

The Complex Transcriptional Response of Acaryochloris marina to Different Oxygen Levels

Miguel A. Hernández-Prieto,¹ Yuankui Lin,¹ and Min Chen²

Australian Research Council Centre of Excellence for Translational Photosynthesis and School of Biological Sciences, University of Sydney, New South Wales 2006, Australia ORCID ID: 0000-0001-8070-3248 (M.C.)

ABSTRACT Ancient oxygenic photosynthetic prokaryotes produced oxygen as a waste product, but existed for a long time under an oxygen-free (anoxic) atmosphere, before an oxic atmosphere emerged. The change in oxygen levels in the atmosphere influenced the chemistry and structure of many enzymes that contained prosthetic groups that were inactivated by oxygen. In the genome of *Acaryochloris marina*, multiple gene copies exist for proteins that are normally encoded by a single gene copy in other cyanobacteria. Using high throughput RNA sequencing to profile transcriptome responses from cells grown under microoxic and hyperoxic conditions, we detected 8446 transcripts out of the 8462 annotated genes in the Cyanobase database. Two-thirds of the 50 most abundant transcripts are key proteins in photosynthesis. Microoxic conditions negatively affected the levels of expression of genes encoding photosynthetic complexes, with the exception of some subunits. In addition to the known regulation of the multiple copies of *psbA*, we detected a similar transcriptional pattern for *psbJ* and *psbU*, which might play a key role in the altered components of photosystem II. Furthermore, regulation of genes encoding proteins important for reactive oxygen species-scavenging is discussed at genome level, including, for the first time, specific small RNAs having possible regulatory roles under varying oxygen levels.

Photosynthesis uses solar energy, and transforms it into chemical energy, which is stored within the organic molecules of the organism. In essence, it provides the energy for all life on our planet. During oxygenic photosynthesis, sunlight is funneled toward a special pair of chlorophyll molecules, which produce a charge separation that results in the extraction of electrons from water. This initiates a chain of redox reactions that power the fixation of inorganic carbon into 3-phosphoglycerate, with oxygen (O_2) generated as a side product of this reaction. In fact, before photosynthesis occurred in ancient cyanobacteria around 3.5–2.4 billion yr ago, the atmosphere was largely

KEYWORDS

cyanobacteria oxygen levels transcriptome response chlorophyll biosynthesis reactive oxygen species

anaerobic (Blankenship and Hartman 1998). Over billions of years, oxygenic photosynthetic organisms changed the Earth's atmosphere, steadily increasing its O_2 levels to over 21% (v/v). This permitted the rise of multicellular organisms, dependent upon aerobic respiration (Dismukes *et al.* 2001; Blankenship 2008; Hedges *et al.* 2004).

Aerobic respiration is highly efficient in recovering the energy contained within the chemical bonds of organic molecules through oxidative phosphorylation. However, organisms living in aerobic environments also run the risk of being damaged by oxidants and reactive oxygen species (ROS). ROS include a number of reactive molecules derived from O2. Clearly, O2 in its ground state is harmless, as it has two unpaired electrons with parallel spin, making it paramagnetic. In this form, it is unlikely to participate in reactions with organic molecules, unless it is enzymatically or chemically activated by other reactions (Apel and Hirt 2004; Sharma et al. 2012). However, oxygen-derived ROS comprise superoxide, hydrogen peroxide, and hydroxyl radicals, which are a threat to the cell. Organisms mitigate ROS deleterious effects in various ways: by scavenging pathways (Slesak et al. 2016; Pospíšil 2012), by changing the regulation of affected genes (Tamagnini et al. 2007), by separating the location of their product to oxygen-free compartments like heterocysts (Murry et al. 1984), or by evolving an alternative pathway resistant to oxidation (Busch and Montgomery 2015). Many metabolic pathways functioning today

Copyright © 2017 Hernandez-Prieto et al.

doi: 10.1534/g3.116.036855

Manuscript received October 31, 2016; accepted for publication December 4, 2016; published Early Online December 14, 2016.

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/ licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Supplemental material is available online at www.g3journal.org/lookup/suppl/ doi:10.1534/g3.116.036855/-/DC1.

¹These authors contributed equally to this work.

²Corresponding author: School of Life and Environmental Sciences (A12), Macleay Bldg., University of Sydney, Sydney, NSW 2006, Australia. E-mail: min.chen@ sydney.edu.au

still contain enzymes sensitive to O_2 levels, as illustrated by the coexisting oxygen-dependent, or oxygen-independent, reactions within the tetrapyrrole biosynthetic pathway (Busch and Montgomery 2015; Raymond and Blankenship 2004), and the activation of a counterpart D1 subunit of photosystem II (PSII) in response to changed O_2 levels (Summerfield *et al.* 2008).

Acaryochloris marina (hereafter Acaryochloris) is a unicellular cyanobacterium, using chlorophyll d (Chl d), instead of chlorophyll a(Chl a), as the major pigment in its photosystems (Chen et al. 2002a, 2005b). Similar to all cyanobacteria, the thylakoids of Acaryochloris need to mitigate not only the oxidative stress generated by oxygenic photosynthetic activities, but also the oxidative stress produced because of aerobic respiration. Therefore, it is not surprising that under illumination, especially high-intensity light, singlet oxygen is mainly produced because of the interaction of unquenched Chl triplets with O₂ generated within PSII, and the water-splitting complex. In photosystem I (PSI), the univalent reduction of O₂ generates mainly superoxide anion radicals (reviewed in Latifi et al. 2009; Rutherford et al. 2012). To reduce the effects of ROS, a constant diffusion of O₂ through the cell and photosynthetic membranes under illumination is crucial. This diffusion of O2, along with antioxidant enzymes that prevent accumulation of ROS, and the existence of remediation metabolites, such as ascorbic acid, glutathione, tocopherols, carotenoids, and flavonoids, prevent the interaction of O2 with electrons, other than those in the normal electron transfer pathways to O₂, avoiding any possible oxidative stress (Latifi et al. 2009).

Because of the iconic character of Acaryochloris, in which the function of Chl a has been largely replaced by red-shifted Chl d, most of the research on this organism has been directed toward understanding Chl d biosynthesis (Schliep et al. 2010; Loughlin et al. 2014; Yoneda et al. 2016). In particular, this has focused on its role in photosynthesis (Chen et al. 2002b, 2005b; Hu et al. 1998; Tomo et al. 2007), and in farred light acclimation (Duxbury et al. 2009). These studies have revealed direct oxidation of Chl a to Chl d, with participation of O₂ (Schliep et al. 2010; Loughlin et al. 2013). Although the structural difference between Chl a and Chl d has a significant effect on its spectral characteristics, it does not affect the binding of Chl d with typical Chl abinding-peptides, as shown in in vitro reconstitution experiments (Chen et al. 2005a; Hoober et al. 2007; Chen and Cai 2007). In fact, so far, none of the studies carried out on the photosystems of Acaryochloris have revealed any significant difference to Chl a-containing photosystems, besides their distinct spectral characteristics, related to their pigment substitutions (Chen et al. 2005b).

In this study, we grew Acaryochloris under different O2 levels to test the effects of O₂ on photo-pigment biosynthesis, photosynthetic reactions, and on their relationship with other essential metabolic reactions (including DNA and protein metabolism). Using high-throughput RNA sequencing (RNAseq), we obtained genome-level information on all expressed transcripts, under microoxic, normal air (control), and hyperoxic conditions. We detected genes coding for key proteins in photosynthesis and synthesis of chlorophyll, which were preferentially expressed under microoxic conditions. As expected, proteins involved in oxidative stress remediation also were induced under hyperoxic conditions. We also generated the first inventory of previously unknown small RNAs (sRNA), including untranslated regions (UTRs) and intergenic noncoding RNAs (ncRNAs), many of them differentially expressed upon O₂ perturbation. The sRNAs that showed a strong induction were further investigated to predict their potential targets and their involvement in adaptation to these stress conditions. In this first systems-level study to include sRNAs performed on Acaryochloris, we uncover new insights on the particularities of "oxygenic" photosynthesis and its coevolutionary "anaerobic" metabolism.

MATERIALS AND METHODS

Culture conditions

A. marina MBIC11017 was routinely kept in a culture room at 27° under 15–30 µmol photons m⁻² s⁻¹ of cool white light. Sterilized K +ES (artificial seawater), buffered with 25 mM TES at pH 8.0 was used as the culture medium for all three treatment groups. To make sure photosynthesis was not limited by CO₂, NaHCO₃ was dissolved in a small volume of autoclaved medium, and injected into the enclosed culture flasks every 2 d (yielding an initial concentration of 0.375 mM). The initial cell density of all culture groups was adjusted to an optical density at 750 nm of 0.2. The cultures were shaken on an orbital flat-bed shaker at ~90 rpm.

Cultures under normal O₂ levels were inoculated in 1-liter Erlenmeyer glass flasks containing 500 ml of medium, capped with a cotton stopper that permitted gas exchange. Thus, the O₂ concentration of the gas phase inside the bottle was similar to atmospheric levels $\sim 21\%$ (v/v).

Microoxic conditions were achieved by using a 500-ml two-necked round-bottom flask sealed tightly by a rubber stopper. Cultures were vacuumed, and refilled with pure nitrogen gas (99.95% purity) to ensure normal atmospheric pressure. We repeated this process several times, yielding a final O₂ concentration of <0.2% inside the sealed culture flask. To maintain a microoxic condition, a positive pressure was created by bubbling nitrogen through the culture.

A similar set-up was used for hyperoxic conditions, with the exception that pure O_2 gas was used to refill the flask after vacuuming. Because the cells generate O_2 under illumination, ongoing input of O_2 gas to maintain the high-oxygen concentration was not required. However, to avoid pressure build-up, the flask was revacuumed and refilled with O_2 gas every 48 hr, as described above. The O_2 concentration inside the flask remained within the range of 65–75% (v/v) during the experiment.

Total RNA extraction

Acaryochloris cultures were harvested after 7 d from all three different treatments. The harvested cell pellets were mixed with TRIzol (TRIzol Reagent, Life Technologies, Australia), and frozen immediately using liquid nitrogen. They were stored at -80° for at least 60 min. The frozen samples were thawed in a water bath at 37°, and spun down at $16,000 \times g$ for 5 min to eliminate cellular debris. This supernatant was mixed at a volume ratio of 4:1, with chloroform, and spun down at 16,000 \times g for 10 min at 4°. The upper layer, containing RNA and DNA, was carefully transferred to a new tube, without disturbing the white middle layer of solid components. The RNA was precipitated by addition of an equal volume of isopropanol, and incubated at -20° for at least 45 min. RNA pellets were washed with 70% (v/v) ethanol, and the DNA removed using the Baseline-ZERO DNase kit (Epicentre, WI), following the manufacturer's instructions. Prior to RNA quality assessment, the absence of DNA was confirmed by polymerase chain reaction (data not shown).

The quality of RNA was assessed on a 2100 Bioanalyzer (Agilent Technologies, CA), using a RNA 6000 Nano RNA Kit (Agilent Technologies), to obtain an RNA integrity number of >8.0. Transcripts corresponding to rRNAs (5S, 16S, and 23S) were reduced from the samples with a Ribo-Zero Kit (Epicentre), following the manufacturer's instructions. Further processing, including quality assessment, was undertaken prior to RNAseq analysis by Beijing Genomics Institution, China.

RNAseq data analysis

FASTQ files of the resulting sequences were processed using open source software. FASTQ files were aligned against the *A. marina* MBIC11017 reference genome on NCBI (http://www.ncbi.nlm.nih.gov/), using the "Tophat for Illumina" tool available in the Galaxy suite (Afgan *et al.* 2016). The BAM files obtained were superposed on the genome. and visualized in Artemis (Rutherford *et al.* 2000) to facilitate annotation of the predicted transcriptional units (TUs). The Java-based Rockhopper system (McClure *et al.* 2013) was used to process mapped sequence reads for differential analysis. The Rockhopper report, containing a summary of the number of reads aligned. is available in Supplemental Material, File S1.

sRNAs target prediction

All sRNA sequences (including ncRNAs and UTRs) were obtained from the transcriptional coordinates generated by the Rockhopper software, after mapping the obtained reads to unannotated regions of the *Acaryochloris* genome. The target protein-coding genes were predicted using the IntaRNA algorithm (Busch *et al.* 2008), with a window of 275 nucleotides around the respective start codons (200 upstream and 75 downstream).

Functional enrichment analysis

A standard functional enrichment analysis of differentially expressed genes (EADEG) was applied using hypergeometric tests, after Hernández-Prieto *et al.* (2012). Derived *p*-values were adjusted for multiple testing, while false discovery rates (FDR) were calculated using the Benjamini-Hochberg method. We used the gene annotation given in Cyanobase (Fujisawa *et al.* 2014) (http://genome.microbedb.jp/cyanobase/AM1), while gene associations with cellular functions are from the KEGG database (Kanehisa *et al.* 2016), and Gene Ontology (GO) terms in Uniprot (UniProt Consortium 2015) (Table S1). Our lists included genes associated with 116 KEGG pathways, and with 1196 GO terms. Only lists having a minimum of five genes annotated from the *Acaryochloris* genome (89 of 116 KEGG pathways, and 320 of 1196 GO terms) were investigated. To determine the functional composition of differentially expressed genes, enrichment was separately assessed for upregulated and downregulated genes.

Data availability

The *Acaryochloris* strain used in this study is available as an axenic culture through the NBRC culture collection (NBRC 102967). Raw gene expression data, and processed information, is available at GEO with the accession number GSE89387. File S1 contains detailed information of all supplemental files.

RESULTS

Culture growth

Monitoring of the O₂ concentrations of the gas phase inside the culture bottles was performed daily with a Clark-type electrode. The concentration of O₂ in the hyperoxic culture was maintained within the range of 65–75% (v/v), while in the microoxic culture, it was <0.2% (v/v). Thus, O₂ concentration in the medium was equal to 350 and 1% that of air saturation at 25° for hyperoxic and microoxic cultures, respectively. These deviations from atmospheric conditions negatively affected *Acaryochloris* cells, as reflected in their low apparent growth rates (Figure 1). The control culture doubled its OD_{750nm} every ~57 hr during the exponential growth phase, while treated cultures had doubling times of > 72 hr (Figure 1). Thus, both treatment conditions had detrimental effects on apparent cell growth, given their ~80% decrease in growth rate (Figure 1).

Figure 1 Optical density curves of *A. marina* cultures under the three different oxygen concentrations (control, microoxic, and hyperoxic). Apparent growth was monitored daily by measuring the optical density of the cultures at 750 nm (OD_{750nm}). Data were averaged from quadruplicate cultures; variability in these results is represented by error bars. Apparent growth was negatively affected under both treatment conditions.

Full transcriptome profiling of Acaryochloris

RNA was extracted from cells collected after 7 d under their respective treatments, at an OD750nm between 0.4 and 0.6 for all cultures. The gene expression profiling at genomic level was achieved by paired-end highthroughput sequencing of RNA, isolated from Acaryochloris exposed to different O2 concentrations. The experiment was duplicated for both test conditions, and triplicated for control conditions. To assess differential gene expression, we used the algorithms available in Rockhopper, because this software has been optimized for the analysis of RNAseq data obtained from prokaryotes (McClure et al. 2013). Transcript units (TUs) for 8446 of the 8462 TUs annotated for Acaryochloris (NCBI BioProject: PRJNA12997) were detected in both control and treated samples. Of the 16 undetected transcripts (Table S2), only one (AM1_A0163) has an annotated function in Cyanobase (as at June 2016), five were localized in the main chromosome, and the rest in the plasmids (two in pREB1, two in pREB2, three in pREB3, two in pREB4, and two in pREB5). RNA extracted from Acaryochloris cells grown under control culture conditions was used as a reference to evaluate transcript changes related to altered O₂ levels. Under control conditions, the 50 most abundant transcripts correspond to 21 sRNAs (16 newly described in this study), and 29 to protein-coding genes, of which 12 encode subunits of PSI or PSII. Eight of these genes encoding photosystem subunits were among the 50 top transcripts in all three samples: five of them (psaA, psaB, psaC, psaJ, and psaM) encoding PSI subunits, two (psbA and psbK) encoding PSII subunits, and, intriguingly, a high-light induced protein (HLIP) involved in the incorporation of chlorophyll in newly assembled photosystems (Hernandez-Prieto et al. 2011) (Table 1).

Identification and classification of differentially expressed transcripts

A total of 8446 transcripts (99.8% of the genes annotated in the Cyanobase database) were detected as expressed in at least one of the test conditions. Imposing a stringent threshold for minimum expression in 50 reads, we identified 6635 protein-coding and 523 noncoding TUs as expressed, under at least one of the test conditions. We considered a transcript to be differentially expressed when it had an absolute $\log_2 FC$ (fold change) value ≥ 1.0 (*i.e.*, a minimum twofold up or downregulation change). It is important to remark here that, since RNA sequencing

Table 1 List of the top 50 m	most expressed o	pen reading	frames in Acar	yochloris marina unde	er control conditions
------------------------------	------------------	-------------	----------------	-----------------------	-----------------------

			Expression	Expression	Expression
Gene	Product	Coordinates	Ċontrol	Microoxic	Hyperoxic
AM1 6414ª	10Sa RNA (tmRNA) ssrA	1113343 1113638	8 862 827	1 108 900	6 593 223
AM1_NC230 ^a	Intergenic sRNA	3815042 3815332	1 522 785	95,333	2 440 135
AM1 6418 ^a	RNA subunit of RNase P mpB	1701315 1701673	235 615	105 408	245 204
AM1_NC208 ^a	Intergenic sRNA	3587742 3587961	118 457	96 521	21 716
AM1_0390	Hypothetical protein	361900 361736	96 439	7619	297 265
AM1 4558	Hypothetical protein	4591968 4591819	89 452	20 593	92 833
AM1_NC288 ^a	3'UTR of AM1 4558	4591770 4591805	65 792	8885	58 129
AM1_NC36 ^a	5'UTR of AM1_0390	361932 361942	64 575	6428	372 487
AM1 5793	Hypothetical protein	5875753 5875893	63 417	22 352	169 796
ΔM1 1154	DNA-binding protein HU	1122737 1123012	51 219	23 994	42 409
AM1 1660	PSI subunit PsaC	1638289 1638044	47 437	16 284	29 939
AM1_6426	PSI subunit, PsaM	3783989 3783894	45 473	11 569	21 277
ΔM1_6419 ^a	$6S_{2} RN\Delta ssa\Delta$	3661451 3661282	44 034	17 418	19 246
ΔM1 1530	Hypothetical protein	1513788 1513489	43 502	25 195	53 880
ΔM1 1942	Hypothetical protein	1936231 1936359	40,302	17 863	30 491
AM1_NC106ª	5'UTR of AM1 1530	1513809 1513828	37 734	8185	61 960
AM1_11/0	Hypothetical protein	1111163 1111005	35,060	16 626	27 //61
$\Delta M1 NC37^{a}$	Intergenic sRNA	364322 365501	29 258	8326	48 497
ΔM1 3851	PSII subunit PsbK	3905041 3905178	29,200	10 430	19 366
AM1_NC319 ^a	Intergenic sRNA	5/11225 5/11/16	25,090	4/05	28 3/12
AM1_1011	PSIL protein Psb7	979177 978989	23,070	1/ 982	1/ /71
	5' UTR of AM1 111/	1092698 1092793	23,075	13 326	10 160
ΔM1 3193	High light inducible protein	3230482 3230634	23,404	10,325	195 987
ΔM1_0039	Hypothetical protein	41120 40992	23,337	9864	14 083
ΔM1 1507	Hypothetical protein	1495267 1495127	22,217	8451	18 798
ΔM1 NC294 ^a	Intergenic sRNA	4826591 4826827	22,775	27 816	31 549
AM1_2/57	PSI core protein PsaA	2/72897 2/75158	21,050	8776	27 807
$\Delta M1 NC 24^{a}$	3'UTR of AM1 0345	317866 318113	21,750	4680	27,007
ΔM1 2458	PSI core protein PsaB	2475181 2477391	20,685	5754	15 938
ΔM1_NC233 ^a	5'UTR of AM1 3627	3686575 3686602	19 985	2682	36 489
$\Delta M1 NC70^{a}$	Intergenic sRNA	1198215 1198479	19 545	4002	2138
AM1_3627	Hypothetical protein	3686477 3686334	19 092	7894	16 758
ΔM1_2630	Cvt b559 alpha subunit PsbE	2668907 2668656	18 427	7885	11 051
$\Delta M1 NC 245^a$	3'UTR of AM1 3885	3937055 3937138	18 324	4911	8432
AM1_NC154 ^a	5'UTR of AM1 2252	2259432 2259766	17 851	34 718	5494
ΔM1 2889	PSII D1 protein PsbA	2929355 2928273	16 679	7503	41 497
AM1_NC120 ^a	5'UTR of AM1 1660	1638298 1638415	16,076	7311	6156
AM1 1114	Conserved hypothetical protein	1092691 1092497	15,015	5172	13 010
AM1_NC126 ^a	Intergenic sRNA	1742101 1742419	14 826	27 364	447
AM1 3119	Conserved hypothetical protein	3148026 3147655	14 618	8294	15 236
AM1 1439	PSI protein Psal	1430979 1430824	13 098	7467	13 772
AM1 5515	Ferredoxin 2Ee-2S type PetE1	5563740 5564039	12 482	11 721	9641
AM1 3950	Hypothetical protein	4000275 4000505	12,102	10 183	16 966
AM1 1440	PSI protein PsaF	1431487 1430984	12,016	5467	9543
AM1 5512	PSII protein PsbH	5561953 5562168	10.385	3393	8835
AM1 4405	Hypothetical protein	4432868, 4432984	10,120	1755	8134
AM1 3885	Cytochrome c550 PsbV	3936566 3937054	9500	6062	11 959
AM1 1813	Conserved hypothetical protein	1801209, 1801415	9417	9037	5358
AM1 6421ª	23S ribosomal RNA	5638205 5641084	6111	2859	20 215
AM1_6416 ^a	23S ribosomal RNA	1408620, 1405741	6110	2859	20,215

Coordinates of the transcripts are given to facilitate the location of the noncoding sRNAs. Expression values refer to RPKM normalized by the upper quartile of gene expression. UTR, untranslated region; PSI, Photosystem I; PSII, Photosystem II. ^aRows corresponding to sRNAs.

data do not provide information on whether the differences in expression reflect induction or repression of transcription or changes in RNA stability under the new conditions, we use the term expression to indicate the number of detected transcripts. Using this FC criterion, 2896 TUs were identified as differentially expressed for at least one of the test conditions. These TUs consisted of 2536 mRNAs, 41 tRNAs, six rRNAs, three RNAs involved in RNA processing, and 310 unannotated

sRNA, of which 248 were encoded in the chromosome (Table S3). Since the samples were treated to remove rRNAs (Materials and Methods), we eliminated data corresponding to 5S, 16S, and 23S rRNAs from our analysis, on the basis that differences in rRNA may reflect processing.

Of these 2896 TUs (1234 in microoxic, and 1662 in hyperoxic), 2119 had a significant expression change in only one of the test conditions, 643 showed a similar response under both, while 134 had opposing expression under microoxic vs. hyperoxic environments (Figure 2). Interestingly, among the genes with opposed expression profiles, five genes (two of them colocalized in the same genomic region) encode proteins involved in the metabolism of tetrapyrrole molecules (Table 2). Two out of five accumulated mainly under microoxic conditions ($Log_2FC > 5$), including AM1_0465 encoding the oxygen-dependent Mg-protoporphyrin IX monomethyl ester cyclase (AcsF), and AM1_0466 encoding a heme oxygenase (HO). In contrast, the transcripts of the genes encoding the three subunits of the light-independent protochlorophyllide reductase (ChlN, AM1_1444, ChlL, AM1_1445, and ChlB, AM1_1539) were significantly reduced under microoxic conditions. Similarly, the gene AM1_4366, encoding the uroporphyrin-III C-methyltransferase (cysG) at the branching point for the B12 (cobalamin) synthetic pathway, was significantly reduced under microoxic conditions. Another group of genes (AM1_1222, AM1_1223, and AM1_1224) in which expression was reduced under microoxic conditions, was the operon (SufBCD) coding for the proteins involved in the assembly of iron-sulfur clusters (Shen et al. 2007) (Table 2).

Functional composition of the set of differentially expressed genes

An EADEG was applied to identify functional categories significantly affected by our treatments. After a preliminary examination of the categorical classifications available in the Cyanobase, KEGG, and GO databases, we elected to use the KEGG and GO databases for categorization, because they cover a larger number of genes compared to Cyanobase (Table S1). The results for both databases indicated that, under microoxic conditions, a significant number of genes encoding subunits of both photosystems, as well as phycobilisomes (PBS) are downregulated, having a FDR <0.05 (Table S4). The results using the KEGG database categories did not show any significant upregulation for categories, while using the GO database classification, DNA processing reactions showed a significant upregulation under microoxic conditions (Figure 3). Although increased concentrations of O_2 in the medium caused a significant downregulation of genes encoding subunits of the ribosome, and proteins involved in RNA translation, none of these categories were significantly upregulated (Figure 3). Nevertheless, these results should be viewed with caution, since >57% of the proteins-coding genes in Acaryochloris lack any annotated function, *i.e.*, they are not categorized under any biological function.

Protein-coding genes differentially expressed within significantly affected categories

Based on results of our EADEG, genes encoding proteins involved in light harvesting, and subunits of both photosystems, were among the most affected by altered O₂ levels in the cultures. None of the genes encoding PSI subunits showed a positive regulation in either microoxic or hyperoxic environments. In fact, only three genes (ycf3, ycf4, and ycf37) involved in PSI assembly/stability (Dühring et al. 2006a; Ozawa et al. 2009; Boudreau et al. 1997) showed stable expression under microoxic conditions (Table 2). A very similar downregulation was observed for genes localized in the plasmid pREB3, encoding the PBS subunits that form the phycocyanin units, and the linker proteins. Only one (AM1_1558, apcA) of the genes encoding the allophycocyanin subunits showed increased expression levels, while expression of others (AM1_4469, apcA, AM1_5810, apcA, and AM1_2376, apcB) did not change. It is important to note that expression of apcA under all test conditions is 100–1000 times lower than that of apcB, and >10,000 times lower than some of the phycocyanin-binding apo-proteins (Table 2).

Figure 2 Venn diagram showing transcriptional units differentially expressed under microoxic and hyperoxic conditions. The red and green ellipsoid areas represent genes up regulated and downregulated, respectively. The number of differentially expressed sRNAs is shown in white, while the number of mRNAs is shown in black. The sum of some areas is shown to facilitate understanding of our results.

The expression patterns of genes coding PSII subunits were similar to those of PSI and phycobiliprotein complexes under microoxic conditions (Figure 4). Exceptions were noted for the induction of the normally cryptic *psbA1* (*AM1_0448*) gene encoding the D1 protein (Summerfield *et al.* 2008), and the expression of one of the genes (*AM1_G0114*) encoding the PsbU subunit of the oxygen-evolving complex (Figure 4). Under hyperoxic conditions, the expression of *psbA2* and *psbA3* (encoding the D1 protein) increased, as did that of the gene encoding the PsbU subunit, and *AM1_D0138*, encoding another homolog of the PsbU subunit (Table 2).

Expression of ROS-scavenging genes

ROS are by-products of both respiration and photosynthesis. Thus, efficient scavenging is crucial to prevent photo-oxidative damage, especially in cyanobacteria, in which both processes occur simultaneously. Enzymes, like superoxide dismutase (SOD), efficiently scavenge the superoxide (O₂⁻). In Acaryochloris, four open reading frames, AM1_5239 $(Cu^{2+}/Zn^{2+}-SOD), AM1_2962 (Mn^{2+}/Fe^{2+}-SOD),$ AM1_3669 (Mn²⁺/Fe²⁺-SOD), and AM1_0511 (Ni-SOD), encode proteins resembling SOD. Of these, only AM1_3669 and AM1_0511 accumulated under hyperoxic conditions, but decreased under microoxic conditions (Figure 5). The highest induction of genes encoding scavenging proteins under hyperoxic conditions was for AM1_3715 (catalase, *katG*) ($\log_2 FC > 3$), which participates in the elimination of H_2O_2 . Other genes, related to H_2O_2 scavenging, such as AM1_A0300 (thiol-specific peroxidase), increased their expression under hyperoxic conditions, but had decreased expression under microoxic conditions. Interestingly, the genes encoding enzymes involved in glutathione metabolism either did not change markedly, or else their transcripts increased more under microoxic conditions than under hyperoxic conditions. The only gene for which expression under hyperoxic conditions was significantly higher than under control conditions was AM1_3681, encoding glutathione-disulfide reductase; its expression decreased with respect to the control under microoxic conditions (Figure 5).

Terminal oxidases also play an important role in ROS prevention. The presence of terminal oxidases in the thylakoid membrane is key to balancing metabolic flow between the respiratory and photosynthetic electron transport chains, as well as reducing the amount of O_2 in the vicinity of the thylakoid membrane thus, preventing ROS

Table 2 Expression levels of genes discussed in the text

Gene	Product	Expression Control	Expression Microoxic	Expression Hyperoxic	Log ₂ (Microoxic/	Log ₂ (Hyperoxic/
AN41 4204		E24	422	505		
AM1 2927	PSI assembly protein, Yct37	534	433	525	-0.30	-0.02
ANT 1082	PSI assembly protein, TCIS PSI assembly protein, Vcf4	77 I 310	346	047 207	-0.81	-0.58
ANT 2457	PSI assembly protein, 104	217 27 521	340 11 602	297 45 090	-1.25	-0.10
AN1 2457	PSI core protein, PsaA	27,321	0552	43,090	-1.25	0.71
AIVI1_2456	PSI core protein, Psab PSI forredovin protein, PsaC	Z3,Z93 70 921	0000	27,104	-1.50	0.10
AN1 E144	PSI protoin Protein, FSaC	12 271	10,740	44,342	-2.07	-0.85
ANT 2502	PSI protein, FSAD PSI protein, PsaE	12,271	3740	0007	-1.71	-1.02
AN1 1440	PSL protein, Page	10 274	2002	4/02	-1.02	- 1.40
ANI1 1440	PSI protein, FSAF	10,274	10.952	2/ 022	-1.43	-0.10
AM1 1120	PSI protein, Psak	5/11	2674	24,703	-1.02	-0.10
AM1 1637	PSI protein, Psak	53/15	2674	2750	-1.02	-0.80
AM1 1/37	PSI protein, Psal	13 970	2033	5005	-1.02	-0.80
ANT 4424	PSL protein, PsaM	95 002	1/ 552	27 404	-2.55	-1.13
AM1_0428	PSIL D1 protein, PshA	05,075 /10	251	27,474	2.55	-0.66
AM1 2166	PSIL D1 protoin, PsbA	1/ /25	6860	2J //2 113	_1.02	1 55
AM1 2889	PSIL D1 protoin, PsbA	19 376	5675	42,113	-1 77	1.55
AM1 2026	PSIL CP17 protoin PsbR	10.087	2155	6568	-2.23	-0.62
ANT 1094	PSIL CP42 protein, PsbC	10,007	2133	4094	-2.23	-0.02
AN1 1004	PSIL D2 protoin, PSDC	4100	1012	4094	-2.03	-0.03
AM1 1092	PSIL D2 protein, FSDD	9303	4704	20,427	-0.98	1.47
AM1 6045	PSIL D2 protein, PsbD	7432	4/4/	17,155	-0.77	0.10
AM1 1130	Cytochromo b559 alpha subunit PcbE	42	21	33	-1.13	-0.50
AM1 2630	Cytochromo b559 alpha subunit, i sbe	3/ /50	11 070	33 17 313	-1.13	-0.30
AM1 1120	Cytochromo b559 bota subunit, r sbE	20	20	20	0.00	0.77
AM1 5512	PSIL 10 kDa phasphaprotain Psh-H	1/ 020	20	12 054	_1.00	-0.21
AM1 3799	PSIL protoin Pshl	9360	3027	12,054	-1.70	-0.31
AM1 2620	PSIL protoin, Psh.	7300	5/2/	17 622	-0.51	1.14
AM1 3851	PSIL protoin, PsbK	55 059	12 700	28 992	-2.10	_0.93
AM1 6425	PSIL subunit Pabl	9796	12,777	11 606	_1 13	0.73
AM1 2024	PSIL protoin PshM	1021	128	11,000	-2.00	_1 13
AM1 5511	PSIL protoin, PsbN	125	25	405	_2.77	-0.11
AM1 0524	PSII manganasa stahilizing protain PshO	4217	1522	5680	-2.20	-0.11
AM1 0613	PSIL protoin PshP	767	1555	908	-2.02	-0.13
AM1 3795	PSIL protoin, PsbO	8045	3177	/00	_1 3/	_0.24
AM1_5050	PSII protein, PsbT	2/17	61	4072	-2.00	-1.34
AM1_5050	PSIL 12 kDa extrinsic protein Pshl	132	312	28	1 23	-2.20
AM1_00138	PSIL 12 kDa extrinsic protein, Psbl	481	438	1245	-0.13	1 37
AM1 3966	PSIL 12 kDa extrinsic protein, Psbl	596/	2305	/019	-1 37	-0.57
AM1_5046	PSIL 12 kDa extrinsic protein, Psbl	687	250	52	-1.45	-3.70
ΔM1_3885	Cytochrome c550 subunit of PSIL PsbV	14 802	7281	18 762	-1.02	0.34
AM1_3886	Cytochrome c550 PsbV-like protein	2641	272	1332	-3.27	-0.99
AM1 2120	PSIL protein PsbX	1297	1064	644	-0.29	-1.01
ΔM1 2631	PSII stability/assembly factor Ycf48	454	259	209	-0.81	-1.12
AM1 1011	PSII protein Psb7	18 302	14 120	6270	-0.37	-1.55
AM1 4426	PSII protein, Psb27	459	331	120	-0.47	-1.93
AM1 5552	PSIL protein, Psb28	178	284	254	0.67	0.51
AM1 4891	PSIL biogenesis protein Psb29	157	169	180	0.11	0.20
AM1_C0117	R-phycocyanin-2 subunit alpha	392	67	626	-2.53	0.67
AM1 1558	Allophycocyanin alpha subunit ApcA	17	43	83	1 29	2 22
AM1 4469	Allophycocyanin alpha subunit ApcA	30	31	11	0.05	-1.37
AM1 5810	Allophycocyanin alpha subunit ApcA	3	3	14	0.00	1 91
AM1_2376	Allophycocyanin beta subunit ApcB	4936	5426	6393	0.14	0.37
AM1_C0213	Phycocyanin alpha subunit, CpcA	17 975	4996	8646	-1.85	-1.06
AM1_C0096	Phycocyanin alpha subunit, $Cpc\Delta$	18 218	4972	8449	-1.87	-1 11
AM1_C0099	Phycocyanin alpha subunit, CpcA	16 251	3657	3128	-2 15	-2.38
AM1_C0191	Phycocyanin alpha subunit, CpcA	16 262	3657	3158	-215	-2.36
AM1_C0100	Phycocyanin beta subunit, CpcR	9490	3987	5119	-1 25	-0.89
AM1_C0192	Phycocyanin beta subunit, CpcB	18 438	6232	11 198	-1 56	-0.72
AM1_C0212	Phycocyanin beta subunit, CpcB	32,682	7338	60,428	-2.15	0.89

(continued)

Table 2, continued

Gene	Product	Expression Control	Expression Microoxic	Expression Hyperoxic	Log ₂ (Microoxic/ Control)	Log ₂ (Hyperoxic/ Control)
AM1_C0098	Phycocyanin beta subunit, CpcB	42,155	8403	23,434	-2.33	-0.85
AM1_C0215	PBS 32.1 kDa linker polypeptide, CpcC	8683	2494	5084	-1.80	-0.77
AM1_C0094	PBS 32.1 kDa linker polypeptide, CpcC	8631	2477	4950	-1.80	-0.80
AM1_C0093	PBS linker protein, CpcD	19,292	6719	16,086	-1.52	-0.26
AM1_C0216	PBS linker protein, CpcD	18,769	6471	16,609	-1.54	-0.18
AM1_C0118	Phycocyanobilin lyase subunit alpha, CpcE	438	255	500	-0.78	0.19
AM1_C0272	Phycocyanobilin lyase subunit beta, CpcF	1156	731	971	-0.66	-0.25
AM1_C0203	PBS rod-core linker polypeptide, CpcG	2103	933	1711	-1.17	-0.30
AM1_C0092	PBS rod-core linker polypeptide, CpcG	4398	1669	1772	-1.40	-1.31
AM1_C0102	PBS rod-core linker polypeptide, CpcG	4182	1090	2122	-1.94	-0.98
AM1_0450	Rieske iron-sulfur (cyt b6f) fusion protein	16	276	10	4.03	-0.63
AM1_1552	Transcriptional regulator, ChIR	21	82	58	1.92	1.42
AM1_0465	Oxygen-dependent MPE-cyclase, AcsF	16	1406	6	6.37	-1.28
AM1_0466	Heme oxygenase	33	1266	7	5.22	-2.09
AM1_1444	D-POR, ChIN	720	126	940	-2.51	0.38
AM1_1445	D-POR, ChIL	1657	421	3533	-1.97	1.09
AM1_1539	D-POR, ChIB	1659	417	2684	-1.99	0.69
AM1_4366	Uroporphyrin-III C-methyltransferase, CysG	195	92	430	-1.08	1.14
AM1_2801	Protein with homology to HemJ	182	178	162	-0.03	-0.17
AM1_0467	O ₂ -independent coproporphyrinogen III oxidase, HemN	6	822	5	6.88	-0.22
AM1_1283	O ₂ -independent coproporphyrinogen III oxidase, HemN	53	46	44	-0.20	-0.26
AM1_0615	Coproporphyrinogen III oxidase, aerobic, HemF	192	103	102	-0.89	-0.91
AM1_2295	Oxygen-dependent MPE-cyclase, AcsF	3331	1722	3430	-0.95	0.04
AM1_1959	Ferrochelatase, HemH	74	57	50	-0.37	-0.56
AM1_C0204	Ferrochelatase, HemH	946	788	762	-0.26	-0.31
AM1_C0107	Ferrochelatase, HemH	907	729	745	-0.31	-0.28
AM1_3193	High light inducible protein, HLIP	21,383	4241	38,036	-2.33	0.83
AM1_3366	High light inducible protein, HLIP	2	16	2	2.50	0.00
AM1_1222	FeS assembly protein, SufD	123	17	273	-2.78	1.14
AM1_1223	FeS assembly ATPase, SufC	416	80	2067	-2.36	2.31
AM1_1224	FeS assembly protein, SufB	177	30	745	-2.52	2.07
AM1_5239	Copper/Zinc superoxide dismutase, SodCC	38	100	27	1.37	-0.48
AM1_2962	Mn/Fe-containing superoxide dismutase, Sod	98	168	126	0.77	0.36
AM1_3669	Mn/Fe-containing superoxide dismutase, Sod	1061	1004	1779	-0.08	0.75
AM1_0511	Ni-containing superoxide dismutase, SodN	2744	1868	4456	-0.55	0.70
AM1_3715	Catalase/peroxidase HPI, KatG	122	55	1118	-1.14	3.19
AM1_3681	Glutathione-disulfide reductase, Gor	88	62	168	-0.50	0.93
AM1_A0300	Peroxidase/ antioxidant protein	40	21	44	-0.90	0.13
AM1_0449	Rhodanese domain protein	31	281	0	3.14	-5.00
AM1_0451	Conserved hypothetical protein	3	276	0	6.11	-2.00

Expression values refer to RPKM normalized by the upper quartile of gene expression. MPE, Mg-protoporphyrin IX monomethyl ester; D-POR, protochlorophyllide reductase; PSI, Photosystem I; PSII, Photosystem II; PBS, Phycobilisome.

(Schmetterer 2016). In *Acaryochloris*, genes encoding four terminal oxidases have been previously annotated: (i) $AM1_4621$ (*coxB*), $AM1_4620$ (*coxA*), and $AM1_4619$ (*coxC*), encoding subunits of a mitochondrial-type cytochrome *c* oxidase (cox) complex; (ii) $AM1_A0138$; (iii) $AM1_0843$; and (iv) $AM1_1551$, encoding plastidic-type terminal oxidases (ptox) (Schmetterer 2016). In *Anabaena variabilis*, *coxB*, the first gene within the cox locus (*coxBAC*), was apparently transcribed more often than the other two genes in the operon (Schmetterer *et al.* 2001). A similar expression pattern is apparent in our results, with *coxB* ($AM1_4621$) transcript levels at least three times higher than the other two subunits (Figure S1A). In fact, *coxB* expression level increased up to eight times under hyperoxic conditions. The expression of *coxA* and *coxC* showed no sig-

nificant changes under altered O₂ conditions. Intriguingly, the expression of two ($AM1_A0138$ and $AM1_0483$) of the three ptox genes was very low under all conditions, while the expression level of $AM1_1551$ was >45 times higher under microoxic than under control conditions (Figure S1B).

Potential transacting sRNAs involved in the adaptation to aerobic variations

Alignment of the reads resulted in a large number of sRNAs corresponding to either UTRs or intergenic ncRNAs. We differentiated sRNAs within these two main groups, based on whether the distance between the detected sRNA and the closest annotated mRNA was \leq 20 nucleotides (in the case of UTRs), or >20 nucleotides (in the case of

Figure 3 Representation of the results obtained after a standard functional enrichment analysis of differentially expressed genes using GO terms. Only categories with a FDR < 0.1 are shown (all other results are available in Table S4). The size of the circles is proportional to the number of genes in that category, reflecting differential expression, while color indicates their confidence level or FDR value. The graph was generated using the R package ggplot2.

ncRNAs). The transcription start site and orientation of the transcript were determined from predictions obtained using algorithms embedded in PePPER (de Jong *et al.* 2012). Using this criterion for the 248 differentially expressed chromosome-detected transcripts, we identified 190 sRNAs as UTRs and 58 as ncRNAs. The UTR expression level was mostly correlated (Spearman correlation coefficient, $r_S > 0.6$) with the closest gene, except for four of the sRNAs (AM1_NC24, AM1_NC96, AM1_NC169, and AM1_NC181) (Figure S2).

Some of the intergenic ncRNAs were among the most highly expressed transcripts under all three conditions profiled (Table 1). Of the 58 differentially expressed ncRNAs localized in the chromosome, only six showed significant opposing expression profiles for microoxic and hyperoxic conditions. Three were less abundant under microoxic conditions (AM1_NC12, AM1_NC161, and AM1_NC254), while transcripts for the other three (AM1_NC270, AM1_NC256, and AM1_NC315) were enhanced in the hyperoxic culture (Figure 6).

Given that most bacterial ncRNAs act through sequence-specific binding to regions close to the ribosome-binding site of mRNAs, we sought to predict potential RNA targets using a window of 275 nucleotides around their respective start codons. Setting a p-value threshold of 0.01 for results obtained from the IntaRNA server, the number of predicted targets was 95 for AM1_NC6, 96 for AM1_NC246, 50 for AM1_NC137, 89 for AM1_NC276, 45 for AM1_NC249, and 84 for AM1_NC323. The number of targets was much larger than expected based on available literature. To reduce these targets, as well as the number of false positives, we calculated the correlation between the numbers of reads obtained for each of the three conditions. We reasoned that any potential target should show an inverse correlation with the particular ncRNA, given that most bacterial ncRNAs act as negative regulators of gene expression, even when other mechanisms cannot be disregarded (Storz *et al.* 2011). Defining a threshold of $r_{\rm S} \leq -0.5$ for inverse correlation, the list of candidates was reduced to 38 potential

Figure 4 Expression data mapped onto gene network generated using Cytoscape (Lopes *et al.* 2010). Protein-coding genes (circular nodes) were linked to their associated KEGG pathway (square nodes), and colored based on their Log₂FC (fold change) under microoxic compared with control conditions, according to the gradational color bar shown in the top panel. (A) KEGG pathways relevant to our results. The blue rectangle in (A) marks the part of the network that is enlarged in (B), showing PSI, PSII, soluble electron carriers, and ATP synthase complexes.

targets for AM1_NC12, 43 for AM1_NC254, 22 for AM1_NC161, 21 for AM1_NC270, 15 for AM1_NC256, and 24 for AM1_NC315 (Table S5). Functional enrichment analyses of these targets returned significant results (FDR < 0.05) for only two ncRNAs: AM1_NC6 and

AM1_NC276. Specifically, AM1_NC6 targets were significantly enriched in genes involved on "DNA integration," while AM1_NC276 targets showed enrichment in genes encoding proteins involved in "aerobic respiration" (Table 3).

Figure 5 Putative ROS-scavenging pathways. Genes encoding antioxidant enzymes or involved in ROS-scavenging are shown under the reaction that they catalyze. Genes highlighted in red were identified as upregulated in the hyperoxic environment. SOD, Superoxide dismutase; Gor, Glutathione-disulfide reductase; GST, Glutathione S-transferase (GST); GSH, Glutathione; GSSG, Glutathione disulfide.

DISCUSSION

In the laboratory, *Acaryochloris* can grow as a free-living form, under conditions very different from those in which it was initially isolated. In nature, it forms part of an algal mat, associated with colonial ascidians (Miyashita *et al.* 1996). It has been speculated that the multiplicity of homologous genes, and the relatively large genome size, of *Acaryochloris* reflect its evolutionary adaptation to its niche (Swingley *et al.* 2008), in contrast to the reduced genome size of the picoplanktonic *Prochlorococcus* genus (Delaye and Moya 2010; Dufresne *et al.* 2005). Here, we have shown that, under different O_2 conditions, expression levels among homologous genes varies. Given such adaptive capability, it is tempting to speculate on the flexibility of *Acaryochloris* to adapt to changing environmental conditions. This would be one of the benefits obtained from having coexisting multiple copies of genes, in spite of the cost of such a large genome size.

The combination of porphyrin-containing molecules, O_2 , and light often results in photo-oxidative damage to cellular structures. Hence, it has been speculated that divergence of the biosynthesis of bacteriochlorophyll and chlorophyll occurred to reduce photo-oxidative damage under an increasingly oxic atmosphere (Reinbothe *et al.* 1996). The syntheses of various tetrapyrrole molecules (heme, bilins, cobalamin, and chlorophyll) share a common pathway from ALA to uroporphyrinogen III. At this point, the cobalamin biosynthesis pathway branches from the uroporphyrinogen III pathway via a methylation reaction, catalyzed by the multifunctional chelatase CysG. The downregulation of cysG expression under microoxic conditions indicates that O₂ levels are an important regulatory element for the synthesis of cobalamin. In fact, CysG directs the uroporphyrinogen III pathway toward the synthesis of cobalamin either via an oxygen-independent or dependent pathway (Figure 7). Alternatively, it can be redirected toward the heme or chlorophyll biosynthetic pathways. In these pathways, O₂ levels influence the expression of genes encoding enzymes involved in oxidation. The part common to the heme and chlorophyll biosynthetic pathways, from uroporphyrinogen III to protoporphyrin IX, contains several oxidation reactions. The first oxidation step converts coproporphyrinogen III to protoporphyrinogen IX. This oxidation is catalyzed by either HemF or HemN, using O2 or a 5' deoxyadenosil radical generated from S-adenosylmethionine, respectively. HemN contains a [4Fe-4S] cluster, as a prosthetic group, sensitive to the presence of O2. In Synechocystis, a mutant lacking hemF was able to grow under microoxic conditions, but did not grow under aerobic conditions. In contrast, an hemN knockout mutant showed impaired growth only under microoxic conditions (Goto et al. 2010). Thus, in the presence of O2, it could be expected that hemN expression would be minimal compared with hemF. In Acaryochloris, the product of two genes (AM1_0467 and AM1_1283) resembles HemN, but only AM1_0467 had a strong induction (Log₂FC ~6.8) under microoxic conditions (Figure 7). Expression of HemF (AM1_0615) did not show any significant change. This suggests that AM1_0467 is the homolog to hemN in Acaryochloris, based on its expression profile. The product of the HemN/HemF reaction (protoporphyrinogen IX) is converted to protoporphyrin IX, becoming the final precursor common to Chl and heme, as well as heme-derived bilins. The protoporphyrinogen IX oxidation to protoporphyrin IX can be catalyzed by three enzymes, namely HemG, HemY, and HemJ (Kato et al. 2010). Only HemG, which is absent in most cyanobacteria, seems to be oxygen-independent (Boynton et al. 2009). Most cyanobacteria use the oxygen-dependent HemJ, although a few use HemY (Kobayashi et al. 2014). Interestingly, Acaryochloris contains both a HemJ- and a HemY-like enzyme, and, like most cyanobacteria, it lacks a gene homologous to HemG. AM1_5767, having enhanced expression in the microoxic environment, encodes a protein containing a HemY-like domain. A BLAST search, using the sequence for the Synechocystis HemJ (encoded by slr1790) (Kato et al. 2010), returned AM1_2801 as being highly homologous to HemJ. Unlike AM1_5767, the expression of AM1_2801 was not influenced by altered O₂ levels, suggesting that the main pathway for the oxidation of protoporphyrinogen IX in Acaryochloris under microoxic conditions is through HemY (AM1_5767). After this step, iron or magnesium is incorporated into protoporphyrin IX by a ferro- or magnesium chelatase, leading to the synthesis of heme and bilins (in the case of iron insertion), or Chl (in the case of magnesium insertion) (Chen 2014). In the Chl branch, the next substrate that is oxidized is Mg-protoporphyrin IX monomethyl ester (MPE). This reaction is catalyzed by MPE cyclase, which converts MPE into protochlorophyllide (Beale 1999). MPE can follow two pathways: one through an oxygen-dependent MPE-cyclase (AcsF, encoded by AM1_0465, or AM1_2295); and the other through an oxygenindependent MPE-cyclase (BchE) (Raymond and Blankenship 2004). BLAST results did not return any gene homologous to BchE in Acaryochloris. Nevertheless, our results show that the expression of both ascF (AM1_0465, AM1_2295) homologs differ. AM1_0465 was strongly induced under microoxic conditions ($\log_2 FC > 6$), while the expression of AM1_2295 was reduced by almost half (Figure 7). In Synechocystis, a similar expression profile was described for two homologous genes encoding AcsF; deletion of these genes impaired growth under aerobic conditions (Minamizaki et al. 2008). Based on the conclusions drawn

Figure 6 Noncoding RNAs regulated in opposing directions, under the two oxygen treatment conditions. (A–C) were induced under hyperoxic conditions; while (D–F) were induced under microoxic conditions. The arrows and the numbers adjacent to them represent relative expression. Chromosome coordinates are given above the gene representation. RPKM, reads per kilobase per million mapped reads.

for *Synechocystis*, it is likely that *AM1_0465* is the main MPE-cyclase in *Acaryochloris* under microoxic conditions, while, under aerobic conditions, our results show its expression is null, compared to that of *AM1_2295* (Figure 7).

Based on published work, the FeS cluster within the ChlL subunit of the light-independent protochlorophyllide reductase (D-POR) shows a high vulnerability to O_2 (Nomata *et al.* 2006; Yamazaki *et al.* 2006). Such susceptibility might explain why this multimeric enzyme functions in the dark, when O_2 levels are low. Intriguingly, downregulation of the genes encoding the subunits of D-POR under microoxic conditions was observed, confirming that expression levels of this gene are controlled by the reduction state of the photosynthetic electron transport chain, and not by O_2 levels (Horiuchi *et al.* 2010). In contrast, the expression level of the light-dependent protochlorophyllide reductase (L-POR) did not change under microoxic conditions, but decreased under hyperoxic conditions (Table 2).

Because of the potential deleterious effects of a misregulation of the tetrapyrrole biosynthetic pathway, it is expected that several regulatory factors (including sRNAs) control its activity. However, how a cell senses O_2 levels, and controls the expression of multiple genes is not fully understood. In *Synechocystis*, O_2 levels are sensed by the transcriptional factor ChIR (*sll1512*), which positively regulates *acsF*, *ho2*, and *hemN* expression (Aoki *et al.* 2012). The homolog to ChIR in *Acaryochloris* is encoded by *AM1_1552*. Expression of *AM1_1552*, as expected for a

GO ID	Function	Targets of AM1_NC276	<i>P</i> -Value	FDR
GO:0009060	Aerobic respiration	2	5.29 × 10 ⁻⁶	0.006
GO:0020037	Heme binding	2	0.0014	0.839
GO:0005506	Iron ion binding	2	0.0026	1
GO:0009055	Electron carrier activity	2	0.0059	1
GO:0019898	Extrinsic to membrane	1	0.0083	1
GO:0042549	Photosystem II stabilization	1	0.0083	1
GO:0009654	Oxygen evolving complex	1	0.0097	1
GO ID	Function	Targets of AM1_NC6	P-Value	FDR
GO:0015074	DNA integration	5	5.71 × 10 ⁻⁵	0.048
GO:0003676	Nucleic acid binding	5	0.0036	0.985
GO:0003952	NAD+ synthase (glutamine-hydrolyzing) activity	1	0.0074	0.985
GO:0004127	Cytidylate kinase activity	1	0.0074	0.985
GO:0004553	Hydrolase activity, hydrolyzing O-glycosyl compounds	2	0.0023	0.985
GO:0004592	Pantoate-beta-alanine ligase activity	1	0.0074	0.985

Table 3 Functional enrichment analysi	s of the predicted	targets for intergenic sm	all noncoding RNAs targets
---------------------------------------	--------------------	---------------------------	----------------------------

Our analysis was performed similarly to the enrichment analysis of differentially expressed genes described in the *Materials and Methods*. The top six categories with the lowest *p*-values are shown. Only GO categories having a FDR \leq 0.05 (in bold) were considered significant.

Figure 7 Diagram representing the tetrapyrrole biosynthetic pathway. Only genes encoding proteins discussed in the text are shown. Genes differentially expressed are highlighted in green and red, indicating downregulation and upregulation under microoxic conditions, respectively. Specific values are given in Table 2.

positive regulator of genes sensitive to O_2 , increased under microoxic conditions (log₂FC ~1.9). A search using the FIMO tool within the MEME suite using the ChlR recognition motif (TTMCC-N_{4/3}-GGWAA) provided by Aoki *et al.* (2012) returned a putative site (*p*-value <0.0005), located 22 bp upstream of *AM1_0466 (ho2)*.

Furthermore, the expression control performed by regulatory factors, the synthesis of the final products, and their assembly into the apoprotein moiety, have to be tightly regulated to avoid their accumulation as free pigments in the membrane. For example, members of the HLIP family appear to mediate between both pathways in the assembly of photosynthetic complexes (Hernandez-Prieto et al. 2011; Yao et al. 2012; Sobotka et al. 2008; Adamska et al. 2001). In Synechocystis, HLIPs accumulate under multiple-stress conditions, while, under laboratory growth conditions, they are expressed at a low level (He et al. 2001). In Acaryochloris, there are 13 hlip genes; our data showed that AM1_3193 is among the most expressed transcripts in the control sample, contrary to what was observed in Synechocystis (He et al. 2001). In general, hlip expression levels decreased both under microoxic and hyperoxic conditions, following the trend observed for both photosystems. The regulatory role of HLIPs is most evident when examining the C-terminal extension of the ferrochelatase gene in cyanobacteria and chloroplasts, which shares a high homology with HLIPs (Funk and Vermaas 1999). This HLIP-like extension appears to induce or repress ferrochelatase activity, depending on the amount of free chlorophyll in the thylakoid membrane (Sobotka et al. 2008). In most cyanobacteria, only one gene encodes for ferrochelatase, while in Acaryochloris there are three ferrochelatase gene copies (AM1_1959, AM1_C0107, and AM1_C0204), and all of them have HLIP-like C-terminal extensions. AM1_C0107 and AM1_C0204, localized in the plasmid pRBE3, encode identical ferrochelatases; and their transcripts are >100 times more abundant than those generated from the copy (AM1_1959) localized in the chromosome, under all test conditions. The identification of ferrochelatase, as a pivotal enzyme at the intersection between Chl and heme syntheses (Figure 7), makes the regulation of its function by the HLIP-like extension essential to the flux of metabolites toward one or other of its final products.

In cyanobacteria, a large portion of the heme generated by ferrochelatase is funneled toward heme oxygenase. This is the first step in the synthesis of bilins, the pigments bound in the phycobiliproteins of the

PBS. The PBS antenna found in Acaryochloris consists of a single rod structure (Chen et al. 2009; Hu et al. 1999), in which phycocyanin (pc)containing subunits are the main component, and allophycocyanin (Apc)-containing subunits are only a minor component of the bottom disc of the rod-structured phycobiliprotein complex (Marquardt et al. 1997). This structure explains the larger number of reads for the genes encoding the pc-binding apoproteins (Table 2), compared with the Apc-containing subunits (ApcA and ApcB). Furthermore, their gene loci are physically separated from each other, with the genes encoding the Apc proteins, ApcA (AM1_1558, AM1_4469, and AM1_5810) and ApcB (AM1_2376), localized in the main chromosome, and the ones encoding the pc-binding apoproteins localized in the pREB3 plasmid. Our results and previously published work (Lin *et al.* 2013) show that, under microoxic conditions, the expression of genes encoding PBS subunits and their assembly in the antenna complex, are significantly decreased. Similarly, experimental conditions that limit access of cultures to essential nutrients also induce a downregulation of PBS encoding genes (Foster et al. 2007; Wang et al. 2004; Zhang et al. 2008). Downregulation of PBS encoding genes under microoxic conditions also has been observed in Synechocystis sp. PCC6803 (Summerfield et al. 2011). This downregulation may reflect decreased formation of bilins by the oxygen-dependent heme oxygenase (HO). In most cyanobacteria, two genes encode for heme oxygenases (ho1, and ho2), with HO2 having a higher affinity for O₂, and being most active under microoxic conditions (Aoki et al. 2011). In Acaryochloris, two genes encode proteins with high similarity to HO1 (AM1_C0205 and AM1_C0108), while two others encode HO2 (AM1_0850 and AM1_0466). The expression of both genes encoding for HO1 decreased under microoxic conditions, while the expression of AM1_0466 increased under microoxic conditions $(\log_2 FC > 5)$, revealing this gene as most probably HO2.

In *Synechocystis*, it was noted that the expression of genes encoding PBS subunits is highly correlated with genes encoding subunits of the ATP synthase (ATPase) complex (Hernández-Prieto *et al.* 2016; Summerfield *et al.* 2011). Hence, a similar downregulation of ATPase subunits would also be expected for *Acaryochloris* under microoxic conditions. In *Acaryochloris*, two sets of genes encoding for ATPase subunits exist (one set is localized in the chromosome, and another in the pREB4 plasmid) (Swingley *et al.* 2008). The expression of the genes encoding ATPase located in the plasmid increased slightly under

microoxic conditions, while the ATPase from the main chromosome showed decreased expression under microoxic conditions, consistent with the results for *Synechocystis* (Hernández-Prieto *et al.* 2016). In fact, the ATPase encoding genes localized in the chromosome are phylogenetically closer to ATPase from other cyanobacteria (Swingley *et al.* 2008) than those localized in the plasmid. In addition to their downregulation under microoxic conditions, the ATPase genes localized in the chromosome are transcribed more frequently under all test conditions than the copies localized in the plasmid. These results indicate that the ATPase gene copies localized in the plasmid might be cryptic, or function in conditions different from the ones tested here.

A well-documented effect observed under microoxic conditions in cvanobacteria is the induction of the psbA1 gene encoding a homolog of the D1 protein of PSII (Summerfield et al. 2008), with repression of psbA2 and psbA3. D1 differential expression also was confirmed in this study, consistent with previously published results (Kiss et al. 2012). Noticeably, a similar expression profile was observed here for one (AM1_G0114) of the four genes (AM1_G0114, AM1_D0138, AM1_3966, and AM1_5046) encoding the PsbU subunit of PSII (Figure 4). The PsbU subunit is associated with the oxygen-evolving complex, and functions to stabilize the PSII complex under high-intensity light conditions, protecting it from ROS (Abasova et al. 2011). The differential induction of this gene is interesting, since it has been assumed that, because of differences in the sequence of the psbA1 encoded D1 protein, the PSII complexes assembled with this protein lack the capacity to evolve O2 (Kiss et al. 2012; Murray 2012). The expression of the rieske-containing subunit (PetC) (Wenk et al. 2005) of the cytochrome $b_6 f$ subunits is affected in a similar manner to *psbA1*. Similar to D1, PetC can be transcribed from three genes (AM1_4450, AM1_0450, and AM1_1961), with AM1_0450 being the only one induced under microoxic conditions (Table 2). It is important to note that AM1_0450 is upstream of *psbA1*. Thus, it is likely that they are cotranscribed in Acaryochloris, together with another two genes encoding proteins of unknown function: one (AM1_0449) containing a bacteria-conserved domain (DUF2892), and the other (AM1_0451) containing a rhodaneselike domain linked with assimilation of thiosulfate under anaerobic conditions in other bacteria (Schedel and Trüper 1980). A similar gene cluster is observed in Synechocystis genome, where psbA1 (slr1181) is the first gene of a set of 10 genes orientated in the same direction, including slr1184 encoding a rhodanese-like protein, and slr1185 encoding PetC; expression levels in these genes were also higher under microoxic conditions (Summerfield et al. 2008). Based on the microarray meta-analysis presented in CyanoEXpress, only the expression of slr1182, slr1183, and slr1184 seem to follow the same trend under different environmental conditions, as expected for genes in an operon (Hernández-Prieto et al. 2016). Nevertheless, results obtained from genes for which expression levels are low under most conditions (as is the case for *psbA1*) should be viewed with caution, especially when interpreting correlations. Further investigation to confirm whether expression of these proteins results in a restructuring of the photosynthetic complexes, and rerouting of the electron transport chain under microoxic conditions, is needed, but is beyond the scope this paper.

Transcriptome data (Mitschke *et al.* 2011; Kopf *et al.* 2014; Voigt *et al.* 2014; Hernández-Prieto *et al.* 2012), as well as computational predictions (Voß *et al.* 2009; Voigt *et al.* 2014), of sRNAs in cyanobacteria have revealed a large number of previously unidentified noncoding protein transcripts, exceeding all previous predictions. Although the roles of some of these sRNAs have been partially characterized in cyanobacteria (Nakamura *et al.* 2007; Voß *et al.* 2007; Dühring *et al.* 2006b), the function of most of them is still unknown. A well understood process in *Escherichia coli* is the degradation of complementarily

paired ncRNAs and mRNAs, mediated by the protein Hfq (Massé et al. 2003). Such processes affect protein synthesis at the transcriptional level, saving valuable resources that can be used to synthesize a different protein complement that is more suitable to the new environmental conditions. In cyanobacteria, a gene encoding a homolog to Hfq has been identified, but its role in ncRNA/mRNA degradation has not yet been demonstrated (Bøggild et al. 2009; Dienst et al. 2008). Of the 58 ncRNAs localized in the chromosome (Table 1), only six (AM1_NC12, AM1_NC161, AM1_NC254, AM1_NC270, AM1_NC256, and AM1_NC315) showed significant opposing expression profiles for microoxic and hyperoxic conditions, as would be expected for ncRNAs involved in adaptation to different O₂ levels (Figure 6). Of these, functional enrichment analyses of their potential targets returned significant results (FDR < 0.05) for only two ncRNAs: AM1_NC6 and AM1_NC276. The targets predicted for AM1_NC276 comprised genes within the category "aerobic respiration" (Table 3), indicating that expression of this ncRNA might be relevant for adaptation to altered O2 levels. In E. coli, several ncRNAs have been shown to play a role in adaptation to oxidative stress (Berghoff and Klug 2012), but further experimental work is necessary to determine whether they have the same functions in Acaryochloris.

In conclusion, the large number of protein-coding genes and sRNAs detected as differentially expressed under our test conditions revealed that there is a high level of regulation related to O_2 in cyanobacteria. The multiplicity of genes encoding homologous proteins in *Acaryochloris* exceeds that of many cyanobacteria, indicating a complex regulatory network in this organism. Multiple ROS-scavenging pathways, and their different transcriptomic responses, may represent the history of alternative ROS-scavenging mechanisms, which has evolved and developed in parallel to new metabolic pathways that produce ROS.

Ultimately, the lack of efficient methods to generate mutants in *Acaryochloris* makes environmental studies, such as this one, key to understanding its regulation and annotating its yet unknown gene functions.

ACKNOWLEDGMENTS

The authors thank Patrick Loughlin and Robert Willows for their valuable discussions and suggestions that contributed to experimental design and data processing. This manuscript presents part of a Ph.D. study conducted by Y. L. M.C. holds an Australian Research Council (ARC) Future Fellow (FT120100464). The project is financially supported by the ARC (DP0878174 and CE140100015).

LITERATURE CITED

- Abasova, L., Z. Deák, R. Schwarz, and I. Vass, 2011 The role of the PsbU subunit in the light sensitivity of PSII in the cyanobacterium *Synechococcus* 7942. J. Photochem. Photobiol. B 105(2): 149–156.
- Adamska, I., E. Kruse, and K. Kloppstech, 2001 Stable insertion of the early light-induced proteins into etioplast membranes requires chlorophyll *a*. J. Biol. Chem. 276(11): 8582–8587.
- Afgan, E., D. Baker, M. van den Beek, D. Blankenberg, D. Bouvier *et al.*, 2016 The galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids Res. 44(W1): W3–W10.
- Aoki, R., T. Goto, and Y. Fujita, 2011 A heme oxygenase isoform is essential for aerobic growth in the cyanobacterium *Synechocystis sp.* PCC 6803: modes of differential operation of two isoforms/enzymes to adapt to low oxygen environments in cyanobacteria. Plant Cell Physiol. 52(10): 1744– 1756.
- Aoki, R., T. Takeda, T. Omata, K. Ihara, and Y. Fujita, 2012 R-type transcriptional regulator ChIR activates expression of tetrapyrrole biosynthesis genes in response to low-oxygen conditions in cyanobacteria. J. Biol. Chem. 287(16): 13500–13507.

- Apel, K., and H. Hirt, 2004 Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55: 373–399.
- Beale, S. I., 1999 Enzymes of chlorophyll biosynthesis. Photosynth. Res. 60 (1): 43–73.
- Berghoff, B., and G. Klug, 2012 Small RNAs with a role in the oxidative stress response of bacteria, pp. 1–14 in *Regulatory RNAs in Prokaryotes*. Springer, Vienna.
- Blankenship, R. E., 2008 Molecular Mechanisms of Photosynthesis. John Wiley & Sons, New York.
- Blankenship, R. E., and H. Hartman, 1998 The origin and evolution of oxygenic photosynthesis. Trends Biochem. Sci. 23(3): 94–97.
- Bøggild, A., M. Overgaard, P. Valentin-Hansen, and D. E. Brodersen, 2009 Cyanobacteria contain a structural homologue of the Hfq protein with altered RNA-binding properties. FEBS J. 276(14): 3904–3915.
- Boudreau, E., Y. Takahashi, C. Lemieux, M. Turmel, and J. D. Rochaix, 1997 The chloroplast *ycf3* and *ycf4* open reading frames of *Chlamydo-monas reinhardtii* are required for the accumulation of the photosystem I complex. EMBO J. 16(20): 6095–6104.
- Boynton, T. O., L. E. Daugherty, T. A. Dailey, and H. A. Dailey, 2009 Identification of *Escherichia coli* HemG as a novel, menadione-dependent flavodoxin with protoporphyrinogen oxidase activity. Biochemistry 48(29): 6705–6711.
- Busch, A., A. S. Richter, and R. Backofen, 2008 IntaRNA: efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions. Bioinformatics 24(24): 2849–2856.
- Busch, A. W., and B. L. Montgomery, 2015 Interdependence of tetrapyrrole metabolism, the generation of oxidative stress and the mitigative oxidative stress response. Redox Biol. 4: 260–271.
- Chen, M., 2014 Chlorophyll modifications and their spectral extension in oxygenic photosynthesis. Annu. Rev. Biochem. 83(1): 317–340.
- Chen, M., and Z.-L. Cai, 2007 Theoretical study on the thermodynamic properties of chlorophyll *d*-peptides coordinating ligand. Biochim. Biophys. Acta 1767(6): 603–609.
- Chen, M., R. G. Quinnell, and A. W. D. Larkum, 2002a Chlorophyll d as the major photopigment in Acaryochloris marina. J. Porphyr. Phthalocyanines 6(12): 763–773.
- Chen, M., R. G. Quinnell, and A. W. D. Larkum, 2002b The major lightharvesting pigment protein of *Acaryochloris marina*. FEBS Lett. 514(2–3): 149–152.
- Chen, M., L. L. Eggink, J. K. Hoober, and A. W. D. Larkum, 2005a Influence of structure on binding of chlorophylls to peptide ligands. J. Am. Chem. Soc. 127(7): 2052–2053.
- Chen, M., A. Telfer, S. Lin, A. Pascal, A. W. D. Larkum *et al.*, 2005b The nature of the photosystem II reaction centre in the chlorophyll *d*-containing prokaryote, *Acaryochloris marina*. Photochem. Photobiol. Sci. 4(12): 1060–1064.
- Chen, M., M. Floetenmeyer, and T. S. Bibby, 2009 Supramolecular organization of phycobiliproteins in the chlorophyll *d*-containing cyanobacterium *Acaryochloris marina*. FEBS Lett. 583(15): 2535–2539.
- de Jong, A., H. Pietersma, M. Cordes, O. P. Kuipers, and J. Kok, 2012 PePPER: a webserver for prediction of prokaryote promoter elements and regulons. BMC Genomics 13(1): 1–10.
- Delaye, L., and A. Moya, 2010 Evolution of reduced prokaryotic genomes and the minimal cell concept: variations on a theme. BioEssays 32(4): 281–287.
- Dienst, D., U. Dühring, H.-J. Mollenkopf, J. Vogel, J. Golecki et al., 2008 The cyanobacterial homologue of the RNA chaperone Hfq is essential for motility of Synechocystis sp. PCC 6803. Microbiology 154(10): 3134–3143.
- Dismukes, G. C., V. V. Klimov, S. V. Baranov, Y. N. Kozlov, J. DasGupta et al., 2001 The origin of atmospheric oxygen on Earth: the innovation of oxygenic photosynthesis. Proc. Natl. Acad. Sci. USA 98(5): 2170–2175.
- Dufresne, A., L. Garczarek, and F. Partensky, 2005 Accelerated evolution associated with genome reduction in a free-living prokaryote. Genome Biol. 6(2): R14.
- Dühring, U., K.-D. Irrgang, K. Lünser, J. Kehr, and A. Wilde, 2006a Analysis of photosynthetic complexes from a cyanobacterial *ycf37* mutant. Biochim. Biophys. Acta 1757(1): 3–11.

- Dühring, U., I. M. Axmann, W. R. Hess, and A. Wilde, 2006b An internal antisense RNA regulates expression of the photosynthesis gene *isiA*. Proc. Natl. Acad. Sci. USA 103(18): 7054–7058.
- Duxbury, Z., M. Schliep, R. J. Ritchie, A. W. D. Larkum, and M. Chen, 2009 Chromatic photoacclimation extends utilisable photosynthetically active radiation in the chlorophyll *d*-containing cyanobacterium, *Acaryochloris marina*. Photosynth. Res. 101(1): 69–75.
- Foster, J. S., A. K. Singh, L. J. Rothschild, and L. A. Sherman, 2007 Growthphase dependent differential gene expression in *Synechocystis sp.* strain PCC 6803 and regulation by a group 2 sigma factor. Arch. Microbiol. 187 (4): 265–279.
- Fujisawa, T., S. Okamoto, T. Katayama, M. Nakao, H. Yoshimura *et al.*, 2014 CyanoBase and RhizoBase: databases of manually curated annotations for cyanobacterial and rhizobial genomes. Nucleic Acids Res. 42 (D1): D666–D670.
- Funk, C., and W. Vermaas, 1999 A cyanobacterial gene family coding for single-helix proteins resembling part of the light-harvesting proteins from higher plants. Biochemistry 38(29): 9397–9404.
- Goto, T., R. Aoki, K. Minamizaki, and Y. Fujita, 2010 Functional differentiation of two analogous coproporphyrinogen III oxidases for heme and chlorophyll biosynthesis pathways in the cyanobacterium *Synechocystis sp.* PCC 6803. Plant Cell Physiol. 51(4): 650–663.
- He, Q., N. Dolganov, O. Bjorkman, and A. R. Grossman, 2001 The high light-inducible polypeptides in *Synechocystis* PCC6803. Expression and function in high light. J. Biol. Chem. 276(1): 306–314.
- Hedges, S. B., J. E. Blair, M. L. Venturi, and J. L. Shoe, 2004 A molecular timescale of eukaryote evolution and the rise of complex multicellular life. BMC Evol. Biol. 4(1): 2.
- Hernandez-Prieto, M. A., T. Tibiletti, L. Abasova, D. Kirilovsky, I. Vass *et al.*, 2011 The small CAB-like proteins of the cyanobacterium *Synechocystis sp.* PCC 6803: their involvement in chlorophyll biogenesis for Photosystem II. Biochim. Biophys. Acta 1807(9): 1143–1151.
- Hernández-Prieto, M. A., V. Schon, J. Georg, L. Barreira, J. Varela et al., 2012 Iron deprivation in Synechocystis: inference of pathways, noncoding RNAs, and regulatory elements from comprehensive expression profiling. G3 2(12): 1475–1495.
- Hernández-Prieto, M. A., T. A. Semeniuk, J. Giner-Lamia, and M. E. Futschik, 2016 The transcriptional landscape of the photosynthetic model cyanobacterium Synechocystis sp. PCC6803. Sci. Rep. 6: 22168.
- Hoober, J. K., L. L. Eggink, and M. Chen, 2007 Chlorophylls, ligands and assembly of light-harvesting complexes in chloroplasts. Photosynth. Res. 94(2-3): 387–400.
- Horiuchi, M., K. Nakamura, K. Kojima, Y. Nishiyama, W. Hatakeyama *et al.*,
 2010 The PedR transcriptional regulator interacts with thioredoxin to connect photosynthesis with gene expression in cyanobacteria. Biochem. J. 431(1): 135–140.
- Hu, Q., H. Miyashita, I. Iwasaki, N. Kurano, S. Miyachi *et al.*, 1998 A photosystem I reaction center driven by chlorophyll *d* in oxygenic photosynthesis. Proc. Natl. Acad. Sci. USA 95(22): 13319–13323.
- Hu, Q., J. Marquardt, I. Iwasaki, H. Miyashita, N. Kurano *et al.*, 1999 Molecular structure, localization and function of biliproteins in the chlorophyll a/d containing oxygenic photosynthetic prokaryote *Acaryochloris marina*. Biochim. Biophys. Acta 1412(3): 250–261.
- Kanehisa, M., Y. Sato, M. Kawashima, M. Furumichi, and M. Tanabe,
 2016 KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44(D1): D457–D462.
- Kato, K., R. Tanaka, S. Sano, A. Tanaka, and H. Hosaka, 2010 Identification of a gene essential for protoporphyrinogen IX oxidase activity in the cyanobacterium *Synechocystis sp.* PCC6803. Proc. Natl. Acad. Sci. USA 107(38): 16649–16654.
- Kiss, É., P. B. Kós, M. Chen, and I. Vass, 2012 A unique regulation of the expression of the *psbA*, *psbD*, and *psbE* genes, encoding the D1, D2 and cytochrome b_{559} subunits of the Photosystem II complex in the chlorophyll *d* containing cyanobacterium *Acaryochloris marina*. Biochim. Biophys. Acta 1817(7): 1083–1094.
- Kobayashi, K., T. Masuda, N. Tajima, H. Wada, and N. Sato,2014 Molecular phylogeny and intricate evolutionary history of the

three isofunctional enzymes involved in the oxidation of protoporphyrinogen IX. Genome Biol. Evol. 6(8): 2141–2155.

Kopf, M., S. Klahn, I. Scholz, J. K. Matthiessen, W. R. Hess *et al.*, 2014 Comparative analysis of the primary transcriptome of *Synechocystis sp.* PCC 6803. DNA Res. 21(5): 527–539.

Latifi, A., M. Ruiz, and C.-C. Zhang, 2009 Oxidative stress in cyanobacteria. FEMS Microbiol. Rev. 33(2): 258–278.

Lin, Y., B. Crossett, and M. Chen, 2013 Effects of anaerobic conditions on photosynthetic units of Acaryochloris marina, pp. 121–124 in *Photosynthesis Research for Food, Fuel and the Future: 15th International Conference on Photosynthesis.* Springer, Berlin .

Lopes, C. T., M. Franz, F. Kazi, S. L. Donaldson, Q. Morris et al., 2010 Cytoscape web: an interactive web-based network browser. Bioinformatics 26(18): 2347–2348.

Loughlin, P., Y. Lin, and M. Chen, 2013 Chlorophyll d and Acaryochloris marina: current status. Photosynth. Res. 116(2): 277–293.

Loughlin, P. C., R. D. Willows, and M. Chen, 2014 In vitro conversion of vinyl to formyl groups in naturally occurring chlorophylls. Sci. Rep. 4: 6069.

Marquardt, J., H. Senger, H. Miyashita, S. Miyachi, and E. Mörschel, 1997 Isolation and characterization of biliprotein aggregates from *Acaryochloris marina*, a Prochloron-like prokaryote containing mainly chlorophyll *d*. FEBS Lett. 410(2–3): 428–432.

Massé, E., F. E. Escorcia, and S. Gottesman, 2003 Coupled degradation of a small regulatory RNA and its mRNA targets in *Escherichia coli*. Genes Dev. 17(19): 2374–2383.

McClure, R., D. Balasubramanian, Y. Sun, M. Bobrovskyy, P. Sumby *et al.*, 2013 Computational analysis of bacterial RNA-Seq data. Nucleic Acids Res. 41: e140.

Minamizaki, K., T. Mizoguchi, T. Goto, H. Tamiaki, and Y. Fujita, 2008 Identification of two homologous genes, *chlaI* and *chlaII*, that are differentially involved in isocyclic ring formation of chlorophyll *a* in the cyanobacterium *Synechocystis sp.* PCC 6803. J. Biol. Chem. 283(5): 2684–2692.

Mitschke, J., J. Georg, I. Scholz, C. M. Sharma, D. Dienst *et al.*, 2011 An experimentally anchored map of transcriptional start sites in the model cyanobacterium *Synechocystis sp.* PCC6803. Proc. Natl. Acad. Sci. USA 108(5): 2124–2129.

Miyashita, H., H. Ikemoto, N. Kurano, K. Adachi, M. Chihara *et al.*, 1996 Chlorophyll *d* as a major pigment. Nature 383(6599): 402–402.

Murray, J. W., 2012 Sequence variation at the oxygen-evolving centre of photosystem II: a new class of 'rogue' cyanobacterial D1 proteins. Photosynth. Res. 110(3): 177–184.

Murry, M. A., A. J. Horne, and J. R. Benemann, 1984 Physiological studies of oxygen protection mechanisms in the heterocysts of *Anabaena cylindrica*. Appl. Environ. Microbiol. 47(3): 449–454.

Nakamura, T., K. Naito, N. Yokota, C. Sugita, and M. Sugita, 2007 A cyanobacterial non-coding RNA, Yfr1, is required for growth under multiple stress conditions. Plant Cell Physiol. 48(9): 1309–1318.

Nomata, J., M. Kitashima, K. Inoue, and Y. Fujita, 2006 Nitrogenase Fe protein-like Fe–S cluster is conserved in L-protein (BchL) of dark-operative protochlorophyllide reductase from *Rhodobacter capsulatus*. FEBS Lett. 580(26): 6151–6154.

Ozawa, S., J. Nield, A. Terao, E. J. Stauber, M. Hippler *et al.*, 2009 Biochemical and structural studies of the large Ycf4-photosystem I assembly complex of the green alga *Chlamydomonas reinhardtii*. Plant Cell 21(8): 2424–2442.

Pospíšil, P., 2012 Molecular mechanisms of production and scavenging of reactive oxygen species by photosystem II. Biochim. Biophys. Acta 1817 (1): 218–231.

Raymond, J., and R. E. Blankenship, 2004 Biosynthetic pathways, gene replacement and the antiquity of life. Geobiology 2(4): 199–203.

Reinbothe, S., C. Reinbothe, K. Apel, and N. Lebedev, 1996 Evolution of chlorophyll biosynthesis—the challenge to survive photooxidation. Cell 86(5): 703–705.

Rutherford, A. W., A. Osyczka, and F. Rappaport, 2012 Back-reactions, short-circuits, leaks and other energy wasteful reactions in biological

electron transfer: redox tuning to survive life in O_2 . FEBS Lett. 586(5): 603–616.

Rutherford, K., J. Parkhill, J. Crook, T. Horsnell, P. Rice *et al.*, 2000 Artemis: sequence visualization and annotation. Bioinformatics 16(10): 944–945.

Schedel, M., and H. G. Trüper, 1980 Anaerobic oxidation of thiosulfate and elemental sulfur in *Thiobacillus denitrificans*. Arch. Microbiol. 124(2): 205–210.

Schliep, M., B. Crossett, R. D. Willows, and M. Chen, 2010 ¹⁸O labeling of chlorophyll d in Acaryochloris marina reveals that chlorophyll a andmolecular oxygen are precursors. J. Biol. Chem. 285(37): 28450–28456.

Schmetterer, G., 2016 The respiratory terminal oxidases (RTOs) of cyanobacteria, pp. 331–355 in *Cytochrome Complexes: Evolution, Structures, Energy Transduction, and Signaling,* edited by Cramer, A. W., and T. Kallas. Springer, Dordrecht, Netherlands.

Schmetterer, G., A. Valladares, D. Pils, S. Steinbach, M. Pacher *et al.*, 2001 The *coxBAC* operon encodes a cytochromec oxidase required for heterotrophic growth in the cyanobacterium *Anabaena variabilis* strain ATCC 29413. J. Bacteriol. 183(21): 6429–6434.

Sharma, P., A. B. Jha, R. S. Dubey, and M. Pessarakli, 2012 Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. 2012: 26.

Shen, G., R. Balasubramanian, T. Wang, Y. Wu, L. M. Hoffart *et al.*, 2007 SufR coordinates two [4Fe-4S]^{2+, 1+} clusters and functions as a transcriptional repressor of the *sufBCDS* operon and an autoregulator of SufR in cyanobacteria. J. Biol. Chem. 282(44): 31909–31919.

Ślesak, I., H. Ślesak, P. Zimak-Piekarczyk, and P. Rozpądek, 2016 Enzymatic antioxidant systems in early anaerobes: theoretical considerations. Astrobiology 16(5): 348–358.

Sobotka, R., S. McLean, M. Zuberova, C. N. Hunter, and M. Tichy, 2008 The C-terminal extension of ferrochelatase is critical for enzyme activity and for functioning of the tetrapyrrole pathway in *Synechocystis* strain PCC 6803. J. Bacteriol. 190(6): 2086–2095.

Storz, G., J. Vogel, and K. M. Wassarman, 2011 Regulation by small RNAs in bacteria: expanding frontiers. Mol. Cell 43(6): 880–891.

Summerfield, T. C., J. Toepel, and L. A. Sherman, 2008 Low-oxygen induction of normally cryptic *psbA* genes in cyanobacteria. Biochemistry 47 (49): 12939–12941.

Summerfield, T. C., S. Nagarajan, and L. A. Sherman, 2011 Gene expression under low-oxygen conditions in the cyanobacterium *Synechocystis sp.* PCC 6803 demonstrates Hik31-dependent and -independent responses. Microbiology 157(2): 301–312.

Swingley, W. D., M. Chen, P. C. Cheung, A. L. Conrad, L. C. Dejesa et al., 2008 Niche adaptation and genome expansion in the chlorophyll *d*-producing cyanobacterium Acaryochloris marina. Proc. Natl. Acad. Sci. USA 105(6): 2005–2010.

Tamagnini, P., E. Leitão, P. Oliveira, D. Ferreira, F. Pinto *et al.*, 2007 Cyanobacterial hydrogenases: diversity, regulation and applications. FEMS Microbiol. Rev. 31(6): 692–720.

Tomo, T., T. Okubo, S. Akimoto, M. Yokono, H. Miyashita *et al.*, 2007 Identification of the special pair of photosystem II in a chlorophyll *d*-dominated cyanobacterium. Proc. Natl. Acad. Sci. USA 104(17): 7283–7288.

UniProt Consortium, 2015 UniProt: a hub for protein information. Nucleic Acids Res. 43(D1): D204–D212.

Voigt, K., C. M. Sharma, J. Mitschke, S. J. Lambrecht, B. Voss *et al.*, 2014 Comparative transcriptomics of two environmentally relevant cyanobacteria reveals unexpected transcriptome diversity. ISME J. 8(10): 2056–2068.

Voß, B., G. Gierga, I. M. Axmann, and W. R. Hess, 2007 A motif-based search in bacterial genomes identifies the ortholog of the small RNA Yfr1 in all lineages of cyanobacteria. BMC Genomics 8(1): 375.

Voß, B., J. Georg, V. Schön, S. Ude, and W. R. Hess, 2009 Biocomputational prediction of non-coding RNAs in model cyanobacteria. BMC Genomics 10(1): 123.

Wang, H.-L., B. L. Postier, and R. L. Burnap, 2004 Alterations in global patterns of gene expression in *Synechocystis sp.* PCC 6803 in response to

inorganic carbon limitation and the inactivation of *ndhR*, a LysR family regulator. J. Biol. Chem. 279(7): 5739–5751.

- Wenk, S.-O., D. Schneider, U. Boronowsky, C. Jäger, C. Klughammer *et al.*, 2005 Functional implications of pigments bound to a cyanobacterial cytochrome $b_6 f$ complex. FEBS J. 272(2): 582–592.
- Yamazaki, S., J. Nomata, and Y. Fujita, 2006 Differential operation of dual protochlorophyllide reductases for chlorophyll biosynthesis in response to environmental oxygen levels in the cyanobacterium *Leptolyngbya boryana*. Plant Physiol. 142(3): 911–922.
- Yao, D. C., D. C. Brune, D. Vavilin, and W. F. Vermaas, 2012 Photosystem II component lifetimes in the cyanobacterium *Synechocystis sp.* strain PCC

6803: small Cab-like proteins stabilize biosynthesis intermediates and affect early steps in chlorophyll synthesis. J. Biol. Chem. 287(1): 682–692.

- Yoneda, A., B. J. Wittmann, J. D. King, R. E. Blankenship, and G. Dantas, 2016 Transcriptomic analysis illuminates genes involved in chlorophyll synthesis after nitrogen starvation in *Acaryochloris sp.* CCMEE 5410. Photosynth. Res. 129(2): 171–182.
- Zhang, Z., N. D. Pendse, K. N. Phillips, J. B. Cotner, and A. Khodursky,
 2008 Gene expression patterns of sulfur starvation in *Synechocystis sp.* PCC 6803. BMC Genomics 9: 344.

Communicating editor: B. J. Andrews