NRC design. Nevertheless, most in vitro studies assessing

the behavior and proregenerative capacity of NRCs, have been

performed at standard laboratory incubator oxygen concentrations.

This condition does not represent the local in vivo endoneurial

oxygen tension that studies in rat sciatic and human sural nerves

report to be around 3%–7% (Newrick et al., 1986; Tuck et al., 1984;

Zochodne et al., 1994). For this purpose, here, the effect of in vitro

oxygen conditions on cell survival, VEGF release, as well as oxygen

and glucose consumption, were measured. To simulate the sorts of

cellular biomaterial used in translational nerve tissue engineering

research, differentiated neural stem cells (CTX0E03) at a range of cell

densities were embedded in thin, stabilized collagen constructs, and

subsequently cultured at a physiologically relevant range of oxygen

concentrations as well as standard cell culture conditions. CTX0E03

cells were selected as they are human clinical‐grade therapeutic cells

with demonstrated potential as an allogeneic “off the shelf” cell

source for peripheral nerve repair (Kalladka et al., 2016; O'rourke

et al., 2018; Rayner et al., 2021; Smith et al., 2012).

The in vitro cellular biomaterial model allows us to explore NRC

performance in a highly controlled environment, providing an insight

into the behavior of therapeutic cells in the critical first 24 h after

implantation. However, while in vitro experiments are invaluable in

furthering our understanding of cellular behavior and in improving

NRC design, the vast number of possible scenarios, including

differences in cell density and distribution, biomaterial permeability,

and anisotropy, that need to be tested can be prohibitive. To

accelerate the design process, mathematical modeling can be

integrated into experimental work to create an efficient and robust

multidisciplinary workflow and allow for continuous improvement

through an iterative process (Coy et al., 2018). Such tools can also be

used to extrapolate data from in vitro studies to an in vivo repair

environment, thus refining future in vivo studies.

To this end, we derived a cell‐solute model, which comprises a

set of coupled partial differential equations describing the spatial and

the temporal evolution of the CTX0E03 population and its local

environment, including oxygen and glucose consumption and VEGF

release. This allows us to assess the spatial gradients that will be

established in repaired nerves and exploit this information in

construct design (Coy et al., 2020, 2021). This type of mathematical

model has been widely used to enhance the design of engineered

tissues and tissue culture bioreactors (Cochran et al., 2006;

McMurtrey, 2015; Rutkowski & Heath, 2002), as they are computa-

tionally cost‐effective, rely on a limited set of parameters, while still

capturing most of the underlying biophysics. To calibrate this model,

we first performed a sensitivity analysis of its outputs that allowed us

to highlight the hierarchy between the different parameters. We then

used the experimental observations to assign representative values

to these parameters by matching the predictions of the mathematical

model against the obtained data.

2 | METHODS

Unless otherwise stated all cell culture materials were purchased

from Sigma Aldrich or Thermo Fisher Scientific.
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2.1 | Culture and differentiation of CTX0E03 cells

Human neural stem cells (CTX0E03, level P28‐P31, ReNeuron Ltd)

were cultured in Dulbecco's modified Eagle's medium:F12 medium

supplemented with human albumin (0.03%; Nova Biologics); Gluta-

max (2mM); human transferrin (5 μg/ml), putrescine dihydrochloride

(16.2 μg/ml), human insulin (5 μg/ml; Sigma), progesterone (60 ng/ml;

Sigma), sodium selenite (40 ng/ml), epidermal growth factor

(20 ng/ml), basic fibroblast growth factor (10 ng/ml; Invitrogen), and

4‐hydroxytamoxifen 4‐OHT (100 nM) in 175 cm2 laminin‐coated

(10 µg/ml; Amsbio) flasks. Following expansion, CTX0E03 cells were

subsequently differentiated for 1 week by removal of growth factors

and 4‐OHT.

2.2 | Fabrication of stabilized cellular collagen gels

Differentiated CTX0E03 cells (dCTX0E03) were used to create

stabilized cellular collagen scaffolds. These were used to mimic the

conditions in engineered neural tissue constructs. All gels were

prepared using 80% v/v type I rat tail collagen (2 mg/ml in 0.6%

acetic acid; First Link) mixed with 10% v/v 10× minimum essential

medium. The mixture was then neutralized using sodium hydroxide

(NaOH) and 10% v/v cell suspension was added to give cellular

collagen at a series of cell densities (0.5–1.5 × 106 cells/ml of gel).

These cell seeding densities were based upon the range used within

NRCs (Coy et al., 2020; Georgiou et al., 2015; O'Rourke et al., 2018)

(Table 1).

Next, 240 μl of the cellular collagen mixture was added to

individual wells of a 96 well plate and the gels were allowed to set at

37°C for 15min. Using RAFT absorbers (Lonza Bioscience) the gels

were stabilized using plastic compression for 15min, a process

whereby a biocompatible absorbent material is placed upon the gel

and absorbs interstitial fluid to generate a dense, robust hydrogel

(Brown et al., 2005). The resulting compressed gels were then

immersed in culture medium and incubated at 37°C in a humidified

incubator for 24 h under different oxygen concentrations, chosen to

reflect the range of oxygen concentrations in which cells would

reside in vivo.

2.3 | Low oxygen 3D cell culture and oxygen
monitoring

A hypoxia workstation and incubator (HypoxyLab, Oxford Optronix)

was used for experiments requiring low oxygen conditions. Cell

culture medium for hypoxic experiments was conditioned to the

target oxygen concentration (1%, 3%, or 7%), which encompasses

the rage of endoneurium in vivo measurements, for 2 h before use.

Cellular collagen constructs were cultured in the HypoxyLab at the

desired oxygen concentration for 24 h. In situ dissolved oxygen

within the constructs was measured using the integrated OxyLite™

(Oxford Optronix) monitoring system. Fiber‐optic oxygen probes

(Oxford Optronix) were inserted into the middle of the constructs.

The sensor probes were set to continuously measure oxygen partial

pressure (5 samplings/min). The results were recorded using Labview

software (National Instruments). Results are presented as partial

pressure values in mmHg (e.g. 7.6 mmHg corresponds to 1%).

2.4 | CellTiter‐Glo assay

Metabolic activity was examined by measuring adenosine triphosphate

(ATP) as an indicator and generating a luminescent readout, using the

CellTiter‐Glo® 3D Assay (Promega). Based on themanufacturers protocol,

a volume of reagent equal to that of the culture medium was added to

each experimental well and following a 30‐min incubation at room

temperature, 200μl from the assay solution were transferred to a

microplate and luminescence was quantified on a plate reader (Flx800,

BioTek). The metabolic activity of cells was determined in culture by

measuring the intensity of luminescence signals after 24h.

2.5 | Live/Dead assay

To assess cell viability, cultures were stained using Syto 21/

Propidium Iodide (PI) (Sigma Aldrich). Syto 21 is a green, fluorescent

nucleic acid stain that exhibits bright, green fluorescence upon

binding to nucleic acids in both live and dead cells. In comparison, PI,

which exhibits red fluorescence, cannot permeate viable cells as it

reaches the nucleus by passing through disordered areas of dead cell

membrane. Thus, using both dyes allows for the simultaneous

staining of viable and dead cells.

For the Syto 21/PI staining, the medium was removed from the gels,

which were then washed three times with 200μl of medium (37°C).

Subsequently, 200μl of Syto 21/PI solution (1:1000 dilution) was added

and the plates were incubated for 15min at 37°C before removing the

Syto‐21/PI solution. The gels were then washed briefly with 200μl of

culture medium. Finally, an additional 200μl of culture medium was

added to each gel before image acquisition. Images were visualized using

a confocal microscope (Zeiss‐LSM710, Carl Zeiss) with ×20 phase‐

contrast water immersion objective. High‐throughput quantification of

cell viability from 3D image stacks by adapting a readily available ImageJ

protocol was performed.

TABLE 1 Main parameters for in vitro experiments

Experimental values

Cell seeding density 0.5 × 10 , 0.78 × 10 , 1.5 × 10 cells /ml6 6 6

Equivalent cell seeding
density after
stabilization

20 × 10 , 31 × 10 , 60 × 10 cells/ml6 6 6

Oxygen concentration 1%, 3%, 7%, or 21%

Glucose concentration 25mM

Duration 24 h

1982 | ELEFTHERIADOU ET AL.



The spatial distribution of viable cells within the constructs was

also estimated. From the 3D image stacks three different zones that

correspond to the top, middle, and bottom of the gels were identified

and the mean value of live and dead cells per zone was calculated by

analyzing seven stacks per zone.

2.6 | Glucose detection assay

Glucose consumption was quantified by an enzymatic assay (Glucose

[HK] Assay Kit, GAHK20, Sigma Aldrich) according to the manufac-

turer's guidelines. Briefly, after 24 h incubation of the cellular gels,

the supernatants were collected for further analysis. The reconsti-

tuted reagent was added to each sample and the resulting solution

was incubated for minutes at room temperature. During that time,

glucose was phosphorylated by ATP, a reaction which was catalyzed

by hexokinase. Glucose‐6‐phosphate (G6P) was then catalytically

oxidized to 6‐phospho‐gluconate in the presence of oxidized

nicotinamide adenine dinucleotide (NAD). Due to this oxidation, an

equimolar amount of NAD was reduced to NADH, thereby changing

the optical absorbance of the sample. The consequent increase in

absorbance was measured at 340 nm and was directly proportional to

glucose concentration.

2.7 | VEGF release

The concentration of secreted vascular endothelial growth factor‐A

(VEGF‐A) post 24 h incubation was determined by an enzyme‐linked

immunosorbent assay (ELISA). The cell medium supernatant from the

gels was collected, stored at −20°C and later analyzed with a VEGF‐A

sandwich ELISA kit (human and rat VEGF‐A kits, RayBiotech)

according to the manufacturer's protocols.

2.8 | Experimental data analysis

Normality was determined using a Shapiro‐Wilk test. Two‐way

statistical analysis of variance (ANOVA) was conducted, followed

by Bonferroni's multiple comparison test.

2.9 | Cell‐solute mathematical model

The cell‐solute model is comprised of a set of continuous diffusion‐

reaction equations that describe the interactions between oxygen (c),

glucose (s) and VEGF (v) concentrations and the cell population (n), within

the in vitro well setup. These variables were selected as they reflect the

potential effect of the local microenvironment on the viability of seeded

cells and the expression of VEGF, both of which are fundamental for

nerve regeneration and vascular regeneration. We consider the gel and

the medium above within the well geometry (Figure 1) as continuous

materials with effective uniform properties. In the following sections, we

start by describing the model equations in the gel and culture medium,

followed by initial and boundary conditions.

We consider the transport of oxygen in the gel to be driven by

molecular diffusion, modeled using Fick's first law, and assume that

cells metabolize oxygen following Michaelis–Menten kinetics, as is

commonly used in the literature for conditions where oxygen is the

limiting factor (Haselgrove et al., 1993; Huang et al., 2011; Magliaro

et al., 2019; Zhong et al., 2018).

∇∂ c D c M n
c

c c
= −

+ ¯
,t g c g g c

g

g
,

2
(1)

where cg represents the oxygen concentration in the gel, n the local

cell density in the gel, Dc g, the diffusion coefficient of oxygen in the

gel, Mc the maximum oxygen consumption rate by the cells, and c̅

the oxygen concentration for which oxygen consumption by the cell

is half its maximal value. Oxygen is considered to diffuse freely in the

medium so that

∇∂ c D c= ,t m c m m,
2 (2)

where cm represents the oxygen concentration in the medium and

Dc m, is the diffusion coefficient of oxygen in the medium.

Next, the equation that governs glucose concentration within the

gel can be written as

∇






∂ s D s M n

s

s s
A

c

c c
= −

+ ¯
1 +

¯

+ ¯
,t g s g g s

g

g g
,

2 (3)

where sg represents the glucose concentration in the gel. Here,Ds g, is the

diffusion coefficient of glucose in the gel, Ms the maximum glucose

consumption rate by the cells, and s̅ the glucose concentration for which

glucose consumption by the cell is half its maximal value. Glucose

consumption by cells is assumed to follow Michaelis–Menten kinetics

(Aubert & Costalat, 2005; Dienel et al., 2017) modified with an additional

term to capture anaerobic metabolism given the anticipated local oxygen

F IGURE 1 Cell culture well schematic.
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conditions, c

c + c

¯

¯g
. The functional form of this new term is based on

supplemental consumption of glucose in anaerobic conditions happening

around the same oxygen level as the weakening of the oxygen metabolic

reaction (c̅ ) but being negligible for high oxygen concentration conditions.

This extra term enables the impact of anaerobic metabolism to be

captured while only introducing one new parameter into the model.

Similar to oxygen, we assume that glucose diffuses freely in the

medium so that:

∇∂ s D s= ,t m s m m,
2 (4)

where sm represents the glucose concentration in the medium and

Ds m, is the diffusion coefficient of oxygen in the medium.

Next, we consider the VEGF as an unstable molecule secreted by

cells. Although vascular endothelial growth factors are a family of

polypeptides, in this study we focus on modeling VEGF‐A, which is

considered the key mediator of angiogenesis (commonly referred to

as VEGF). We describe the VEGF concentration in the gel by:

∇∂ v D v Kv G c n= − + ( , ),t g v g g g g,
2 (5)

where vg represents the VEGF concentration in the gel, Dv g, is the

diffusion coefficient of VEGF in the gel, K the VEGF degradation rate

and G is the production rate of VEGF. Given that the production rate

of VEGF by dCTX0E03 cells is not defined in the literature, we used

the experiments presented in Figure 4 to define a production rate of

VEGF that considers upregulation under low oxygen conditions. The

final relationship describing the dependence of VEGF production on

the underlying local environment is given by


















 




G n αc β e= + ,g

c
c

n
n− +

g

τ τ (6)

where α represents the baseline VEGF production rate and β represents

theVEGF production rate depending on oxygen. Further cτ is the hypoxic

threshold for VEGF production and nτ represents a crowding factor for

the cells. VEGF is also assumed to diffuse freely in the medium:

∇∂ v D v Kv= − ,t m v m m m,
2 (7)

where vm represents the VEGF concentration in the medium andDv m,

the diffusion coefficient of VEGF in the medium.

Finally, the viable cell density is determined by the balance of cell

proliferation and death, along with cell migration. In collagen

gels, however, cell migration is negligible on the short timescales

considered here (Ardakani et al., 2014) and thus neglected.

In addition, CTX0E03 cells are conditionally immortalized and

thus, do not proliferate in the absence of 4‐OHT. We describe cell

death as an increasing function of cell density, to represent

competition for space, and a decreasing function of oxygen

and glucose concentration, to represent competition for nutrients

so that






















∂ n n δ δ

c

c c
δ

s

s s
= − +

¯

+ ¯
+

¯

+ ¯
,t c

g
s

g
0 (8)

where δc controls the oxygen‐related death, δs controls the glucose‐

related death δ0 encompasses all other interactions. The rationale

behind the choice of oxygen and glucose‐related deaths terms is

exactly the same as that for anaerobic consumption (Equation 3).

2.10 | Well geometry and boundary conditions

Themodel consists of an axisymmetric 2D geometry (rotational symmetry

along the vertical axis of the well), that represents the well of a 96‐well

plate and is composed of two domains: (i) the cell‐seeded collagen gel at

the base of the well, and (ii) the volume of culture medium above it

(Figure 1). Conditions are imposed at the boundaries to capture the

geometrical constraints and relevant transport characteristics of the

setup. At the boundary between the cellular gel and the medium, we

assume continuity of concentration and flux for oxygen, glucose, and

VEGF. Zero flux boundary conditions are imposed for oxygen at the

bottom and the sides of the well, whereas the concentration of oxygen

on the medium‐air interface was set as constant and equal to the ambient

oxygen as prescribed during the experiments. For VEGF and glucose, zero

flux conditions were set at the bottom, sides and air interface. The initial

oxygen concentration in the gel was set at c r t( , z, = 0) = 12%,g due to

preconditioning of the cell culture medium. Based on the experimental

data, the initial glucose concentration at the medium was set as

s r t( , z, = 0) = 25g and1.25mM in the gel, the initial VEGF concentration

was set at v r t( , z, = 0) = 0, and the initial cell density was varied to

match the experimentally‐imposed seeding conditions.

2.11 | Parameter values

Initially, the bounds of the parameters included in the model equations

were informed based on literature values (see Table 2). For some

parameters, literature was either scarce or conflicting and often from a

range of cell types and culture conditions that do not represent the

specific setup here. Thus, bounds for some parameters were chosen

based on our own experimental observations and conditions.

2.12 | Sensitivity analysis

The model defined by Equations (1)–(9), while built with minimal

components, still includes 19 parameters, excluding initial and

boundary conditions. The large number of model parameters

compared to the relatively small data set, due to the limited spatial

and temporal resolution of the in vitro model, leads to an under-

determined system. To help regularize the problem, we performed a

sensitivity analysis to prioritize the importance of parameters in

predicting a relevant quantity of interest, chosen here as the average

concentrations and cell density in the gel,
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∭ x t h
V

x dV( = 24 ) =
1

,g
g V

g
g

(9)

where xg represents the local concentration of the different species in

the gel and Vg the volume of the gel. By combining this prioritization

exercise with existing knowledge of the different parameters, we can

define realistic intervals for each parameter value. Such intervals are then

explored during the optimization procedure (small intervals for impactful

parameters, large intervals for minor parameters) by comparing model

predictions against experimental measurements.

Multiple approaches exist to perform sensitivity analysis (Saltelli

et al., 2004). Given the size of the parameter set we selected the

Morris Screening Method (Morris, 1991) which qualitatively evaluates

the global sensitivity of each parameter, including coupling and

nonlinearity, using a set of elementary effects. More specifically, we

use the implementation proposed by Campolongo et al., who

developed an optimized parameter sampling algorithm for sensitivity

analysis with decreased computational cost (Campolongo et al., 2007).

Input values of the variables of interest are determined based on

a sampling algorithm which starts at randomly selected points in the

TABLE 2 Initial parameter range

Nominal value and approximated bounds

Cell density parameters

Maximal cell density (n )max n = 77 × 10max
6 cell/ml

Proliferation rate constant 0

Baseline cell death rate constant δ( )g0 [3.3 × 10−7, 1.1334 × 10−5 1/s]
(Chung et al., 2006; Coy et al., 2020)

Hypoxic cell death rate constant δ( )c
a[1.7 × 10−8, 4 × 10−6 ]1/s

Glucose deprivation‐induced death rate
constant (δ )g

a[1.7 × 10−8, 4 × 10−6 ]1/s

Oxygen concentration parameters

Diffusion coefficient for oxygen in medium D( )cm D =cm 2.62 × 10−5

[1 × 10−5, 4 × 10−5] cm2/s (Han & Bartels, 1996)

Diffusion coefficient for oxygen in gel D( )cg [1 × 10−6, 4 × 10−6] cm2/s (Cheema et al., 2012)

Concentration at which oxygen consumption is
½ maximal (c̅ )

[6.66 × 10 , 4 × 10−9 −8] mol/ml (Coy et al., 2020) (0.5% O2)

Maximal rate of oxygen consumption M( )c
b[1 × 10 , 7.7 × 10−18 −16] mol/cell/s (Herculano‐Houzel, 2011; McMurtrey, 2015; Streeter &

Cheema, 2011; Wagner et al., 2011)

Glucose concentration parameters

Diffusion coefficient for glucose in medium (D )sm [5.65 ×10 ,−6 1.09 ×10−5] cm2/s (Shipley et al., 2009; Suhaimi et al., 2015)

Diffusion coefficient for glucose in gel (D )sg [0.23 ×10 ,−6 1.51 ×10−6] cm2/s (Cochran et al., 2006; Wu et al., 2005)

Concentration at which glucose consumption is

1/2 maximal (s̅ )
[2, 10] mM (Barros et al., 2007; Duarte et al., 2009; Van Zijl et al., 1997)

Maximal rate of Glucose consumption M( )s [5 × 10−17, 2.2 × 10−16] mol/cell/s (Gu et al., 2016; McMurtrey, 2015)

Anaerobic threshold for glucose consumption (A) N/A

VEGF concentration parameters

Diffusion coefficient for VEGF in medium (D )vm [1.3 × 10 , 2 × 10−6 −6] cm2/s (Mac Gabhann et al., 2005; Mac Gabhann et al., 2007)

Diffusion coefficient for VEGF in gel (D )vg [2.9 ×10 ,−7 1.13 ×10−6] cm2/s (Chen et al., 2007; Köhn‐Luque et al., 2013; Wang et al., 2020)

VEGF degradation rate (K) [2.67 × 10−6, 1.28 × 10−4] 1/s

Hypoxia threshold for VEGF secretion (cτ)
a[0.1, 2] %O2

VEGF crowding factor (n )τ
a[1, 60]×106 cell/ml

Baseline VEGF secretion rate at low oxygen (a) N/A

Baseline VEGF secretion rate based on
oxygen (β)

N/A

aBased on experimental observations.
bBounds of parameter were adjusted to account for decreased oxygen consumption rate in 3D culture systems (Magliaro et al., 2019).
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k‐dimensional space and creates a trajectory through all the

k‐dimensions. First, the elementary effects (EEi,j, i = 1,…, r, j = 1,…, k)

used for the Morris screening test are individually computed for each

trajectory and each variable of interest.

EE
Y X X X X Y X X X X

Y X e Y X

=
( , , …, + Δ , …, ) − ( , , …, , …, )

Δ

=
( + Δ ) − ( )

Δ
.

i j
i i k i k

i

i

,
1 2 1 2

An elementary effect can be computed if and only if X e+ Δ i is

still in the parameter range. This means that there are

p p p( − Δ( − 1))k−1 elementary contributions. EEi j, values are then

used to calculate the final sensitivity measures such as the mean

absolute value of the elementary effect and the standard. More

specifically,

∑μ
r

EE* =
1

| |i i j,

and



 


∑ ∑σ

r
EE

r
EE=

1
−
1

,i i j i j, ,

2

with μ*i being used to detect input parameters that have an overall

influence on the output, and σ being used to detect input parameter

involved in interactions or nonlinearities.

2.13 | Optimization

We seek to minimize the difference between the model predictions

and experimental measurements by defining the underlying parame-

ters. Given the size of the parameter set, we choose to perform a

global, heuristic optimization using a particle swarm method

(Kennedy & Eberhart, 1995). The particle swarm algorithm seeks to

find an approximate solution to the equation:

J θ Xargmin ( , { }),
θ (10)

where θ is the vector of parameters, X{ } the set or subset of species

of interest (i.e., oxygen, glucose, VEGF, and cell density) and where J

describes the cost function

∑J θ X F θ σ Y σ( , { }) =
1

Ω
( , ) − ( ) ,

X X
X IB X IB

L{ } 1
(11)

which when minimized corresponds to minimizing the average

difference between experimental measurements and simulations for

a given set of species. ThusΩX is the size of the experimental set for

species X , F θ σ( , )X IB the vector containing the corresponding

predicted values for a given vector of parameter value θ and vector

of initial and boundary values σIB , and Y σ( )X IB the vector correspond-

ing to the corresponding experimental measurements. This approach

has the advantages of avoiding possible local minima, considering the

hierarchy between parameters, and imposing very few constraints on

the regularity of the cost function itself.

2.14 | Numerical simulations

The model (Equations 1–9) was solved numerically using finite

volume methods in Python 3.7. Given the rotational symmetry of a

culture well, the model is solved in two‐dimensional (radial and axial).

However, since the slope of the well geometry is small (<0.2%),

variations in the radial direction can also be considered negligible

compared to the axial ones, effectively rendering the model one‐

dimensional. As for the axial direction, we devised a nonuniform two‐

part mesh corresponding to gel and medium with a change in mesh

cell density at the interface between the two domains. This is done to

allow a finer resolution in the gel where gradients are steeper, while

still capturing the interface between gel and medium exactly.

Based on a mesh convergence analysis, N = 100 mesh cells (80%

in the medium and 20% in the gel) with a timestep tΔ = 100s enabled

gradient fields to be sufficiently resolved in both domains. Further

increasing the spatial or temporal resolution resulted in at most in

~1% change for the average concentration in the gel after 24 h. Next,

the Morris sensitivity analysis was run using the open source library

SALib (Herman & Usher, 2017) using the intervals presented in

Table 2 with 40 trajectories on a four‐level grid.

Finally, the particle swarm optimization was performed using

another open source library, PySwarm (Miranda, 2018), with three

meta‐parameters (two acceleration coefficients c1, c2 to control the

individual and collective behavior, and one inertia coefficient w to

control a history effect). The implementation was split in two

separate steps (1) optimization of the oxygen, glucose and cell

density related parameters (which are mutually coupled) (2) optimi-

zation of the VEGF related parameters (independent of the other

species). For each step, we use 20 particles and 1250 samples leading

to 25,000 simulations. For step 1, c1 = 2, c2 = 0.2, w = 0.6 whereas for

step 2, c1 = 2, c2 = 0.2, w = 0.7 yielded the optimum results and met

the appropriate convergence criteria (as defined in (Jiang et al.,

2007)). During step (1) we compute the average oxygen in the gel

every 0.5 h for 24 h for: (a) ambient oxygen concentrations

c z( = 0) =m 1%, 3%, and 7% and for an initial cell density n t( = 0) =

60 (Ω = 144)c , (b) average glucose concentration in the culture

medium after 24 h for c z( = 0) =m 1%, 3%, 7%, and 19% and for initial

cell densities n t( = 0) = 20, 31, 60 (Ω = 12)s , (c) average cell density

in the gel after 24 h for 1%, 3%, 7%, and 19% ambient oxygen

concentrations and for initial cell densities n t( = 0) = 20, 31, 60

(Ω = 12)n . For consistency in calculating the cost function

(Equation 11), all results were nondimensionalised using the initial

concentration for each species. Similarly, for step (2), we compute the

average VEGF concentration in the culture medium for ambient

oxygen concentrations c z( = 0) =m 1%, 3%, 7%, and 19% and for

initial cell densities n t( = 0) = 20, 31, 60 (Ω = 12)v .
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3 | RESULTS

3.1 | Viability and metabolic activity of dCTX0E03
cells under different oxygen conditions

The potential use of cellular NRCs for the treatment of PNI is dependent

on the ability of encapsulated cells to remain viable and maintain their

therapeutic effects. Therefore, the proportion of viable cells and their

metabolic activity were evaluated. Figure 2a,b illustrate the survival of

target cells under low oxygen conditions. Reduced oxygen availability

seemed to cause impairment in dCTX0E03 survival and metabolic

activity, with the effect being more pronounced at the highest seeding

densities. There was up to 10% reduction in viability and up to 26%

reduction in metabolic activity after incubation at 1% O2 for 24h, when

compared with normoxic conditions. Differences in cellular responses can

also be observed between the higher oxygen tensions, although they are

not as pronounced. Finally, cell death appears to be higher at high cell

seeding density conditions, possibly due to competition for available

nutrients.

We also explored the spatial distribution of viable cells within the

constructs (Figure 2c). Results indicate that areas of greater viable

cell density occur at the top of the gels, correlating with highest

oxygen concentrations at the air interface (and lowest at the well

base which is furthest from the oxygen source) (Cheema et al., 2007).

3.2 | Oxygen consumption characteristics in 3D
constructs

Figure 3 displays the temporal changes in the oxygen concentrations

measured at the center of cellular stabilized collagen constructs

cultured under different ambient oxygen levels. Studies on acellular

constructs (Figure 3a) show that the oxygen concentration in the gel

equilibrated to ambient levels within 5 h. Any differences in these

profiles for cellular gels must be due to cellular metabolism.

Cellular constructs exhibited time‐dependent oxygen depletion

in their core (Figure 3b–d). There was a rapid fall of oxygen toward

approximately steady‐state values, with the rates being affected by

the ambient oxygen level. The lowest ambient oxygen concentration

of 1% caused the steeper gradients for collagen gels with dCTX0E03

cells. Interestingly, the oxygen concentration appears to reincrease

after 12 h for cellular constructs cultured at 7%. Between 0 and 12 h,

F IGURE 2 dCTX0E03 cell survival and metabolic activity in stabilized collagen gels exposed to different oxygen conditions for 24 h. (a) Cell
viability was calculated using live/dead staining and analysis of obtained optical sections. Syto21 was used to label all cells and propidium iodide
to label dead cells. (b) Metabolic activity was assessed using the 3D CellTiter‐Glo assay. Data expressed as means ± SEM. Significance levels
were *p < 0.033; **p < 0.002; and ***p < 0.001 compared with normal culture conditions (19%). (c) Spatial variability in the viability of dCTX0E03
cells in stabilized collagen gels exposed to different oxygen conditions for 24 h (60 × 106 cells/ml density after stabilization). Data expressed as
means ± SEM (n = 4 independent repeats, three samples per condition).

ELEFTHERIADOU ET AL. | 1987



dCTX0E03 cells cultured at 7% oxygen exhibit similar consumption

characteristics as at other oxygen levels, namely a fast, initial

decrease of the oxygen concentration, followed by much lower

decrease rates. After 12 h a recovery is observed which could be

attributed to a shift in the equilibrium between oxygen metabolism

and supply. As a proportion of the embedded cells die, total oxygen

consumption decreases which in turns leads to a reincrease in local

oxygen levels.

3.3 | Functional analysis of dCTX0E03 cells under
different oxygen conditions

Oxygen bioavailability is also directly linked to energy homeostasis.

Lower oxygen levels compromise the function of mitochondria in

generating cellular energy currency, ATP, through oxidative phos-

phorylation, which is the most efficient way of producing ATP from

glucose. This causes cells to rely on glycolytic ATP generation.

Figure 4a demonstrates glucose consumption during the experi-

ments. The glucose utilization rate was higher at low oxygen

conditions. The decrease was also more pronounced at higher cell

seeding densities.

Finally, as illustrated in Figure 4b, subjecting cells to physiological

stress through oxygen deprivation stimulates and subsequently

increases the expression of VEGF. VEGF release was affected by

the local oxygen levels and cell seeding density, however, the

relationship between them was not straightforward. Activation of

VEGF expression by hypoxia‐induced stress was more prominent at

mild to severe hypoxia (1%–3%). For 1%–3% ambient oxygen

concentrations, upregulation of VEGF release appears to reach

maximum levels at n = 20 × 100
6 and n = 31 × 100

6 cells/ml, where

cells were found to be more active. This trend was reversed for mildly

hypoxic and normoxic conditions.

3.4 | Mathematical model

We derived a cell‐solute model for a well geometry, which needed to

be further parametrized for the specific cell type used. The sensitivity

analysis enabled the prioritization of parameters that contribute most

to variation in model predictions as summarized in Figure 5, where

the values μ* (x‐axis) and σ (y‐axis) capture the impact of each model

parameter on output predictions, and identify which parameters

contribute to couplings or nonlinear effects, respectively. Based on

previous literature the individual parameters can also be classified in

terms of (non‐) linearity, (non‐) monotony based on their individual σ/

μ* ratio (Garcia Sanchez et al., 2014).

The oxygen concentration is mainly affected by the diffusion

coefficient in the media, the oxygen concentration for which consumption

is half‐maximal, the maximum rate of oxygen consumption, the oxygen‐

related death rate, and the baseline death rate (Figure 5a). The maximal

rate of oxygen consumption has the strongest influence on model

F IGURE 3 Oxygen levels in the center of (a) acellular (n = 1) or dCTX0E03‐seeded constructs (60 × 106 cells/ml density after stabilization) at
(b) 1% oxygen, (c) 3% oxygen, (d) 7% oxygen. Time zero refers to the time point when the probe was positioned in the gel. Data expressed as
means ± SEM (n = 3).
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predictions and interacts most with other parameters. For the VEGF

concentration, most parameters exhibit a nonlinear influence on and/or

interactions with other parameters (σ/μ* > 0.5). The final concentration is

mostly affected by the crowding factor and VEGF degradation

(Figure 5b). The effect of a large group of parameters including VEGF

production rate, maximum oxygen consumption rate, and baseline death

rate can be considered secondary but nonnegligible. For glucose

(Figure 5c), the model output varies nonlinearly but monotonically or

almost monotonically with the maximum rate of glucose consumption,

anaerobic threshold, glucose diffusion in the medium, and the glucose

concentration for which consumption is half of the maximum. The global

sensitivity analysis also indicates that the maximum rate of oxygen

consumption is a potentially influential parameter in glucose concentra-

tion. Finally, the cell viability after 24h is mostly affected by the baseline

death rate (Figure 5d). Those parameters identified as having minimal

influence on model outputs were then fixed at the nominal values

provided in Table 2 (n D D D, , ,c s vmax m m m ).

Next, we used a particle swarm algorithm to minimize the

difference between model predictions and experimental data, via

the choice of the remaining parameters δ δ δ D cM D( , , , , ̅ , ,g c g c c s0 g g

s M A D K c n a β̅ , , , , , , , , )s vg τ τ , as described in the Methods. Table 3

summarizes the final set of parameters found.

Figures 6 and 7 compare simulation predictions and experimental

data for the final optimized parameter value set. Overall, the model

replicates the general trends for the viable cell density, nutrient

consumption, and VEGF release. The best fit for cell viability is for the

7% O2 data set. For the remaining conditions, 1% and 3% O2,

the model tends to respectively underestimate and overestimate the

mean viable cell density. With regard to glucose consumption, the fit

against experimental observations appears to be worse for

n = 60 × 100
6cells/ml than for the other initial cell densities, but

the model predictions closely follow the experimental data points.

Regardless of the initial cell seeding density, the simulated

concentration of VEGF released into the medium after 24 h is also

in good agreement with the corresponding experimental data. The

poorest fit was found to be for n = 60 × 100
6 cells/ml, especially for

3% ambient oxygen concentration. In the case of oxygen consump-

tion, the model qualitatively reproduces the general trend of the

experimental data. For instance, in the case of 1% ambient oxygen

the broad shape of the oxygen consumption curves matches that of

the data, but the rates of decrease appear to be much quicker than

the experimental values would suggest is realistic. This could indicate

that the oxygen metabolism term requires further refinement in the

future.

4 | DISCUSSION

This study explores the behavior in vitro of therapeutic cells

under physiologically relevant oxygen conditions, one of the

major determining factors that affect the performance of NRCs in

vivo. With regard to oxygen, local supply after implantation is

expected to be limited, especially during the first days when

neovascularisation has not progressed. dCTX0E03 cells were

found to be vulnerable to oxygen conditions they are likely

to encounter in situ. However, the reduction of cell viability was

not as significant as expected based on previous literature.

Extending the duration of the experiments could provide further

insights regarding the low long‐term survival upon implantation

observed in previous studies (Smith et al., 2012; Stevanato et al.,

2009). Moreover, this discrepancy could be associated with the

fact that cells adapt by recalibrating their metabolic profile

and activating antiapoptotic pathways. Indeed, we observed

an increase in the rate of glucose utilization under low O2

tension.

Oxygen and glucose deprivation have also been correlated with

changes in growth factor release (Mac Gabhann et al., 2007). Our

results are consistent with reports that VEGF expression increases

under hypoxic conditions; a response that has been linked to

neuronal protection and nerve regeneration (Jin et al., 2001;

F IGURE 4 Functional analysis of dCTX0E03 cells under different
oxygen conditions. (a) Glucose consumption by dCTX0E03 cells
seeded in collagen and cultured under a range of ambient oxygen
concentrations for 24 h. Glucose concentration was quantified using
a biochemical assay. Data expressed as means ± SEM (n = 4
independent repeats, three samples per condition). (b) VEGF release
from dCTX0E03 cells seeded in collagen and cultured under a range
of ambient oxygen concentrations for 24 h. VEGF concentration was
measured via ELISA. Original values are divided by the initial cell
seeding density. Data expressed as means ± SEM (n = 4 independent
repeats, three samples per condition). Significance levels were
*p < 0.033; **p < 0.002; and ***p < 0.001 compared to normal culture
conditions (19%).
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Lee et al., 2016). We also found a correlation between increased

glucose consumption and greater VEGF secretion, although this has

not been investigated for neural stem cells before.

Next we developed a predictive, cell‐type specific and computa-

tionally effective model to describe interactions between dCTX0E03

cells and soluble factors that can be readily used to investigate

various nerve repair scenarios. The functional forms of the equations

were adapted from previous cell‐solute mathematical models (Chung

et al., 2006; Coy et al., 2020; McMurtrey, 2015; Streeter & Cheema,

2011) developed for other cell types. Much of the modeling work

done in tissue engineering so far has produced interesting results and

generated general hypotheses about the optimization of tissue‐

engineered constructs or the tissue culture conditions. However,

many of the mathematical models were not benchmarked against a

specific or consistent experimental data set or were validated by

comparing theoretical simulations with scattered data from multiple

sources from the literature, often for different cell types. Here, our

focus was to parametrize the model using dedicated in vitro

experiments. Aside from the novel set of differential equations that

make up the model, we also optimized the parameter values and

tailored them to the metabolic and functional characteristics of

dCTX0E03s within collagen constructs. The final derived values are

mostly within the range reported in the literature (Table 2) for other

cell types. One noteworthy exception is the maximal rate of glucose

F IGURE 5 Morris sensitivity analysis results based on final (a) oxygen, (b) VEGF, (c) glucose, (d) cell density values in the center of gel after
24 h. Each point represents the mean absolute value μ* (x‐axis) and standard deviation σ (y‐axis) of the elementary effect of each parameter; the
first is used to identify which input parameters have an overall influence on the output (i.e., oxygen, VEGF, glucose, cell density) and the latter
can help identify which input parameters are involved in interactions or nonlinearities.
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consumption M( )s , which is almost 10 times higher than previously

suggested (Gu et al., 2016; McMurtrey, 2015). However, the rate of

glucose consumption by differentiated human neural stem cells, in

general, is not widely characterized.

Undoubtedly, the model described in this study involves a high

degree of simplification of what are in reality complex biological

phenomena. Nevertheless, the simulations appear to capture the

cellular responses and related trends correctly. Some differences

between the model outputs and experimental results were detected,

with the largest ones being for n = 60 × 100
6 cells/ml at 3%, 7% O2.

To test whether these discrepancies were due to parameter

estimation, we ran the PSO algorithm 10 times and confirmed that

variability in the predicted parameter values was insufficient to

account for the differences between measured and predicted VEGF

concentrations (data not shown). This indicates that these differences

were due to biological mechanisms that are not captured in the

current governing equation set. For instance, the influence of VEGF

concentration on the viable cell density was neglected here, even

though it has been shown to influence the survival of neural stem

cells under hypoxia. Moreover, from the two nutrients examined in

TABLE 3 Final parameter values

Final value (practical units) Final value (modeling units)

Cell density parameters

Maximal cell density (n )max n = 6.0 × 10max
7 cell/ml n = 6. 0 × 10 cell/mmax

13 3

Proliferation rate constant 0 0

Baseline cell death rate constant δ( )g0 δ = 3.18 × 10g0
−6 1/s δ = 3.18 × 10g0

−6 1/s

Hypoxic cell death rate constant δ( )c δ = 2.53 × 10c
−6 1/s δ = 2.53 × 10c

−6 1/s

Glucose deprivation induced death rate
constant (δ )g

δ = 5.6 × 10g
−7 1/s δ = 5.6 × 10g

−7 1/s

Oxygen concentration parameters

Diffusion coefficient for oxygen in
medium D( )cm

D = 2 × 10c
−9

m m2/s D = 2 × 10c
−9

m m2/s

Diffusion coefficient for oxygen in gel D( )cg D = 4.98 × 10c
−10

g m2/s D = 4.98 × 10c
−10

g m2/s

Concentration at which oxygen
consumption is 1/2 maximal (c̅ )

c̅ = 1.65 × 10−8 mol/ml (1.24% O2) c̄ = 5.13 × 10  kg/m‐4 3

Maximal rate of oxygen consumption (M )c M = 1.84 × 10 mol/cell/sc
−18 M = 5.88 × 10   kg/cell/sc

‐20

Glucose concentration parameters

Diffusion coefficient for glucose in
medium (D )sm

D = 9 × 10  m /ss
−11 2

m D = 9 × 10 m /ss
−11 2

m

Diffusion coefficient for glucose in gel (D )sg D = 2.67 × 10  m /ss
−10 2

g D = 2.67 × 10 m /ss
−10 2

g

Concentration at which glucose
consumption is 1/2 maximal (s̅ )

s̄ = 7.8mM s̄ = 1.39kg/m3

Maximal rate of glucose consumption M( )s M = 9.8 × 10 mol/cell/ss
−18 M = 1.75 × 10 kg/cell/ss

−18

Anaerobic threshold for glucose
consumption (A)

A = 4.6 A = 4.6

VEGF concentration parameters

Diffusion coefficient for VEGF in
medium (D )vm

D = 1.32 × 10v
−10

m m2/s D = 1.32 × 10v
‐10

m m2/s

Diffusion coefficient for VEGF in gel (D )vg D = 4.16 × 10vg
−11 m2/s D = 4.16 × 10vg

−11 m2/s

VEGF degradation rate (K) K = 8.37 × 10−5 1/s K = 8.37 × 10−5 1/s

Hypoxia threshold for VEGF secretion (cτ) c = 1.40 × 10τ
−8 mol/ml (1.08% O2) c = 4.49 × 10 kg/mτ

‐4 3

VEGF crowding factor (n )τ n = 2.32 × 10τ
7 cell/ml n = 2.32 × 10 cell/mτ

13 ‐3

Baseline VEGF secretion rate at low
oxygen (a)

α = 9.24 × 10−2 pg/cell/s (molO2/ml)−1(1.21 × 10−9 pg/
cell/s/% O2)

α = 2.92 × 10 kg/cell/s−21 (kgO2/m
3)−1

Baseline VEGF secretion rate based on
oxygen (β)

β = 2.86 × 10−7 pg/cell/s β = 2.86 × 10 kg/cell/s−22
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F IGURE 6 Comparison between experimental and simulation results based on final parameter values of (a–d) cell viability, (e–h) glucose, and
(i–l) VEGF in the media after 24 h.

F IGURE 7 Comparison between experimental and simulation results based on oxygen profiles in the gel after 24 h.
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this study, only the effect of oxygen was included in the VEGF

governing equation.

Finally, another aspect that was ignored when modeling VEGF

production and release is the presence of different isoforms. Cells are

able to express different VEGF isoforms as part of their physiological

processes (Ara et al., 2010; Cain et al., 2014). Still, including multiple

species of the same molecule would have drastically increased the

complexity of the model and the number of unknown parameters.

Each of the isoforms displays unique decay and diffusion character-

istics, possibly due to differential collagen binding and proteolytic

release (Vempati et al., 2011, 2014). Differential VEGF binding to

collagen may be important during the generation of VEGF gradients

within the construct and its release in the local microenvironment.

Therefore, including this mechanism in the model may improve its

ability to predict the temporal and spatial VEGF distributions.

The overall quantitative framework that we developed by

combining experimental and theoretical approaches can enable

researchers to simulate a wide variety of different engineered tissue

configurations and obtain robust predictions about the therapeutic

effect of CTX0E03 cells embedded in NRCs. For instance, during the

first critical hours upon implantation, therapeutic cells adapt to their

environment by rapidly consuming oxygen. We could hypothesize

that once the oxygen concentration reaches a value around the

hypoxic threshold, the cells experience oxidative stress and produce

VEGF that will later promote the migration of endothelial cells and

neovascularization. This will in turn help perfuse the construct with

oxygen and nutrients, supporting both the therapeutic cell population

and the subsequent neurite outgrowth. Therefore, if we optimize the

construct by identifying the design that yields the maximal viable cell

density and most favorable VEGF gradients, we could potentially

accelerate nerve regeneration. Moreover, if in the future a more

comprehensive database of cell and material‐type specific parame-

ters is collated by repeating the in vitro experiments using different

cell types, the mathematical model can be extended, allowing

researchers to compare the behavior of different therapeutic cells

under the same NRC configurations.
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