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Abstract: 2,5-diketopiperazines (DKPs) are cyclic dipeptides ubiquitously found in nature. In partic-
ular, cyclo(Phe-Pro), cyclo(Leu-Pro), and cyclo(Val-Pro) are frequently detected in many microbial
cultures. Each of these DKPs has four possible stereoisomers due to the presence of two chirality
centers. However, absolute configurations of natural DKPs are often ambiguous due to the lack of
a simple, sensitive, and reproducible method for stereochemical assignment. This is an important
problem because stereochemistry is a key determinant of biological activity. Here, we report a syn-
thetic DKP library containing all stereoisomers of cyclo(Phe-Pro), cyclo(Leu-Pro), and cyclo(Val-Pro).
The library was subjected to spectroscopic characterization using mass spectrometry, NMR, and
electronic circular dichroism (ECD). It turned out that ECD can clearly differentiate DKP stereoiso-
mers. Thus, our ECD dataset can serve as a reference for unambiguous stereochemical assignment of
cyclo(Phe-Pro), cyclo(Leu-Pro), and cyclo(Val-Pro) samples from natural sources. The DKP library
was also subjected to a biological screening using assays for E. coli growth and biofilm formation,
which revealed distinct biological effects of cyclo(D-Phe-L-Pro).

Keywords: diketopiperazines; epimerization; mixed microbial culture; stereochemistry; electronic
circular dichroism; biofilms

1. Introduction

2,5-diketopiperazines (DKPs) are cyclic dipeptides isolated from various natural
sources [1]. Each DKP has four possible stereoisomers, except those containing glycine.
Since their chirality centers are on the rigid core framework [2], each stereoisomer projects
sidechains in unique spatial orientations, which could result in distinct biological effects.
In fact, DKPs are known for a wide variety of biological properties, including anti-biofilm,
antibiotic, antiviral, anticancer, and neuroprotective properties [3–5]. Characterization of
the relationship between DKP stereochemistry and biological effects, however, has been
hampered by the lack of a reliable method to determine the absolute configuration of
DKP samples.

At present, the standard methods for stereochemical assignment of DKPs are optical
rotation and Marfey’s method. However, these methods have some limitations, which
make them unsuitable for stereochemical characterization of DKPs from natural sources.
Optical rotation is subject to high variability depending on concentration and solvent [6].
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Furthermore, optical rotation typically requires a large amount (>10 mg) of purified sam-
ple [7], which is often difficult to secure from natural sources. On the other hand, Marfey’s
method [8] requires acid hydrolysis of DKP to generate amino acid constituents, which are
subsequently derivatized and subjected to HPLC analysis to determine stereochemistry.
Acid hydrolysis, however, is problematic because DKPs are prone to epimerization in both
acidic and basic environments [9]. The use of these methods has contributed to conflicting
stereochemical assignments of DKPs in the literature. For example, stereochemistry of
DKPs from the marine sponge Calyx CF. podatypa [10], which had been used as the ba-
sis for stereochemical assignments of DKPs from other sources [3,11], turned out to be
incorrect [12].

During our recent study on mixed microbial cultures (MMCs), which were derived
from microbiotas of plants and environmental samples [13], we analyzed our datasets
of liquid chromatography tandem mass spectrometry (LC/MS/MS) with GNPS (Global
Natural Products Social Molecular Networking), which is a web-based MS database,
to characterize metabolites in complex mixtures [14]. The GNPS analysis revealed a
series of DKPs, namely cyclo(Phe-Pro), cyclo(Leu-Pro), and cyclo(Val-Pro), in MMCs
(Supplementary Figure S1). The identification of these DKPs underscored the need for
a simple, sensitive, and reproducible method for the stereochemical assignment of these
DKPs. To address this need, we decided to explore the utility of electronic circular dichroic
(ECD) spectroscopy.

ECD has clear advantages over optical rotation and Marfey’s method. It requires
much less sample than optical rotation. In addition, unlike Marfey’s method, DKP samples
can be directly subjected to ECD measurements without acid hydrolysis. Although ECD
has been used for conformational analysis of some DKPs [15], it remains to be determined
whether ECD can differentiate all four stereoisomers of each DKP.

Here, we first present the synthesis of all stereoisomers of cyclo(Phe-Pro), cyclo(Leu-
Pro), and cyclo(Val-Pro), and spectroscopic characterization of synthesized compounds by
MS, NMR, UV, and ECD. The key question to be addressed in this study is whether the
resulting ECD spectral dataset can serve as a reference to unambiguously determine the
absolute configuration of unknown DKP samples. In addition, we also present our prelimi-
nary biological study of what may be called the “stereochemistry–activity relationship” of
DKPs using E. coli growth and biofilm assays.

2. Results
2.1. Synthesis of all Stereoisomers of Cyclo(Phe-Pro), Cyclo(Leu-Pro), and Cyclo(Val-Pro)

DKP stereoisomers were synthesized by using a scheme developed by Tullberg et al.
(Scheme 1) [16]. The crude product of each synthesis was purified by semi-preparative
HPLC and subjected to spectroscopic characterization by MS and NMR. Figure 1 shows
the library of 12 compounds synthesized for the ECD analysis and biological studies
(Figure 1). Table 1 shows the molar absorptivity (ε-value) of each stereoisomer in methanol
(spectroscopic grade), which can be used to quantify samples of cyclo(Phe-Pro), cyclo(Leu-
Pro), and cyclo(Val-Pro) purified from natural sources.
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Figure 1. Synthetic library of 2,5-diketopiperazines containing all possible stereoisomers of (a) cyclo(Phe-Pro) (1–4),
(b) cyclo(Leu-Pro) (5–8), and (c) cyclo(Val-Pro) (9–12).

Table 1. UV ε-values of DKP stereoisomers in methanol (spectroscopic grade).

Compounds ε-value (220 nm)

1, 4 3700
2, 3 4800
5, 8 1800
6, 7 1800

9, 12 1600
10, 11 1700

2.2. Differentiation of DKP Stereoisomers by ECD

In order to determine the ability of ECD to differentiate DKP stereoisomers, the
synthetic compounds were subjected to ECD measurements. Gratifyingly, the signal in
the 200–250 nm region was strong enough to produce an informative spectrum for each
DKP examined. As shown in Figure 2, all four stereoisomers of cyclo(Phe-Pro) were readily
differentiated by ECD, which revealed symmetrical spectra for each enantiomeric pair
(LL/DD and LD/DL). Likewise, stereoisomers of cyclo(Leu-Pro) and cyclo(Val-Pro) could
also be readily distinguished by ECD (Figures 3 and 4, respectively). It is noted that ECD
can be measured reproducibly at ~0.1 mg/mL, which enables microscale stereochemical
characterization of DKP samples.

2.3. Stereochemical Assignment of Cyclo(Phe-Pro) from Wheatgrass MMC

Having prepared the reference ECD spectra of cyclo(Phe-Pro), cyclo(Leu-Pro), and
cyclo(Val-Pro) stereoisomers, we decided to characterize the stereochemistry of DKPs
that were previously detected in MMCs by the GNPS analysis (Supplementary Figure
S1). A large-scale sample preparation was carried out from 30 L of wheatgrass MMC.
While we could not obtain much cyclo(Leu-Pro) and cyclo(Val-Pro), the amount of purified
cyclo(Phe-Pro) was sufficient (0.3 mg) for stereochemical analysis. MS and 1H NMR
indicated that the purified sample was either cyclo(L-Phe-L-Pro) (1) or cyclo(D-Phe-D-Pro)
(4). The subsequent ECD measurement unambiguously determined its stereochemistry as
cyclo(L-Phe-L-Pro) (1) (Figure 2, the pink spectrum).
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2.4. Stereochemistry–Activity Relationship of DKPs

While DKPs are known for their diverse biological effects [3–5], it is largely un-
known how their stereochemistry might impact their biological activity. Our library of
synthetic DKPs with defined stereochemistry creates an opportunity to characterize their
stereochemistry–activity relationship, which would ultimately enable us to understand
the structural basis of their diverse biological effects. As a first step toward this goal, we
examined the effects of DKP stereoisomers on E. coli growth and biofilm formation.

Figure 5 shows the growth and biofilm formation of E. coli treated with different DKP
stereoisomers. The effects of DKPs are normalized by a DMSO control. Since the effects of
DKPs on E. coli were overall modest, we examined 50 replicates for each stereoisomer and
focused our analysis on stereoisomers with the most prominent effects (Student’s t-test
p-value of 0.0001 or lower). The result of each stereoisomer is presented in both scatter
and box-and-whisker plots to show the distribution of 50 replicates. The study revealed
that cyclo(D-Phe-L-Pro) promotes both E. coli growth and biofilm formation significantly
(p-values = 1.3 × 10−6 and 9.3 × 10−5, respectively). Cyclo(D-Val-L-Pro) and Cyclo(D-Val-
D-Pro) also promoted E. coli growth (p = 3.0 × 10−5 and 3.0 × 10−7, respectively). On the
other hand, none of the cyclo(Leu-Pro) stereoisomers displayed a significant effect.
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3. Discussion

DKPs are ubiquitously found in microbial communities in humans, animals, plants,
and the environment. They are believed to play important roles in microbial communi-
cation [4,17–19]. From the standpoint of biosynthesis, it makes sense for microbes to use
DKPs as chemical messengers. The building blocks, i.e., amino acids, are readily available.
Permutations of amino acids make it possible to rapidly generate structurally diverse
DKPs. Some microbes are equipped with epimerases, which can further diversify their
structures. The diverse structures, in turn, translate into different biological effects, thereby
enabling microbes to fine-tune their messages. Thus, in order to understand chemical
communication mediated by DKPs, precise characterization of their structures, including
stereochemistry, is essential. At present, however, most studies on DKPs stop short of stere-
ochemical assignment. Since DKPs have been studied extensively for many decades [1,4,5],
there is the perception of DKPs as a “known” class of compounds, which might discourage
detailed structural characterization. Stereochemical characterization of DKPs, however, is
far from over. The literature is fraught with misinformation about their stereochemistry,
which has been perpetuated by the reports of incorrect stereochemical assignments and
repeated citations of those reports. The situation has also been exacerbated by the contin-
ued use of inadequate methods for stereochemical characterization. Clearly, there remains
much more work to be carried out before we understand the roles of DKP stereochemistry
in microbial communication.

The current study demonstrates the utility of ECD for stereochemical characteriza-
tion of cyclo(Phe-Pro), cyclo(Leu-Pro), and cyclo(Val-Pro), which are detected in various
microbial communities. Stereoisomers of these DKPs, 1–12, exhibit distinct ECD spectra
(Figures 3–5). As such, when a new sample of these DKPs, as determined by MS and
NMR1, is purified from a microbial community, its stereochemistry can be readily assigned
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by ECD measurement, followed by comparison with the reference spectra of 1–12. In fact,
we successfully determined the stereochemistry of cyclo(L-Phe-L-Pro) from wheatgrass
MMC with a sub-milligram quantity (0.3 mg) of the purified material. It is our expectation
that this ECD-based approach will facilitate the characterization of the occurrence of 1–12
in various microbial communities.

While the current study obtained reference ECD spectra by using synthetic DKPs, it is
also possible to obtain reference spectra through theoretical calculation [20]. The theoretical
approach is important, especially for DKPs that are not readily obtained by synthesis.
In fact, theoretical ECD has recently become an important approach for stereochemical
analysis of structurally complex DKPs from natural sources [21,22]. Another possible
alternative approach is the use of vibrational CD (VCD), which has become a powerful
method for determining absolute configuration of natural products [23]. Although VCD
requires more sample materials than ECD, VCD provides a wealth of structural information
associated with individual functional groups, which could be useful for differentiation of
complex DKP stereoisomers. In fact, VCD has been used for stereochemical assignment of
cyclic peptides, including DKP [24–26].

The synthesis of DKP stereoisomers, 1–12, has also created an opportunity to sys-
tematically study their stereochemistry–activity relationship using in vitro assays, such as
the biofilm assay. Although there have been reports of the biofilm modulation by DKPs,
they either only identified the constituent amino acids present without attending to stereo-
chemistry, or only looked at one stereoisomer without comparison to others [3,19,27–29].
The current study, on the other hand, is the first to screen all stereoisomers of cyclo(Phe-
Pro), cyclo(Leu-Pro), and cyclo(Val-Pro), which revealed the most pronounced effects of
cyclo(D-Phe-L-Pro) on both E. coli growth and biofilm formation. Cyclo(D-Val-L-Pro) and
cyclo(D-Val-D-Pro) also increased, albeit modestly, the E. coli growth. These findings are
reminiscent of a study by Fdhila et al. [3], which indicated the importance of at least
one D-amino acid in the DKP framework for the growth inhibition of Vibrio anguillarum.
Further studies with other assays are on-going to obtain a comprehensive stereochemistry–
activity relationship.

4. Materials and Methods
4.1. General Experimental Procedures

ECD spectra were obtained on an Applied Photophysics (Leatherhead, UK) Chiras-
can™ V100 Circular Dichroism Spectrophotometer with a 1 mm optical path quartz cuvette.
Spectra were obtained at 25 ◦C at a wavelength range from 190 to 300 nm at a concentration
of 0.1 mg/mL in methanol (spectroscopic grade). Ellipticity measurements were corrected
against a methanol background using the same cuvette. CD data were analyzed using the
Chirascan software. UV spectra were collected on a Beckman-Coulter (Miami, FL, USA)
DU® 800 UV/Visible Spectrophotometer with a 1 cm optical path length quartz cuvette.
Spectra were measured at room temperature at a wavelength range from 190 to 300 nm.
Molar absorptivity measurements were corrected against a methanol background using
the same cuvette. One- and two-dimensional NMR spectra were recorded on 600 MHz
Avance III, 500 MHz Avance DRX, and NEO-500 NMR spectrometers by Bruker (Carteret,
NJ, USA) using CDCl3 as the solvent. TMS was used as a reference. Positive ion MS spectra
were obtained using both an Agilent (Santa Clara, CA, USA) iFunnel 6550 Q-ToF LC/MS
system using m/z 120.0808 and 922.0098 as reference masses and an Agilent 6340 Ion Trap
with an Electron Transfer Dissociation LC/MS system. Collision energy for HRESI-MS/MS
settings was 35 eV. For column chromatography, silica gel (Sigma Aldrich 60 mesh) was
used. Unless otherwise stated, HPLC purifications were performed on a semi-preparative
HPLC column (Waters XBridge Prep C18 5 µM, 19 × 100 mm) connected to an Agilent
(Santa Clara, CA, USA) 1260 Infinity LC system. Pre-coated silica gel plates (Chemscene
HPTLC Silica Gel 60 F254) were used for thin-layer chromatography. The microwave used
for deprotection and cyclization was the Biotage (Salem, NH, USA) Initiator.
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4.2. Purification and Isolation of Natural 2,5-diketopiperazine

Thirty liters of Wheatgrass MMC was extracted with ethyl acetate to yield 800 mg of
crude material. This was fractionated on three silica gel columns with dichloromethane/
methanol gradients. Fraction 2-5-13 (8 mg) was subjected to analytical HPLC (settings:
Agilent Zorbax 5 µm C8 column, mobile phase 30–100% methanol, 0–5 min 0–30% ramp,
~21 min 100%, total run time 30 min, flow rate 1 mL/min). UV-active (254 nm) fractions
were collected. They were screened with LC-MS and the ten-minute fraction was found
to contain pure material. Samples were dried in vacuo to afford 0.3 mg of purified mate-
rial. MS analysis suggested the presence of two isomers of cyclo(Leu-Pro) in the fraction
collected between five and ten minutes, but the amounts were too small to isolate.

4.3. Construction of Synthetic DKP Library

2,5-diketopiperazines (DKP) were synthesized as described previously with a minor
modification [16]: the microwave temperature used was 180 ◦C instead of 200 ◦C.

4.4. Purification of Synthetic DKPs

Samples were eluted from the silica gel column with 95% dichloromethane:5% methanol.
Further purification was carried out with semi-preparative HPLC (a linear gradient of
5–95% acetonitrile in water with 0.05% TFA over 10 min, flow rate 15 mL/min with 210 and
254 nm detection). Fractions containing cyclo(Phe-Pro) eluted between 7 and 7.6 min (254
nm), cyclo(Leu-Pro) eluted between 6.4 and 6.7 min (210 nm), and cyclo(Val-Pro) eluted
between 4.4 and 4.7 min (210 nm).

Cyclo(L-Phe-L-Pro)/(3S,8aS)-3-benzylhexahydropyrrolo[1,2-a]pyrazine-1,4-dione 1
1H NMR (500 MHz, CDCl3) δ 7.38 (t, J = 7.3 Hz, 2H), 7.31 (t, J = 7.2 Hz, 1H), 7.25 (d,

J = 7.5 Hz, 2H), 5.92 (s, 1H), 4.32 (dd, J = 10.4, 3.7 Hz, 1H), 4.11 (t, J = 8.1 Hz, 1H), 3.68 (dt,
J = 12.0, 7.9 Hz, 1H), 3.65–3.54 (m, 2H), 2.84 (dd, J = 14.5, 10.3 Hz, 1H), 2.36 (dt, J = 13.4,
5.7 Hz, 1H), 2.08–2.02 (m, 1H), 2.02–1.87 (m, 2H).13C NMR (126 MHz, CDCl3) δ 169.70,
165.05, 135.77, 129.27, 129.17, 127.60, 59.12, 56.31, 45.49, 36.80, 28.33, 22.51. UV (methanol):
(ε) = 220 nm (3700); HRMS (ESI, m/z): [M + H]+ calculated for C14H16N2O2, 245.1285;
observed, 245.1290.

Cyclo(L-Phe-D-Pro)/(3S,8aR)-3-benzylhexahydropyrrolo[1,2-a]pyrazine-1,4-dione 2
1H NMR (500 MHz, CDCl3) δ 7.39 (d, J = 3.7 Hz, 1H), 7.31 (s, 2H), 7.21 (d, J = 6.6 Hz,

2H), 4.31 (q, J = 4.6 Hz, 1H), 3.61 (dt, J = 11.6, 8.5 Hz, 1H), 3.43–3.31 (m, 1H), 3.21 (dd,
J = 13.8, 5.6 Hz, 1H), 3.06 (dd, J = 13.8, 4.2 Hz, 1H), 2.75 (dd, J = 10.8, 6.4 Hz, 1H), 2.15 (dt,
J = 12.4, 6.4 Hz, 1H), 1.96–1.86 (m, 1H), 1.79–1.62 (m, 2H). 13C NMR (126 MHz, CDCl3)
δ 170.03, 164.14, 134.79, 130.00, 128.71, 127.31, 58.34, 56.99, 44.35, 39.16, 28.74, 21.02. UV
(methanol): (ε) = 220 nm (4800); HRMS (ESI, m/z): [M + H]+ calculated for C14H16N2O2,
245.1285; observed, 245.1287.

Cyclo(D-Phe-L-Pro)/(3R,8aS)-3-benzylhexahydropyrrolo[1,2-a]pyrazine-1,4-dione 3
1H NMR (500 MHz, CDCl3) δ 7.41 (d, J = 3.7 Hz, 1H), 7.31 (d, J = 2.1 Hz, 2H), 7.21 (dd,

J = 6.8, 2.5 Hz, 2H), 4.31 (q, J = 4.6 Hz, 1H), 3.61 (dt, J = 12.2, 8.5 Hz, 1H), 3.42–3.34 (m, 1H),
3.21 (dd, J = 13.7, 5.7 Hz, 1H), 3.06 (dd, J = 13.7, 4.3 Hz, 1H), 2.75 (dd, J = 10.7, 6.4 Hz, 1H),
2.15 (dq, J = 12.2, 6.0, 5.3 Hz, 1H), 1.98–1.90 (m, 1H), 1.79–1.64 (m, 2H). 13C NMR (126 MHz,
CDCl3) δ 170.06, 165.12, 135.01, 130.00, 128.72, 127.60, 58.70, 57.67, 45.15, 40.28, 28.82, 21.56.
UV (methanol): (ε) = 220 nm (4800); HRMS (ESI, m/z): [M + H]+ calculated for C14H16N2O2,
245.1285; observed, 245.1288.

Cyclo(D-Phe-D-Pro)/(3R,8aR)-3-benzylhexahydropyrrolo[1,2-a]pyrazine-1,4-dione 4
1H NMR (500 MHz, CDCl3) δ 7.37 (t, J = 7.4 Hz, 2H), 7.31 (t, J = 7.3 Hz, 1H), 7.27–7.23

(m, 2H), 6.07 (s, 1H), 4.36–4.27 (m, 1H), 4.11 (t, J = 6.2, 4.0 Hz, 1H), 3.68 (dt, J = 11.9, 7.8
Hz, 1H), 3.64–3.55 (m, 2H), 2.86 (dd, J = 14.5, 10.2 Hz, 1H), 2.40–2.29 (m, 1H), 2.09–1.99
(m, 1H), 2.00–1.86 (m, 2H). 13C NMR (126 MHz, CDCl3) δ 169.86, 165.05, 135.68, 129.26,
129.21, 127.62, 77.29, 77.03, 76.78, 59.11, 56.36, 45.51, 37.94, 36.79, 28.32, 22.48. UV (methanol):
(ε) = 220 nm (3700); HRMS (ESI, m/z): [M + H]+ calculated for C14H16N2O2, 245.1285;
observed, 245.1290.
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Cyclo(L-Leu-L-Pro)/(3S,8aS)-3-isobutylhexahydropyrrolo[1,2-a]pyrazine-1,4-dione 5
1H NMR (500 MHz, CDCl3) δ 5.92 (s, 1H), 4.12 (dd, J = 9.2, 7.3 Hz, 1H), 4.02 (dd,

J = 10.0, 3.8 Hz, 1H), 3.65–3.50 (m, 2H), 2.40–2.30 (m, 1H), 2.18–2.10 (m, 1H), 2.09–1.99 (m,
2H), 1.96–1.83 (m, 1H), 1.82–1.68 (m, 1H), 1.57–1.48 (m, 1H), 1.00 (d, J = 6.6 Hz, 3H), 0.95 (d,
J = 6.6 Hz, 3H). 13C NMR (126 MHz, CDCl3) δ 170.17, 166.15, 59.00, 53.40, 45.52, 38.64, 28.13,
24.73, 23.30, 22.75, 21.20. UV (methanol): (ε) = 220 nm (1800); HRMS (ESI, m/z): [M + H]+

calculated for C11H18N2O2, 211.1441; observed, 211.1442.
Cyclo(L-Leu-D-Pro)/(3S,8aR)-3-isobutylhexahydropyrrolo[1,2-a]pyrazine-1,4-dione 6
1H NMR (500 MHz, CDCl3) δ 6.93 (s, 1H), 4.10 (dd, J = 9.7, 6.5 Hz, 1H), 3.99–3.91 (m,

1H), 3.64 (d, J = 2.3 Hz, 1H), 3.55 (dd, J = 9.1, 2.4 Hz, 1H), 2.44–2.36 (m, 1H), 2.09–1.97 (m,
2H), 1.95–1.86 (m, 1H), 1.82–1.74 (m, 1H), 1.72–1.57 (m, 2H), 0.97 (dd, J = 17.6, 6.6 Hz, 6H).
13C NMR (126 MHz, CDCl3) δ 169.76, 166.45, 58.03, 56.25, 45.66, 42.50, 28.93, 24.43, 23.04,
22.20, 21.31. UV (methanol): (ε) = 220 nm (1800); HRMS (ESI, m/z): [M + H]+ calculated for
C11H18N2O2, 211.1441; observed, 211.1439.

Cyclo(D-Leu-L-Pro)/(3R,8aS)-3-isobutylhexahydropyrrolo[1,2-a]pyrazine-1,4-dione 7
1H NMR (500 MHz, CDCl3) δ 7.37 (s, 1H), 4.10 (dd, J = 9.9, 6.5 Hz, 1H), 3.97 (dt, J = 9.7,

5.2 Hz, 1H), 3.69–3.59 (m, 1H), 3.59–3.48 (m, 1H), 2.48–2.31 (m, 1H), 2.12–1.95 (m, 2H), 1.90
(dd, J = 9.8, 7.0 Hz, 1H), 1.84–1.73 (m, 1H), 1.72–1.54 (m, 2H), 0.99 (d, J = 6.6 Hz, 3H), 0.96 (d,
J = 6.5 Hz, 3H). 13C NMR (126 MHz, CDCl3) δ 170.00, 166.63, 58.05, 56.18, 45.69, 42.49, 28.91,
24.43, 23.04, 22.19, 21.31. UV (methanol): (ε) = 220 nm (1800); HRMS (ESI, m/z): [M + H]+

calculated for C11H18N2O2, 211.1441; observed, 211.1444.
Cyclo(D-Leu-D-Pro)/(3R,8aR)-3-isobutylhexahydropyrrolo[1,2-a]pyrazine-1,4-dione 8
1H NMR (500 MHz, CDCl3) δ 5.92 (s, 1H), 4.12 (dd, J = 9.2, 7.4 Hz, 1H), 4.02 (dd,

J = 9.6, 3.8 Hz, 1H), 3.65–3.50 (m, 2H), 2.40–2.31 (m, 1H), 2.19–2.11 (m, 1H), 2.11–1.97 (m,
2H), 1.97–1.84 (m, 1H), 1.81–1.69 (m, 2H), 1.57–1.48 (m, 1H), 1.00 (d, J = 6.6 Hz, 3H), 0.96 (d,
J = 6.5 Hz, 3H). 13C NMR (126 MHz, CDCl3) δ 170.15, 166.16, 59.00, 53.40, 45.52, 38.63, 28.12,
24.73, 23.30, 22.75, 21.20. UV (methanol): (ε) = 220 nm (1800); HRMS (ESI, m/z): [M + H]+

calculated for C11H18N2O2, 211.1441; observed, 211.1442.
Cyclo(L-Val-L-Pro)/(3S,8aS)-3-isopropylhexahydropyrrolo[1,2-a]pyrazine-1,4-dione 9
1H NMR (500 MHz, CDCl3) δ 6.01 (s, 1H), 4.09 (t, J = 8.2 Hz, 1H), 3.95 (d, J = 2.2 Hz,

1H), 3.68–3.61 (m, 1H), 3.58–3.49 (m, 1H), 2.68–2.61 (m, 1H), 2.39 (dt, J = 12.4, 7.1 Hz, 1H),
2.10–1.99 (m, 2H), 1.96–1.88 (m, 1H), 1.07 (d, J = 7.2 Hz, 3H), 0.91 (d, J = 6.7 Hz, 3H). 13C
NMR (126 MHz, CDCl3) δ 170.13, 164.89, 60.39, 58.83, 45.18, 28.54, 28.35, 22.39, 19.29, 16.06.
UV (methanol): (ε) = 220 nm (1600); HRMS (ESI, m/z): [M + H]+ calculated for C10H16N2O2,
197.1285; observed, 197.1287.

Cyclo(L-Val-D-Pro)/(3S,8aR)-3-isopropylhexahydropyrrolo[1,2-a]pyrazine-1,4-dione 10
1H NMR (500 MHz, CDCl3) δ 7.17 (s, 1H), 4.10 (dd, J = 10.1, 6.5 Hz, 1H), 3.76 (q, J = 4.7,

3.5 Hz, 1H), 3.74–3.67 (m, 1H), 3.57–3.49 (m, 1H), 2.46–2.37 (m, 1H), 2.24 (q, J = 7.1 Hz, 1H),
2.05 (dq, J = 8.4, 2.7 Hz, 1H), 1.99–1.85 (m, 2H), 1.05 (d, J = 7.0 Hz, 3H), 1.00 (d, J = 6.9,
3H). 13C NMR (126 MHz, CDCl3) δ 169.77, 165.39, 63.44, 58.32, 45.59, 33.15, 29.39, 21.93,
18.99, 17.55. UV (methanol): (ε) = 220 nm (1700); HRMS (ESI, m/z): [M + H]+ calculated for
C10H16N2O2, 197.1285; observed, 197.1286.

Cyclo(D-Val-L-Pro)/(3R,8aS)-3-isopropylhexahydropyrrolo[1,2-a]pyrazine-1,4-dione 11
1H NMR (500 MHz, CDCl3) δ 7.58 (s, 1H), 4.12 (dd, J = 10.2, 6.3 Hz, 1H), 3.83–3.75 (m,

1H), 3.70 (dt, J = 12.3, 8.5 Hz, 1H), 3.59–3.49 (m, 1H), 2.41 (dt, J = 11.3, 6.0 Hz, 1H), 2.29–2.18
(m, 1H), 2.09–2.02 (m, 1H), 1.99–1.83 (m, 2H), 1.05 (d, J = 6.7 Hz, 3H), 1.00 (d, J = 6.6 Hz,
3H). 13C NMR (126 MHz, CDCl3) δ 170.09, 165.58, 63.34, 58.34, 45.64, 33.18, 29.36, 21.92,
18.97, 17.57. UV (methanol): (ε) = 220 nm (1700); HRMS (ESI, m/z): [M + H]+ calculated for
C10H16N2O2, 197.1285; observed, 197.1303.

Cyclo(D-Val-D-Pro)/(3R,8aR)-3-isopropylhexahydropyrrolo[1,2-a]pyrazine-1,4-dione 12
1H NMR (500 MHz, CDCl3) δ 5.97 (s, 1H), 4.08 (t, J = 8.3 Hz, 1H), 3.95 (d, J = 2.1 Hz,

1H), 3.64 (dt, J = 12.3, 8.1 Hz, 1H), 3.59–3.48 (m, 1H), 2.70–2.59 (m, 1H), 2.43–2.33 (m, 1H),
2.17–1.98 (m, 2H), 1.97–1.84 (m, 1H), 1.07 (d, J = 7.3, 3H), 0.91 (d, J = 6.8, 3H). 13C NMR
(126 MHz, CDCl3) δ 170.08, 164.86, 60.37, 58.81, 45.15, 28.52, 28.32, 22.37, 19.28, 16.03. UV
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(methanol): (ε) = 220 nm (1600); HRMS (ESI, m/z): [M + H]+ calculated for C10H16N2O2,
197.1285; observed, 197.1289.

4.5. E. coli Growth and Biofilm Assays

A static biofilm formation assay was performed in a 96-well polystyrene microtiter
plate, as described previously with minor modifications [30]. An overnight culture of E. coli
(BL21(DE3)) was diluted 1:10, reaching a ~0.2 OD600. Then, 10 mg/mL stock solutions
of purified synthetic DKPs were prepared in dimethyl sulfoxide, and 0.1 mg/mL of the
DKPs were added to 200 µL of bacterial cell culture. The plates were kept at a stationary
state at 37 ◦C for 24 h. The growth of E. coli in each well was first estimated by the OD600
measurement. Then, wells were washed twice with deionized water gently to remove the
planktonic cells, and the cells were then incubated for 30 min at 60 ◦C to fix biofilm. The
cells in the biofilm were stained with 0.2% crystal violet solution for 15 min. Unbound
dye in the wells was washed off with deionized water. The excess water was left to dry
at room temperature for one hour, then the CV was dissolved in 33% acetic acid, and
absorbances were measured at 595 nm (OD595) to quantify biofilm formation. To ensure
the reproducibility, a total of 50 replicates were examined for each treatment.

5. Conclusions

Studies on the stereochemistry of DKPs and their biological significance have long
been hampered by the lack of suitable methods for their stereochemical assignment. Here,
we demonstrated that ECD can serve as a simple, sensitive, and reproducible method for
the stereochemical characterization of DKPs. Furthermore, the synthetic DKP library from
this study has created a new opportunity to start exploring the stereochemistry–activity
relationship of this ubiquitous but poorly characterized group of microbial metabolites.

Supplementary Materials: The following are available online, Figure S1: GNPS analysis of metabo-
lites in wheatgrass MMC.
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