
ORIGINAL RESEARCH
published: 04 May 2021

doi: 10.3389/fdata.2021.637724

Frontiers in Big Data | www.frontiersin.org 1 May 2021 | Volume 4 | Article 637724

Edited by:

Holger Fröhlich,

University of Bonn, Germany

Reviewed by:

Lingzhong Fan,

Institute of Automation, Chinese

Academy of Sciences (CAS), China

Ye Wu,

University of North Carolina at Chapel

Hill, United States

Yu Zhang,

Zhejiang Lab, China

*Correspondence:

Yashar Zeighami

yashar.zeighami@mcgill.ca

Specialty section:

This article was submitted to

Medicine and Public Health,

a section of the journal

Frontiers in Big Data

Received: 04 December 2020

Accepted: 06 April 2021

Published: 04 May 2021

Citation:

Zeighami Y and Evans AC (2021)

Association vs. Prediction: The Impact

of Cortical Surface Smoothing and

Parcellation on Brain Age.

Front. Big Data 4:637724.

doi: 10.3389/fdata.2021.637724

Association vs. Prediction: The
Impact of Cortical Surface
Smoothing and Parcellation on Brain
Age

Yashar Zeighami 1,2* and Alan C. Evans 1,2

1Montreal Neurological Institute, McGill University, Montreal, QC, Canada, 2 Ludmer Centre for Neuroinformatics and Mental

Health, McGill University, Montreal, QC, Canada

Association and prediction studies of the brain target the biological consequences of

aging and their impact on brain function. Such studies are conducted using different

smoothing levels and parcellations at the preprocessing stage, on which their results

are dependent. However, the impact of these parameters on the relationship between

association values and prediction accuracy is not established. In this study, we used

cortical thickness and its relationship with age to investigate how different smoothing and

parcellation levels affect the detection of age-related brain correlates as well as brain age

prediction accuracy. Our main measures were resel numbers—resolution elements—and

age-related variance explained. Using these common measures enabled us to directly

compare parcellation and smoothing effects in both association and prediction studies.

In our sample of N = 608 participants with age range 18–88, we evaluated age-

related cortical thickness changes as well as brain age prediction. We found a negative

relationship between prediction performance and correlation values for both parameters.

Our results also quantify the relationship between delta age estimates obtained based

on different processing parameters. Furthermore, with the direct comparison of the

two approaches, we highlight the importance of correct choice of smoothing and

parcellation parameters in each task, and how they can affect the results of the analysis

in opposite directions.

Keywords: brain aging, cortical thickness, prediction, delta age, smoothing, parcellation, association

INTRODUCTION

From a biological standpoint, aging is defined by the structural and functional alterations in living
organisms (López-Otín et al., 2013). Traditionally, brain imaging studies have used neuroimaging
data to find associations between age and tissue alterations across brain areas, using chronological
age as the ground truth (Lemaître et al., 2005; Curiati et al., 2009; Takahashi et al., 2011; Ziegler et al.,
2012; Booth et al., 2013; Hu et al., 2014). However, biological age might vary between individuals
with identical chronological age as well as across different tissues within the same person (Horvath,
2013). To non-invasively measure the biological age of the brain, neuroimaging data is used to
predict age. The difference between predicted age and chronological age is then defined as “delta”
or brain age gap estimate i.e., “BrainAGE” to compare the subjects’ chronological age with the
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predicted brain age in a given reference population (Franke et al.,
2012; Cole and Franke, 2017; Franke andGaser, 2019; Smith et al.,
2019).

Both age related brain alterations and delta age have been
studied and used extensively in the neuroimaging literature.
Age association studies translate and generalize easily across
different datasets. These association studies are applied across
brain regions and can distinguish the differential effect of age
on different brain areas (Storsve et al., 2014). Furthermore, they
directly relate to biological measures and mechanistic changes
in the brain (Khundrakpam et al., 2015). More recently, it has
been recognized that association studies are prone to overfitting
and more studies focus on prediction as the main goal of the
study (Yarkoni and Westfall, 2017; Bzdok et al., 2020). Brain age
studies (i.e., age prediction studies based on neuroimaging data)
rely on modeling and prediction accuracy. This goal is generally
achieved by using a feature set that can capture the variability
between and within subjects. On the other hand, prediction tasks
face a trade-off between a more accurate whole brain model
with no regional specificity vs. a model with lower accuracy
and increased spatial resolution (Cole and Franke, 2017; Franke
and Gaser, 2019). This limitation also results in a more indirect
relationship between delta age and other phenotypes without
a direct mechanistic and biological model. Nonetheless, the
difference between brain age and chronological age is associated
with cognitive decline (Gaser et al., 2013), predisposition to
neuropsychiatric and neurodegenerative disorders (Kaufmann
et al., 2019), and mortality (Cole et al., 2018). While evidence
supports the application of delta age as a valuable measure to
study aging in health and disease, it has been criticized due to its
reliance on prediction accuracy (i.e., more accurate models result
in lower delta values) (Cole and Franke, 2017).

The results of both association studies and delta estimation
studies are impacted by processing steps such as data
normalization, spatial resolution, and parcellation level (i.e.,
size of the parcels) of the analysis. Most association studies use
smoothing to (i) normalize the distributions of cortical thickness
across subjects, (ii) minimize registration and anatomical
misalignment across subjects, (iii) reduce measurement noise,
and (iv) increase statistical power (Worsley et al., 1999; Lerch
and Evans, 2005; Lerch et al., 2006; Zhao et al., 2013). These
advantages are gained at the cost of losing individual variability
and spatial resolution. In fact, smoothing has been studied and
optimized for best performance in association studies, using
simulation as well as in real datasets. The smoothing level has
been proposed as a dimension within the parameter space in
the association analysis that needs to be searched for the given
statistical contrast (Lerch and Evans, 2005; Zhao et al., 2013).

Brain age prediction studies have been conducted with
various levels of data smoothing. Moreover, these studies rely on
various dimension reduction techniques, brain parcellations, or a
combination of the two approaches for feature extraction (Franke
and Gaser, 2019; Smith et al., 2019). The optimal parcellation for
a given task is an open research topic and it can vary between
studies (Gorgolewski et al., 2016; Eickhoff et al., 2018; Salehi
et al., 2020). While some studies have predicted brain age with
multiple parcellation resolutions (Khundrakpam et al., 2015;

Lewis J. D. et al., 2019), others have used a predetermined number
of parcels. However, the effect of smoothing and parcellation in
brain age prediction is not studied systematically. Furthermore,
these changes in prediction accuracy also affect the delta estimate
(i.e., the variable of interest), and it is not clear whether the delta
estimates are robust or sensitive toward these initial choices.

In this study, we used cortical thickness as the brain
measure of interest and examined the effect of smoothing
and parcellation level on both brain associations with age and
brain age prediction. Using different levels of parcellation and
smoothing, we projected brain measures onto a lower dimension
data representation space and investigated how this mapping
affects the derived associations and predictions. We further
examined the relationship between the two approaches. Finally,
we examined how delta age estimates alter based on different
smoothing and parcellation levels.

METHODS

Data
Data used in this study included subjects with T1-weighted MRI
data available from the second stage of the Cambridge Centre
for Ageing and Neuroscience (CamCAN, https://www.cam-can.
org/index.php?content=dataset) dataset, described in more detail
in Shafto et al. (2014) and Taylor et al. (2017). Subjects were
screened for neurological and psychiatric conditions and those
with such underlying disorders were excluded from the study.

MRI Acquisition
T1-weighted MRIs were acquired on a 3T Siemens TIM Trio,
with a 32 channel head-coil using a 3D magnetization-prepared
rapid gradient echo (MPRAGE) sequence (TR = 2,250ms, TE
= 2.99ms, TI = 900ms; FA = 9 deg; FOV = 256 × 240 ×

192mm; 1mm isotropic; GRAPPA = 2; TA = 4min 32 s). For
detailed acquisition parameters see: https://camcan-archive.mrc-
cbu.cam.ac.uk/dataaccess/pdfs/CAMCAN700_MR_params.pdf.

MRI Processing
We used CIVET 2.1.1 (http://www.bic.mni.mcgill.ca/
ServicesSoftware/CIVET, release December 2019), a fully
automated structural image analysis pipeline developed at the
Montreal Neurological Institute, to perform surface extraction
and cortical thickness estimation. Briefly, each subject’s T1-
weighted MRI is corrected for non-uniformity artifacts using the
N3 algorithm (N3 distance = 125mm) (Sled et al., 1998) and
linearly registered to stereotaxic MNI152 space (voxel resolution
= 0.5mm) (Collins et al., 1994). The brain is extracted and
undergoes tissue classification into three classes: white matter
(WM) tissue, gray matter (GM) tissue, and cerebrospinal fluid
(CSF) (Zijdenbos et al., 2002; Tohka et al., 2004). White and gray
matter surfaces are extracted using the marching cube algorithm
and constrained Laplacian-based automated segmentation with
proximities (CLASP) algorithms, respectively (MacDonald et al.,
2000; Kabani et al., 2001; Kim et al., 2005). Using the extracted
surfaces, cortical thickness is measured as the distance between
the white and gray cortical surfaces using the Laplace’s equation
(Jones et al., 2000). For blurring, a surface-based diffusion
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smoothing kernel (not to be confused with volumetric kernels) is
used, which generalizes Gaussian kernel smoothing and applies
it to the curved cortical surfaces (Chung et al., 2002). We applied
6 different smoothing levels with FWHM = 0, 5, 10, 20, 30,
and 40mm. Cortical thickness was measured across the cortical
surface for 81,924 vertices (40,962 vertices per hemisphere).
The results underwent visual inspection, specifically subjects
with major errors in extracted pial and gray–white surfaces
were excluded.

Cortical Parcellations
We used the Schaefer functional MRI parcellations (Schaefer
et al., 2018), a data-driven atlas based on the widely used seven
large-scale functional network parcellations by Thomas Yeo et al.
(2011). We used Schaefer parcellation with 100, 200, 400, and
1,000 regions (referred to as parcellation levels). All atlases were
registered to the MNI cortical surface template and used in
the MNI space (Lewis L. B. et al., 2019). Cortical thickness
measurements with different smoothing levels were averaged
across these parcellations. These parcellation based measures of
cortical thickness were used alongside vertex-wise measurements
to examine the interaction between the effect of brain parcellation
averaging and smoothing on statistical associations as well as
brain age prediction accuracies.

Cortical Resels and Effective Smoothing
In order to compare the findings between smoothing levels and
different parcellations, first all obtained cortical thickness were
projected to the brain surface. We used the number of resels
(i.e., resolution elements) as the measure of interest, since it takes
the statistical dependence of the brain map into consideration
and is independent of the analysis resolution (at least from
a theoretical standpoint) (Worsley et al., 1992, 1999; Worsley,
1996; Lerch et al., 2006). Using the statistical maps between aging
and cortical thickness, we estimated the number of resels for
each smoothing and parcellation level and used it to quantify
the similarity between these conditions. Resels are the number of
resolution elements approximated for a given search space [i.e.,
D(S2), S2= brain surface] and a given smoothness level FWHM.
While the effective FWHMmeasure varies across brain areas, we
defined the overall effective smoothness of the brain map as the
square root of the surface search space divided by the number
of resels estimated across brain areas (Hayasaka et al., 2004).
For the purpose of the current study, the main statistical maps
considered are the linear associations between cortical thickness
and the chronological age of the participants. All analysis were
performed using SurfStat toolbox https://www.math.mcgill.ca/
keith/surfstat/ (see Supplementary Methods for further details).

Statistical Methods
To examine the effect of the smoothing and parcellations,
mean (µ) and standard deviation (σ ) of cortical thickness
for each vertex/parcel was calculated across the population.
The coefficient of variation (CV), CV =

σ
µ
, was used as

the main measure of variability. The CV was averaged across
the 7 main cytoarchitectural brain regions (von Economo and
Koskinas, 1927) in order to examine the effect of parcellation and

smoothing across major cytoarchitectural regions and identify
any differential impact on a given brain region. Finally, to
measure the association between chronological age and cortical
thickness across lifespan, correlation coefficient (r) for each
vertex/region was calculated. Variance explained (r2) was used to
visualize the results.

Brain Age Prediction
We used principal component analysis (PCA), a singular
value decomposition based data factorization method, as the
dimensionality reduction approach for our predictive variables
(i.e., cortical thickness data) (Smith et al., 2019). This approach
allowed us to use the same number of features across parcellation
levels and smoothing kernels and therefore made it possible
to compare model performance across these conditions. Our
analysis for each condition included 1 to 100 first principal
components as features to study different levels of dimensionality
reduction. Hundred is used as the maximum possible number of
independent components for the lowest number of parcels (i.e.,
Schaefer 100). To predict brain age, we used linear regression
as the main prediction model, and to ensure generalizability
and avoid overfitting, we used 10-fold cross validation. Finally,
to increase robustness, results averaged over 100 repetitions
are reported, however as discussed these repetitions are not
necessary and had no impact on the conclusions. Root-mean-
squared error (RMSE) was used as the natural cost function
for linear regression models. Mean absolute error (MAE) and
correlation between chronological age and predicted age (two
other common error metrics in the age prediction literature;
Franke and Gaser, 2019; Franke et al., 2020) are also reported
in the Supplementary Materials. Finally, we have repeated
the same procedure using a support vector machine (SVM)
regression method with linear kernel as well as linear regression
models with lasso and ridge regularization (results reported in the
Supplementary Materials).

The Relationship Between Brain Age
Prediction and Age Related Brain
Association
To compare brain age association and age prediction, we used
the variance explained between dependent and independent
variables as the main measure of interest for each model. This
common measure enabled us to quantify the two analyses in
relation to each other. Furthermore, we examined how the
number of resels affects whole brain associations with age as well
as brain age prediction. To translate the age prediction error into
variance explained, we used the predictive features in a linear
model, calculating the variance explained for age using adjusted
R2. Finally, the overfitting bias between the variance explained
(i.e., adjusted R2) using this linear model and the cross validated
prediction (i.e., r2 between predicted age and chronological age)
is reported.

Delta Age
The main goal of brain age prediction studies is to calculate
the deviation from chronological age based on the population
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norm, also known as delta age. Here, we examined the effect of
smoothing and parcellation on delta age estimation:

Y=Xβ1−δ1 δ1=Xβ1−Y

where Y denotes chronological age, X denotes the neuroimaging
features, and δ1 denotes the difference between predicted and
chronological age. δ1 is a measure of brain state/health compared
to the population with similar chronological age, and is used to
study the predisposition to different brain disorders as well as
individual cognitive abilities in neuroimaging literature.

δ1 being residual of the predictive model is by definition:
(1) orthogonal to the predictive measures X, and in the case of
linear models (2) correlated with the output Y(i.e., chronological
age) (Le et al., 2018; Liang et al., 2019; Smith et al., 2019).
The first feature is unfavorable, since we are interested in brain
related discrepancy between chronological and predicted age.
The lack of association between δ1 and brain features predicting
age undermines the interpretability of δ1 in relation to brain
measures. The second property is also an adverse feature, since it
makes it difficult to distinguish the effect of the chronological age
from the additional biological delta age (due to their collinearity).
Therefore, in the current study, we followed the recommendation
of smith and colleagues (Smith et al., 2019) and used δ2, the
orthogonalized residuals against chronological age:

δ2=δ1−Yβ2

δ2 is then used as the main measure of interest for association
across conditions. The results for δ1 is provided in the
Supplementary Materials. Note that δ2 is also consistently
calculated using the same 10-fold cross validation with 100
repeats as δ1, however as discussed these repetitions are not
necessary and had no impact on the conclusions. All statistical
and prediction analyses were performed using MATLAB 2018a.

RESULTS

Cortical Thickness Aging, Resels, and
Practical Smoothness
The parcellations have a considerable impact on the number of
resels and function as region-based smoothing kernels applied
across the brain (Figure 1A). This change in the number of
resels affects the statistical power and the association as well as
prediction results. Across parcellation levels from 100 to 1,000,
the effect of the smaller smoothing kernels with FWHM0–10mm
is negligible, while applying larger kernels reduces the number
of resels dramatically. This equivalency plot also suggests that
at the vertex level, the smoothing kernels act as a non-specific
parcellation (from an anatomical perspective) across the brain.

Cortical Thickness Variability
While keeping the mean cortical thickness measure intact,
smoothing resulted in underestimation of the cortical thickness
in the gyri areas and overestimation in the sulci regions. The
results are similar for parcellations in the case of uniformly
sized parcels and balanced inclusion of gyri and sulci in each

parcel (both criteria are met in Schaefer parcellations). Cortical
thickness variability (i.e., CV) reduces significantly both as a
result of using greater smoothing and larger parcels (Figure 2A).

The association cortices have the lowest CV across resolutions
and parcellations. Both smoothing and parcellation result in
the highest decrease in CV in limbic and insular cortices,
while primary sensory and motor areas show the lowest
change (Figure 2B). The results are shown for 0mm smoothing
across parcellations. The greatest change occurs with increasing
the FWHM value from 10 to 20mm, as well as decreasing
the number of parcels from 400 to 200. The results for
different smoothing kernels at vertex level were also similar
(Supplementary Figure 1).

Statistical Association Between Cortical
Thickness and Aging
Figure 3A shows the association between age and cortical
thickness (using variance explained r2), calculated for each
voxel/parcel for all conditions, after Bonferroni correction
to account for the multiple comparisons at each level. The
correlation increases with greater smoothing and larger parcels.
Changing smoothing kernel size results in the highest variability
in the correlation distribution across the brain at vertex level
resolution (Figure 3B, top panel), whereas smoothing doesn’t
change the results within Schaefer 100 parcellations (Figure 3B,
bottom panel). The same pattern is evident between parcellation
levels with 0mm smoothing showing the highest variability, and
40mm smoothing with lowest variability across parcellations.
These findings are further explainedwith reference to the number
of resels and effective smoothing in section The Relationship
Between Prediction and Association. Finally, while present across
all brain areas, the variability between correlation maps is the
highest within association cortices, primary motor, and insular
cortex.

Brain Age Prediction Based on Cortical
Thickness
For age prediction, vertex-level data outperformed all
parcellation-based data using the same (or a smaller) number
of principal components as predictive features. The accuracy
was also higher for lower smoothing kernel size. However,
this effect was more pronounced for FWHMs >10mm, and
the results for FWHM values of 0, 5, and 10mm showed a
very similar performance in the vertex-level analysis. A similar
pattern was present within each parcellation level. The best
performing models (i.e., 0 and 5mm smoothed vertex-wise),
reach their minimum error using the first 20–30 principal
components as features in the prediction model (i.e., a sample
to feature ratio of 28–18). The pattern was similar for MAE
and correlation between predicted age and chronological age
(Supplementary Figures 2, 3).

The Relationship Between Prediction and
Association
As expected, there was a negative relationship between the
overall correlation between age and cortical thickness across
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FIGURE 1 | Number of resels and effective smoothing for cortical thickness association with age. (A) Number of resels estimated for different parcellations/smoothing

pairs. The lines show the interpolated iso-response values. (B) Effective smoothing based on the number of resels for each condition. The results show the initial

effective smoothing as a result of parcellation with additional smoothing with applied smoothing kernels.

FIGURE 2 | The coefficient of variation (CV) of cortical thickness across population. (A) CV projected across brain vertices for each parcellations/smoothing pair. (B)

CV shown at 0mm smoothing level for each cytoarchitectural region across parcellation resolutions.

brain regions (measured by median r2) and the number of resels
within each condition (Figure 5A). Interestingly, we found a
positive association between the number of resels and the overall
ability of cortical thickness features to explain the variance of
chronological age (as measured by adjusted R2 of the linear
model) shown in Figure 5B. These results suggest that the higher
number of resels results in lower correlation values, but since
resels are independent based on their relationship with age,

they can explain different modes of chronological age within
the population (hence the higher adjusted R2), whereas, in
conditions with lower resel numbers (i.e., higher smoothing and
larger parcels) the correlation values are higher but homogenous
across the brain and therefore explain a lower proportion of the
age variance.

Finally, there was a strong linear relationship between (i) the
overall variance explained (adjusted R2) using a linearmodel with
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FIGURE 3 | Cortical thickness variance explained by age (r2). (A) Cortical thickness variance explained by age (r2) for each vertex/parcel across

smoothing/parcellation conditions. (B) Histograms for correlation values for each parcellation conditions, grouped by smoothing level.

age as dependent variable and PCs as independent variable and
(ii) the predictive performance of the linear regression model,
with a bias due to overfitting in the linear model (Figure 5C).
Figure 5D shows the overfitting bias of the adjusted R2 compared
to the cross-validated prediction, as a function of the number of
features in the model. Taken together, these results explain the
opposing directions between correlation results and prediction
accuracy across parcellation and smoothing conditions.

The Effect of Smoothing and Parcellation
on the Estimation of Brain Age Delta
In this section, we present δ2 age prediction accuracy results
with 10-fold cross validation. The prediction accuracy based

on the modified δ2 is presented in Figure 6. One of the main
assumptions in age prediction studies is that delta age measured
in different studies using different processing parameters are
similar and can be interpreted as the same measure. We have
examined the relationship between the optimal δ2 across different
parcellations and smoothing kernels (Figure 7). These results
demonstrate the degree of sensitivity of δ2 as a function of
our choice for parcellation and smoothing kernel. While there
is high correlation for large smoothing kernels (20–40mm) as
well as lower number of parcels, these conditions have the
lowest prediction accuracies. The correlations between these
conditions and higher accuracy conditions (i.e., vertex-wise and
1,000 parcels with 0–10mm smoothing) are lower (r ∼ 0.55). See
the results for δ1 in the Supplementary Figure 4.
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FIGURE 4 | Root mean square error (RMSE) for age prediction as a function of number of principal components included as features in the predictive model. (A)

Results grouped together based on the smoothing level. (B) Results grouped together based on the parcellation resolution.

DISCUSSION

In this article, we compared the effect of different smoothing
and parcellation on associations between cortical thickness and
chronological age as well as brain age prediction accuracy.
We showed that the optimal choice for association analysis
might indeed undermine age prediction accuracy, and vice versa.
We further investigated this relationship and demonstrated the
underlying differences that lead to this trade-off between the
two analyses. Finally, we examined the effect of smoothing
and parcellation on delta age estimation and showed that the
initial smoothing and parcellation choices can change the delta
estimation which in turn will affect any downstream analysis.

We used brain association with age and brain age prediction
as our target analyses, since age is used as the main variable of
interest or at least a confounding variable in most neuroimaging
studies. We used cortical thickness as the main measure of
interest. Due to the wide availability of T1-weighted MRI in
research and clinical settings, cortical thickness is a suitable
measure which has been widely used to study brain anatomy
in general (Toga, 2015), and more specifically, brain aging and
predicting brain age (Wang and Pham, 2011; Groves et al.,
2012; Kandel et al., 2013; Liem et al., 2017). Finally, our results
are presented based on a sample size of N∼600 which is a
common sample size for publicly available datasets in the field
of neuroimaging.
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FIGURE 5 | The relationship between cortical thickness association with age vs. brain age prediction. (A) Median variance explained of cortical thickness across the

brain. The results are grouped based on the parcellation. Circles represent the something level within each parcellation. (B) Total variance explained of age by the first

30 principal components (PCs) of cortical thickness as independent variables. (C) The relationship between age prediction accuracy and total variance explained of

age. In the case of prediction, the first PCs are used as predictive features alongside cross validation to prevent overfitting. The total variance explained of age is the

same as depicted in (B). (D) The overfitting bias of linear model compared to the same model used with cross validation. As expected, a higher number of predictive

features results in higher level of overfitting bias.

Given the limited number of subjects in neuroimaging studies
compared to potential features (number of vertices/voxels),
most prediction studies apply dimension reduction as an
initial step. We used PCA for dimension reduction of the
cortical thickness data. Due to its simplicity and interpretability,
PCA has been widely used in the brain age prediction
literature. Furthermore, we employed linear regression with

cross-validation as our prediction model (Smith et al., 2019).
As expected, we observed an initial drop in the prediction
error, followed by a plateau/increase in the error as the
sample to feature ratio increases (Hastie et al., 2009). At each
parcellation level, the accuracy drops with increased smoothing,
and for each smoothing level, the accuracy decreases with
larger parcels/regions.
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FIGURE 6 | Root mean square error (RMSE) for Age prediction with δ2 as the error term. The x axis shows the number of principal components included as features.

The results are grouped based on the parcellation resolution.

FIGURE 7 | δ2 age prediction error. The correlation between delta age (as measured by δ2) across parcellation resolutions (x and y axis labels) and smoothing kernels

(represented by circle size).
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The age prediction results presented in the main manuscript
are based on linear regression analysis and PCA based features.
We have also examined the performance of support vector
machines with different kernel types as well as linear regression
using lasso and ridge regularization methods. All these methods
were applied on both raw cortical thickness values as well
as PCA based features as predictors. In all cases, the PCA
based features outperformed the same method using the raw
cortical thickness values. These results can be due to the
relatively small sample size and/or sample to feature ratio in
the current study. Furthermore, with the exception of linear
regression models with lasso regularization, the presented linear
regression method outperformed all other methods. In the
case of lasso, we optimized the method for the regularization
weight (i.e., lambda parameter). With this optimization, we
gained a 2% increase in accuracy. All the results based on the
explained models are reported as Supplementary Tables 1–4

and Supplementary Figures 6–8. Although the accuracy might
vary slightly between methods, the higher accuracy in smaller
smoothing kernels (i.e., 0 and 5mm smoothing) and smaller
parcels (i.e., vertex based level) is consistent across all
methods and the explained relationship between age- association
and prediction holds true across these prediction models.
Furthermore, the anatomical correlates of aging or the main
anatomical features contributing to the brain age prediction were
not the main target or in the scope of the current study. However,
the mapping of the first 100 PCs (used in the prediction analysis)
to the Schaeffer parcellation as well as whole brain vertices
of CIVET is provided in the Supplementary Tables 5, 6. They
can be used alongside the other Supplementary Tables to infer
variables of interest and their anatomical distribution.

While 10-fold cross validation is enough in our case, for
relatively small samples, the random assignment of data in
the cross-validation partitions can lead to differences in the
distribution of the training and test data in some of the folds,
leading to highly variable performances across some folds. To
exercise the best practice and ensure that the reported results
are robust, the 10-fold cross validation procedure was repeated
and the results were averaged so that such inhomogeneous
assignments (however unlikely) do not impact the reported
results. The randomized performances were very similar (mean
correlation between repetitions was between 0.97 and 0.99) and
the standard deviation of the repetitions is <1% of the reported
value across repetitions, suggesting that our results are indeed
robust and the repetitions were not necessary for the conclusions
in the manuscript.

While not exceptionally high, the brain age prediction
accuracy in this study is comparable to similar studies in the
field (see Franke et al., 2020; Table 3). Furthermore, the accuracy
of brain age prediction is dependent on two factors which can
significantly impact prediction performance (1) Age range and
variance: With the current population’s ages ranging between 18
and 88 years (mean age = 53.52, standard deviation = 18.07),
CamCAN dataset is one of the more challenging datasets for
prediction. (2) Distribution of age: Prediction models tend to
favor values close to the mean of the population. Therefore,
data with a Gaussian distribution (which is generally used in

other similar brain age prediction studies) will result in a much
better prediction performance compared to a rather uniform
distribution of age which is the case for the CamCAN dataset.

In terms of variability within the cytoarchitectural regions,
there is a distinction between the change in the insular cortex
compared to the rest of the regions. The main shift occurs
between 400 and 200 parcellation levels (where Insular cortex
parcels are combined from 23 to 15 parcels). As a result,
several regions (in both right and left hemispheres) with distinct
cortical thickness values are combined and averaged together,
resulting in a drop in variance and consequently coefficient
of variation across regions. This might be due to the unique
morphometric properties of insular regions as well as the limited
number of parcels in the insular cortex compared to other
cytoarchitectural regions. This misalignmentmight also be due to
the functional nature of the Schaefer cortical parcellation, which
doesn’t necessarily have a one-to-one to correspondence with the
structural variability in the same areas.

It is commonplace for neuroimaging studies to use smoothing
and parcellation as the first step of their analysis to achieve
higher statistical power with reducing the individual variability
within the data. Furthermore, with increased availability of
public neuroimaging datasets, it is commonplace to release a
preprocessed version of the data with a fixed smoothing level
and averaged based on a given parcellation. Many research
groups in the field use preprocessed and parcellation-based
data releases as the starting point for their analyses. In fact,
in many cases, the raw data is not publicly distributed, and
the preprocessed parcellated data is the only version of data
available. For example, some of the most influential public
datasets in the field of neuroimaging such as Adolescent Brain
Cognitive Development (ABCD, for details see https://nda.nih.
gov/abcd) Study and UKBiobank (for details see https://www.
ukbiobank.ac.uk) provide cortical thickness data using Desikan-
Killiany-Tourville parcellations (Klein and Tourville, 2012) with
62 regions (smoothing varies across studies) as one of their pre-
calculated measures. Our findings can help provide a guide to
interpret these available measures and shed light on the effect
of these preselected parameters/parcellation when applied in
aging studies.

Higher correlation values across brain regions (as a result
of smoothing) can be explained by increased signal to noise
ratio and reduced individual variability (Figure 2). The effect
of smoothing on brain related associations has previously
been studied (Lerch and Evans, 2005). Indeed, Zhao and
colleagues propose smoothing as a scaling dimension which
needs optimization for any given target analysis (Zhao et al.,
2013). The effect of parcellation on brain association has been
addressed in several studies. However, the optimal parcellation
level is still an open question dependent on the specific case of
interest (Eickhoff et al., 2018). Here, we showed that parcellation
level has a similar impact, by reducing variability, using both CV
(Figure 2) and number of resels (Figure 1).

Association/correlation analyses reflect the general patterns
across the population (suitable for studies that investigate
population specific trends), whereas prediction analyses aim to
determine the likely value of a certain measure of interest at
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the individual level (suitable for diagnosis/prognosis purposes).
Association analyses in general benefit from averaging, since it
lowers the levels of noise and improves the obtained correlations,
allowing the analysis to draw out the overall trends of the
population. In contrast, prediction is inherently a much more
challenging task, since it aims to provide accurate estimates
at the individual level. Averaging methods decrease individual
variability and differences, preventing the prediction models
from accurately capturing the individual variabilities.

Resel numbers are statistical constructs based on the
association analysis, while at the same time informing our
interpretation of prediction analysis. As such resels don’t have
any inherent biological interpretation. Even within the same
dataset and using the same metrics, the number of resels will
differ between different statistical analyses (e.g., the number of
resels will change if we use fluid intelligence or working memory
measures instead of age) since it is a construct that evaluates the
number of resolution elements by considering the dependency
across regions/vertices with regards to a certain variable within
an association or statistical contrast analysis over the region of
interest (in our case entire brain surface). A higher number of
resels reflects a higher number of independent features (with
regards to age), which in turn captures the individual variability
across the population and increases prediction accuracy (as
confirmed by our findings presented in Figure 5). However, this
higher level of individual variability represented in the features
will result in lower correlation values across the brain (also shown
in our results in Figure 5).

In neuroimaging, smoothing and parcellations are generally
studied separately. In this study, we used a unified metric to
directly compare the effect of smoothing and parcellation. Using
resel numbers and variance explained in the model, we have
calculated commonmeasures for both association and prediction
results. Our results show that with increased smoothing and
larger parcels (i.e., lower number of resels), cortical thickness
variability reduces. This will remove inter-individual differences
across brain regions and result in higher associations between
cortical thickness and aging (Figure 5A). However, while this
improves the regional correlation with age, most of this general
trend can be captured in a few PCs (mainly the first component)
and the rest of the PCs do not explain the remaining variance
of age. On the other hand, this relationship is reversed in the
conditions with higher resel numbers (i.e., lower smoothing
and higher spatial resolutions). While in these cases higher
regional variability results in lower correlation with age, the age
related associations capture different portions of age variance
in different PCs and overall they have a higher adjusted R2

(Figure 5B). There was a consistent bias in the adjusted R2

across conditions (Figures 5C,D), however, the effects remained
similar after removing the overfitting with cross-validation.
Altogether, these analyses explain the seeming opposite direction
of correlation values and prediction accuracies for different
smoothing/parcellation levels in section Statistical Association
Between Cortical Thickness and Aging and Brain Age Prediction
Based on Cortical Thickness.

One should also consider that while the objective function in
linear regression and its variants is based on RMSE (shown in

Figure 4), considering the interdependence between the features,
there is a close linear relationship between adjusted R2 and
the prediction accuracy based on the RMSE. Furthermore, our
conclusions were independent of the use of RMSE and R2 as
shown in Supplementary Figure 3. With these considerations,
without loss of generality, we have used r2 from correlation
analysis and adjusted R2 from the linear regression model
alongside the resel numbers (as shown in Figure 5) to study the
relationship between the association and prediction analysis.

While delta age in itself is not the target of the current study,
it is important in so far as it is the main measure derived from
age prediction studies. The discrepancy between predicted age
and chronological age (i.e., delta age) is used to study other
phenotypes (either demographic, biological, or clinical) (Cole
and Franke, 2017). Based on this definition, subjects with higher
delta age are assumed to have accelerated aging (i.e., their brain is
similar to brains of older individuals). Several studies have found
relationships between delta age and brain disorders including but
not limited to traumatic brain injury, schizophrenia, epilepsy,
mild cognitive impairment, and Alzheimer’s disease. (See Cole
and Franke, 2017; Franke and Gaser, 2019; Franke et al., 2020
for a complete review of the topic). A recent study using 45,615
subjects simultaneously investigated the relationship between
delta age and 10 different brain disorders and found that
subjects with Schizophrenia, Multiple Sclerosis, Mild cognitive
impairment, and dementia show higher delta age compared to
the controls (Kaufmann et al., 2019). The increase in the studies
of brain age emphasizes that not only a better understanding
of the biological nature of delta age is needed, but also a
systematic study of the effect of analytical and computational
methods used to obtain delta age is necessary. However, the effect
of the preprocessing condition on delta age estimation is not
studied. Here we have examined the effect of parcellation and
smoothing levels as an important factor that can change delta age
estimation and consequently the aforementioned relationships
with other measures. In the current manuscript, we found a
range of associations (0.5–1) between δ2s obtained in different
conditions. These results suggest not only that each study needs
to optimize their choice of the smoothing and parcellation level,
but also when interpreting results from different studies in the
field, these parameters should be considered.

One of the main limitations of the current study is the
number of subjects (N∼600), particularly given that their age
spans across 70 years. This leads to overfitting as the number of
features increase. In fact, for vertex-wise prediction (with 0mm
smoothing), the first 30 PCs only explain 20% of the variability
in the data. This number is around 40% for 10mm smoothing.
In comparison, the first 30 PCs for 100 parcels explain 80 and
90% of the variance of the cortical thickness data for 0mm and
40mm smoothing levels, respectively (Supplementary Figure 5).
Given the higher performance of the vertex-wise PCs at 0–10mm
smoothing, it is likely that with a larger sample size and increased
sample to feature ratio, the accuracy can be further improved.
It should be noted that in each case the variance explained
corresponds to the total variability for the corresponding
smoothing and parcellation condition. Another limitation in
the current study is the use of functionally driven Schaefer
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parcellations. While this does not automatically suggest a
disadvantage, multi-resolution anatomically driven parcellations
have the theoretical advantage of a more relevant initial feature
space for cortical thickness studies. Finally, CamCAN data used
in our study is cross-sectional. This potentially decreases the
detection power of our study, since we can only estimate the
effect of time between subjects with individual variability as part
of the measurement, whereas a longitudinal dataset can decrease
variability by estimating the effect of aging within subjects.

Traditionally, neuroimaging studies have targeted brain
related associations with a given phenotype/symptom or the
statistical differences between different groups for a given brain
region, followed up with the association of these differences
with a given biological or behavioral variable of interest. More
recently, there has been an ongoing conversation in the field
toward prediction as an alternative approach. Along the same
line, the field of brain aging, has pursued age related associations
as well as age prediction. The relationship between the two
approaches is often taken for granted (since in ideal settings, i.e.,
large sample size and low inter-individual variability or noise
levels, the results would be equivalent) and ignored in practice.
In this study, we have directly addressed both age association
and prediction as a function of smoothing and parcellation levels.
Within our sample size, we found an inverse relationship between
regional age related associations and brain age prediction
accuracy as a function of smoothing and parcellation level,
highlighting the importance of the parameter selection based on
the goal of the study.
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