

FIG S1 Identification of the cell death-inducing activities of 67 candidate effectors in *Nicotiana benthamiana*. The cell death inducing activity of 67 candidate effectors in 4-week-old *N. benthamiana* leaves was detected at 7 days after infiltration with *Agrobacterium tumefaciens* carrying the indicated genes. The green fluorescent protein (GFP) and BAX (Bcl-2-associated X) were used as the negative and positive controls, respectively.

FIG S2 Validation of secretory function of the putative N-terminal signal peptides in VdCE11 using the yeast invertase secretion assay. (A) Yeast strains YTK12 transformed with indicated constructs were cultured on YPRAA and CMD-W media. (B) Confirmation of the secretory function of VdCE11 signal peptide by TTC chromogenic reaction. The secreted effector Avr1b from oomycetes was regarded as positive controls.

FIG S3 Identification of Hce2 domain in *Verticillium dahliae* XJ592 genome. (A) Schematic diagrams of five Hce2 domain-containing proteins identified from *V. dahliae*. The yellow colour shows the position of the predicted signal peptides, and red colour indicates the Hce2 domain. (B) Phylogenetic analysis of Hce2 domain-containing proteins in *Verticillium* spp. (C) Transient expression of five Hce2 domain-containing proteins on the leaves of *Nicotiana benthamiana*. The green fluorescent protein (GFP) and BAX (Bcl-2-associated X) were used as the negative and positive controls, respectively. Western blot showed the expression of five Hce2 domain-containing proteins.

FIG S4 Expression of VdCE11 was induced by cotton or its root extract. (A) Relative expression of *VdCE11* in cotton plants (susceptible cultivar *Gossypium hirsutum* cv. Junmian 1) inoculated by *Verticillium dahliae* wild type strain XJ592 at 0, 12, 24, 48, 72, 96 and 120 hours post inoculation. (B) Relative expression of *VdCE11* in XJ592 at 48 h after being induced by cotton's root extract. The data shown represents the mean across three independent experiments. Different letters represent significant differences (p < 0.05), according to Student's *t*-test. Bars indicate SE.

FIG S5 Knockout of *VdCE11* by targeted gene replacement and gene complementation. (A) Schematic description of *VdCE11* locus before and after homologous recombination in wild type strain XJ592. Orientation of the target gene and HPT are indicated by black arrows, respectively. Upstream (5') and downstream (3') flanks of target gene are shown with light grey frames. (B) PCR confirmation of $\Delta VdCE11$ knockout mutants and complementary mutants. (C) Radial growth of XJ592, $\Delta VdCE11$ knockout mutants and complementary mutants on different agar plates. Representative cultures at 10 days post incubation were shown.

FIG S6 Signal peptide is not required for VdCE11-induced cell death. (A) *Nicotiana benthamiana* leaves were infiltrated with *Agrobacterium tumefaciens* carrying VdCE11, VdCE11^{Δ sp}, the positive control BAX, and the green fluorescent protein (GFP) control. Photographs of *N. benthamiana* leaves were taken at 7 days post infiltration. (B) Western blotting (WB) analysis of transient expression of VdCE11 and VdCE11^{Δ sp} fused to the GFP-tag in *N. benthamiana* leaves 48 hours after infiltration.

FIG S7 Detection of protein expression in yeast strain Y2HGold by western blot. pGBKT7-VdCE11 and pGADT7-T-GhAP1/AtAP1 were detected by the anti-MYC and anti-HA antibodies, respectively. Yeast transformed with pGBKT7-53 and pGADT7-T was used as the positive control, while Yeast transformed with pGBKT7-Lam and pGADT7-T as the negative control.

FIG S8 Subcellular localization of GhAP1 and GhAP1^{Δ sp} in *Nicotiana benthamiana* epidermal cells. (A) Confocal microscopy imaging of *N. benthamiana* leaves with transiently expressing red fluorescent protein (RFP)-tagged GhAP1, GhAP1 without signal peptide (GhAP1^{Δ sp}), and RFP control. Pictures were taken 72 hours post agroinfiltration. Bars = 20 µm. (B) Confocal microscopy imaging of *N. benthamiana* leaves with transiently co-expressing VdCE11 and GhAP1, VdCE11^{Δ sp} and GhAP1^{Δ sp}, or GFP and RFP control. Pictures were taken 72 hours post agroinfiltration. Bars = 20 µm.

FIG S9 Expression pattern of *GhAP1* in response to *Verticillium dahliae* infection was analysed by qRT-PCR in the susceptible cultivar *Gossypium hirsutum* cv. Junmian 1. The data shown represents the mean across three independent experiments. Different letters represent significant differences (p < 0.05), according to Duncan's multiple comparison. Bars indicate SE.

FIG S10 Verification of VIGS silencing system and detection of silencing efficiency of *GhAP1*. (A) Photobleaching phenotype of cotton at 2 weeks post silence of *GhCLA1*. (B) Gene expression of *GhAP1* in TRV:00 and TRV:*GhAP1* plants at 2 weeks post agroinfiltration. The data shown represents the mean across three independent experiments. Different letters represent significant differences (p < 0.05), according to Student's *t*-test. Bars indicate SE.

FIG S11 VdCE11 interacts with AtAP1 in *Arabidopsis*. (A) Yeast two-hybrid (Y2H) analysis of the interaction between VdCE11 and AtAP1. Double dropout (DDO, SD/-Trp/-Leu,) triple dropout (TDO, SD/-Trp/-Leu/-Ade) and quadruple dropout (QDO, SD/-Trp/-Leu/-Ade/-His) were used as non-selective and selective media, respectively. pGBKT7-53 and pGADT7-T was used as the positive control, while pGBKT7-Lam and pGADT7-T the negative control. (B) Bimolecular fluorescence complementation (BiFC) analysis of the interaction between VdCE11 and AtAP1. VdCE11-YFP^C and AtAP1-YFP^N were transiently co-expressed in *Nicotiana benthamiana*. Bars = 20 µm.

				-	
Gene ID	Gene name	Probability	Gene ID	Gene name	Probability
VD592_112	VdCE1	0.819	VD592_5128	VdCE35	0.767
VD592_435	VdCE2	0.620	VD592_5180	VdCE36	0.704
VD592_617	VdCE3	0.656	VD592_5852	VdCE37	0.920
VD592_793	VdCE4	0.681	VD592_5853	VdCE38	0.810
VD592_832	VdCE5	0.829	VD592_5991	VdCE39	0.702
VD592_850	VdCE6	0.774	VD592_6001	VdCE40	0.767
VD592_871	VdCE7	0.808	VD592_6181	VdCE41	0.715
VD592_905	VdCE8	0.705	VD592_6574	VdCE42	0.618
VD592_951	VdCE9	0.632	VD592_6770	VdCE43	0.808
VD592_1144	VdCE10	0.907	VD592_6789	VdCE44	0.615
VD592_1125	VdCE11	0.631	VD592_7012	VdCE45	0.683
VD592_1205	VdCE12	0.644	VD592_7091	VdCE46	0.701
VD592_1321	VdCE13	0.720	VD592_7413	VdCE47	0.659
VD592_1489	VdCE14	0.874	VD592_7797	VdCE48	0.948
VD592_1945	VdCE15	0.629	VD592_7812	VdCE49	0.948
VD592_2054	VdCE16	0.759	VD592_7905	VdCE50	0.839
VD592_2243	VdCE17	0.652	VD592_7786	VdCE51	0.660
VD592_2249	VdCE18	0.729	VD592_7913	VdCE52	0.888
VD592_2881	VdCE19	0.795	VD592_7927	VdCE53	0.704
VD592_3198	VdCE20	0.736	VD592_7964	VdCE54	0.852
VD592_3247	VdCE21	0.686	VD592_8212	VdCE55	0.678
VD592_3354	VdCE22	0.922	VD592_8250	VdCE56	0.766
VD592_3368	VdCE23	0.911	VD592_8342	VdCE57	0.858
VD592_3587	VdCE24	0.697	VD592_8389	VdCE58	0.916
VD592_3650	VdCE25	0.614	VD592_8400	VdCE59	0.693
VD592_3690	VdCE26	0.615	VD592_8403	VdCE60	0.835
VD592_4001	VdCE27	0.773	VD592_8663	VdCE61	0.905
VD592_4010	VdCE28	0.652	VD592_9068	VdCE62	0.715
VD592_4254	VdCE29	0.708	VD592_9472	VdCE63	0.782
VD592_4328	VdCE30	0.799	VD592_9829	VdCE64	0.714
VD592_4427	VdCE31	0.766	VD592_9935	VdCE65	0.874
VD592_4923	VdCE32	0.914	VD592_10247	VdCE66	0.860
VD592_5095	VdCE33	0.710	VD592_4968	VdCE67	0.854
VD592 5106	VdCE34	0.728			

 Table S1
 Candidate effectors predicted by bioinformatics analysis.

Note: Software Python 3.7 was used to screen for proteins less than or equal to 300 aa.

Table S2The sequences of Hce2 domain-containing proteins in Verticillium dahliae

XJ592.

Gene ID	Protein sequence
VdCE11 (VD592_1125)	MFAHALLALTLGASSFATASALPPQVPDGDVVPLPASVDVNSVDLHN
	FTASDGNTYTVWVAKMQSPEDVQPTGANDDSNLVRRWQWEHWPN
	GVDACGAASFRDETSNGPPLTDHCICVRDYARDQLRGRWAFGRDDK
	PNNGWFNLVGCGECGFRVYTDNFFGAFVGDTDVRDLSTDSINRYNR
	GGRVVRVGTWVAATGQSSPRFIGVSSAK
	MLKKLLVGLLVVHTWAFSVQHPALSPGHAKDTVENSDSTKINRSVD
	DPTTLSFRISNGSSIIITVPALATTEDGDHFTVEKANEAITHCGGSVYD
	SVHTSTDSPLVSDCKALLEYFDAEDRRWFLDPAEDYPKLFTLASTGT
	CAVKALVYDKTYIGNGDGAAILRRAFDLGSSVVDGRIEARGNKYCD
VD502 44(4	ECFQDCDGFRTQTPAQWQVEDPQKPDPNAEEESEVEDWGIKGKNG
VD392_4404	NDTAPDNSARSIVSDKAKLLGTREDHTNWMEHVLKTDDGKEVTFQ
	VNAAVMRSEMVPGDGGAESNDRVTYVTTEKSSIRCHPITAQKQTKD
	LLALTDDCRELVSVLAHSAWHGYWLFSHDDVQWCHKGFGTAIIQLG
	TCVFSACPVARIGMGNEDVKRFIQSGIDKVAGGENMRVTGEGGCEL
	ENKRDWKFETEWMVFAKASPVQV
	MARRTFNVLALIALLLTACSPVLSAALPACNPPIPNTTCEALKMSSGD
	PKPLYLSTTFEKTIDASPAGQHAPNRTTTTPCPSLLCDAASAIFSGKST
VD592_6197	DPSAPETADCALLKTWAAGRAATGCSPRQGGWGWTPLVATGTCAVV
	ARAEGAFAIGTEDVADLLGTSIRDYGMGDRVEVLGVMPCAEARGFA
	AGGGEKGRTIGMEWWVVRPDMMESLGGGKYR
	MRSAVHLLLGVVSALALLASASPINTSLNPSTLARRALDYQHPVYTA
VD592_4322	GGRFEYCGEVAVTPTPDTSSAAPLAADCSLIADDVGARQGAYTFAAA
	DFKHDGWAWVAAKGTCTFAARFDTAAARTKLLVGTNDVRFYISSSS
	WLAKNGRLGVKAGVTCFNGEGQKGITWGLIRTPKPV
VD592_9012	MSPLMTLVAILALLPQGQGLVIPGFLNLTSLAPVLTQVFTILPYPKHT
	PATPMQPRDFTILPYPLHRTTSKTTTFMTQTTPTSQGATATATATATK
	TPTPPFTAAPRQAVDVDPTTPISWHEASHRNNISDCLALAAALRAKK
	GYFVARGFTDTTTLVGLATEGSCIFGVRPATPSHFHEVIGALDAAAFL
	DDAVRDLSSPAGGATAGDGS

 Table S3
 The sequences of aspartic protease 1 (AP1) protein in Gossypium hirsutum

and Arabia	lopsis	thaliana.	
------------	--------	-----------	--

Protein name	Protein sequences
	MGTTVKGVVLSLFISSLLCSVVLASNDGLVRIGLKKMKLDPNNRLA
	AQLDSKDREALRASIAKKYRFRNDLGDSEETDIVALKNYMDAQYYG
	EIGIGTPPQKFTVIFDTGSSNLWVPSTKCYFSVACFFHSKYKSSESSTY
	KKNGKSASIQYGTGAISGFFSNDSVKVGNLVAKDQEFIEATKEPGVT
	FIAAKFDGILGLGFKEISVGDAVPVWYNMVEQGLIKDQVFSFWLNR
Ch A D1	NVGEEMGGEIVFGGIDPNHYKGKHTYVPITQKGYWQFDMGDVLIG
GIIAFI	DKPTGYCAGGCAAIADSGTSLLAGPTTVITMINQAIGASGVASQECK
	AVVQQYGQTIIDLLVSQAEPMKICSRIGLCAFDGSHGVSMGIENVVD
	ESNGKSSGILHSAMCPACEMAVVWMQNQLIENQTQDRILDYANQL
	CDRVPNPMGESTVDCGSLSSMPTISFTIGGKAFDLTPEEYILKVGEG
	AEAQCISGFTALDVPPPRGPLWILGDAFMGRYHTVFDFGKLRVGFA
	EAA
	MKIYSRTVAVSLIVSFLLCFSAFAERNDGTFRVGLKKLKLDSKNRLA
	ARVESKQEKPLRAYRLGDSGDADVVVLKNYLDAQYYGEIAIGTPPQ
	KFTVVFDTGSSNLWVPSSKCYFSLACLLHPKYKSSRSSTYEKNGKAA
	AIHYGTGAIAGFFSNDAVTVGDLVVKDQEFIEATKEPGITFVVAKFD
	GILGLGFQEISVGKAAPVWYNMLKQGLIKEPVFSFWLNRNADEEEG
AtAP1	GELVFGGVDPNHFKGKHTYVPVTQKGYWQFDMGDVLIGGAPTGF
	CESGCSAIADSGTSLLAGPTTIITMINHAIGAAGVVSQQCKTVVDQY
	GQTILDLLLSETQPKKICSQIGLCTFDGTRGVSMGIESVVDKENAKL
	SNGVGDAACSACEMAVVWIQSQLRQNMTQERILNYVNELCERLPSP
	MGESAVDCAQLSTMPTVSLTIGGKVFDLAPEEYVLKVGEGPVAQCI
	SGFIALDVAPPRGPLWILGDVFMGKYHTVFDFGNEQVGFAEAA

Primer name	Sequences (5'-3')
pBin-VdCE11-F	CATTTGGAGAGGACCTCGAGATGTTTGCCCATGCACTCTTG
pBin-VdCE11 ^{∆SP} -F	CATTTGGAGAGGACCTCGAGATGCTACCACCCCAGGTGCCG
pBin-VdCE11-R	CTTTTGCTTTAAAAGAAATGATTTTTTGGCGGAAGACACTCCAA
pBin-4464-F	CATTTGGAGAGGACCTCGAGATGCTCAAGAAGCTTCTTGTCG
pBin-4464-R	CTTTTGCTTTAAAAGAAATGATTTGACCTGGACAGGAGAAGCCT
pBin-9012-F	CATTTGGAGAGGACCTCGAGATGTCTCCCCTCATGACGCT
pBin-9012-R	CTTTTGCTTTAAAAGAAATGATTTCGACCCATCCCCGGCCGTC
pBin-4322-F	CATTTGGAGAGGACCTCGAGATGCGCTCCGCCGTCCAC
pBin-4322-R	CTTTTGCTTTAAAAGAAATGATTTAACGGGTTTAGGCGTCCTG
pBin-6197-F	CATTTGGAGAGGACCTCGAGATGGCCCGCCGCACCTTCAA
pBin-6197-R	CTTTTGCTTTAAAAGAAATGATTTTCGATACTTCCCCCCCC
pCambia1302-VdCE11-GFP-F	CGACGGTACCGCGGGCCCATGTTTGCCCATGCACTCTTG
pCambia1302-VdCE11-GFP-R	TTCCAGGATCCCGGGCCCTTTGGCGGAAGACACTCCAA
pCambia1302-VdCE11 ^{∆SP} -GFP-F	CGACGGTACCGCGGGCCCCTACCACCCCAGGTGCCG
pSUC2-SP ^{VdCE11} -F	CGGAATTTTAATTAAGAATTCATGTTTGCCCATGCACTCTT
pSUC2-SP ^{VdCE11} -R	CACTATAGGGAGAACCTCGAGTGCCGAAGCTGTCGCAAAAG
VdCE11up-F	GAGCTCGCTGAGGGTTTAATTAACCGACAACATCAACTTCGGC
VdCE11up-R	ATGGGCCCGCTGAGGACTTAATTAATTGAAGGGGTGCGTATGGTC
VdCE11down-F	ACTAGTGCTGAGGCATTAATTAAATGGTTTCTCGGACTGCGTT
VdCE11down-R	AAGCTTGCTGAGGTCTTAATTAATGTTCTTCGGTGCCCTCTTC
VdCE11uu-F	TCGTGCCTGTGCCATTTGC
VdCE11uu-R	CCGAGATCCTGATCA
VdCE11uu-F	GTCCATCCCAAGCCCATGAT
VdCE11dd-R	GGTACGCCATACTGACGGAG
BK-VdCE11-F	ATGGCCATGGAGGCCGAATTCACCCTACCACCCCAGGTGCCG
BK-VdCE11-R	CCGCTGCAGGTCGACGGATCCCTATTTGGCGGAAGACACTCC
Psul-VdCE11-F	CGGCCAGTGCCAAGCTTACGTTGAGGTTAGAGCTCGA
Psul-VdCE11-R	GCAGCTTCTGCGAATTCAACGCAGTCCGAGAAACCAT
Psul-F	ACGTCAGAAGCCGACTGC
Psul-R	TGAACTTGTGGCCGTTTACG
VdCE11-Nluc-F	GAGCTCGGTACCTCCGGATCCATGCTACCACCCCAGGTGCCG
VdCE11-Nluc-R	CAGTCGACGCGTTGTGGATCCTTTGGCGGAAGACACTCCAA
GhAP1-Cluc-F	CGGGGCGGTACCTCCGGATCCATGTCCAATGATGGGCTGGTTAGA
GhAP1-Cluc-R	CAGTCGACGCGTTGTGGATCCTCATGCTGCTTCTGCAAACCCAA
GhAP1-qPCRF	TTCATAGTGCTATGTGCCCTGC
GhAP1-qPCRR	TGGGTTTGGCACCCGATC
GhAP1-NYFP-F	TCTGAGGAGGATCTTCCTAGGATGTCCAATGATGGGCTGGTTAGA

Table S4Primers used in this study.

GhAP1-NYFP-R	GGGAGGCCTGGATCGACTAGTTGCTGCTTCTGCAAACCCAA
VdCE11-CYFP-F	CTAGTCGACTCTAGCCTCGAGATGCTACCACCCCAGGTGCCG
VdCE11-CYFP-R	ATCGTATGGGTACATCCTAGGTTTGGCGGAAGACACTCCAA
AD-GhAP1-F	GCCATGGAGGCCAGTGAATTCACCATGGGAACCACGGTCAAAGG
AD-GhAP1-R	ATGCCCACCCGGGTGGAATTCTTATGCTGCTTCTGCAAACCC
VdCE11-qPCR-F	ACTCTTGGCGTTGACTCTCG
VdCE11-qPCR-R	GGACAAGGTTGCTGTCGTCA
VdEF1-α-F	TGAGTTCGAGGCTGGTATCT
VdEF1-α-R	CACTTGGTGGTGTCCATCTT
NbEF1a-F	TGAGTTCGAGGCTGGTATCT
NbEF1a-R	CACTTGGTGGTGTCCATCTT
qPCR-HSR203-F	GGCAGTGGAGGAGCTTAAAT
qPCR-HSR203-R	GCTATGTCCCACTCCATTGTTA
qPCR-HIN1-F	ATCCTCGGAGTGATTGCATTAG
qPCR-HIN1-R	TGTTGTTGTGGTGGACAAATC
qPCR-PR1-F	GTGGGTCGATGAGAAACAGTAT
qPCR-PR1-R	GAACCCTAGCACATCCAACA
qPCR-PR4-F	GGCCAAGATTCCTGTGGTAGAT
qPCR-PR4-R	CACTGTTGTTTGAGTTCCTGTTCCT
qPCR-GLNb-F	GGCATCTGTAGGGATTGTTGT
qPCR-GLNb-R	GTCTCAATAGGTCCAGGCTTTC
qPCR-GRAS2-F	GCAAGGAGTACTGTGTCCATTA
qPCR-GRAS2-R	CCTTGCACCTCAAACTCCTAT
pCambia1302-RFP-GhAP1-F	CGACGGTACCGCGGGCCCATGGGAACCACGGTCAAAGG
pCambia1302-RFP-GhAP1 ^{ΔSP} -F	CGACGGTACCGCGGGCCCATGTCCAATGATGGGCTGGTTAGA
pCambia1302-RFP-GhAP1-R	ATCCAGGATCCCGGGCCCTGCTGCTTCTGCAAACCCAA
pgex-VdCE11-F	CCGCGTGGATCCCCGGAATTCATGCTACCACCCCAGGTGCCG
pgex-VdCE11-R	GATGCGGCCGCTCGAGTCGACCTATTTGGCGGAAGACACTCC
TRV-AP1-F	TGAGTAAGGTTACCGAATTCACTTGTTTGACGGGTAGTTTTGAC
TRV-AP1-R	GGAGGCCTTCTAGAGAATTCCCCATCATTGGATGCAAGTACT
TRV-GhCLA1-F	TGAGTAAGGTTACC <u>GAATTC</u> CCACAACATCGATGATTTAG
TRV-GhCLA1-R	GGAGGCCTTCTAGA <u>GAATTC</u> ATGATGAGTAGATTGCAC
GhSSU-F	AACTTAAAGGAATTGACGGAAG
GhSSU-R	GCATCACAGACCTGTTATTGCC
HPT-3F	TCTCCTTGCATGCACCATTCCTTG
HPT-5R	AAATTTTGTGCTCACCGCCTGGAC
AD-AtAP1-F	GCCATGGAGGCCAGTGAATTCACCATGAAGATATACTCTAGAACGGTTGCT
AD-AtAP1-R	ATGCCCACCCGGGTGGAATTCTTAGGCTGCCTCTGCAAACC
GhPR-1-F	GGCACAGAACTACGCTAATCAACG

GhPR-1-R	GCTTTACCCTCTCACTAACCCACAT
GhPR2-F	CCACCAGCAGCAGAAGTTATCG
GhPR2-R	TTCAAGGTTTGCACTCGGAAGA
GhPR3-F	ACTCCACAATCACCGAAGCCAT
GhPR3-R	GCATTCCAACCCTTACCACATTC
GhPR-4-F	TAGCCGTGTTCCAGCAGATTG
GhPR-4-R	TTTTGGCTTTTTCTCTTTATC
GhPR-5-F	GCCGTGATTCATACAGTTATCCTCA
GhPR-5-R	TTGGCTCTTACTTCCGACCATCT
GhPR-6-F	CTGGGTGTCCTGGGAAGAAC
GhPR-6-R	TTGTAGGGGGACGAACAACG
GhPR10-F	TTTTACACTGTTGGCGACTATGTGA
GhPR10-R	TTAGTTGCAGGCATCAGGGTTAG
AtAP1-NYFP-F	TCTGAGGAGGATCTTCCTAGGCGCAATGACGGGACCTTCAG
AtAP1-NYFP-R	GGGAGGCCTGGATCGACTAGTGGCTGCCTCTGCAAACCC
his-GhAP1-F	ATGGGTCGCGGATCCGAATTCATGTCCAATGATGGGCTGGTTAGA
his-GhAP1-R	TTGTCGACGGAGCTCGAATTCTTATGCTGCTTCTGCAAACCC
qNbCYP71D20-F	AAGGTCCACCGCACCATGTCCTTAGAG
qNbCYP71D20-R	AAGAATTCCTTGCCCCTTGAGTACTTGC
qNbPti5-F	CCTCCAAGTTTGAGCTCGGATAGT
qNbPti5-R	CCAAGAAATTCTCCATGCACTCTGTC
qNbWRKY7-F	CACAAGGGTACAAACAACAG
qNbWRKY7-R	GGTTGCATTTGGTTCATGTAAG
qNbWRKY8-F	AACAATGGTGCCAATAATGC
qNbWRKY8-R	TGCATATCCTGAGAAACCATT
qNbPR1a-F	CCGCCTTCCCTCAACTCAAC
qNbPR1a-R	GCACAACCAAGACGTACTGAG
AtUBC21-F	TCAAATGGACCGCTCTTATC
AtUBC21-R	CACAGACTGAAGCGTCCAAG
AtPR1-F	GGAGCTACGCAGAACAACTAAGA
AtPR1-R	CCCACGAGGATCATAGTTGCAACTGA
AtPR2-F	CGGTACATCAACGTTGGAA
AtPR2-R	GCGTAGTCTAGATGGATGTT
AtPR5-F	ТСТСТТССТССТСАТС
AtPR5-R	AAGCACCTGGAGTCAATT