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Abstract

Background

The majority of quantitative genetic models used to map complex traits assume that alleles

have similar effects across all individuals. Significant evidence suggests, however, that epi-

static interactions modulate the impact of many alleles. Nevertheless, identifying epistatic

interactions remains computationally and statistically challenging. In this work, we address

some of these challenges by developing a statistical test for polygenic epistasis that deter-

mines whether the effect of an allele is altered by the global genetic ancestry proportion

from distinct progenitors.

Results

We applied our method to data from mice and yeast. For the mice, we observed 49 signifi-

cant genotype-by-ancestry interaction associations across 14 phenotypes as well as over

1,400 Bonferroni-corrected genotype-by-ancestry interaction associations for mouse gene

expression data. For the yeast, we observed 92 significant genotype-by-ancestry interac-

tions across 38 phenotypes. Given this evidence of epistasis, we test for and observe evi-

dence of rapid selection pressure on ancestry specific polymorphisms within one of the

cohorts, consistent with epistatic selection.

Conclusions

Unlike our prior work in human populations, we observe widespread evidence of ancestry-

modified SNP effects, perhaps reflecting the greater divergence present in crosses using

mice and yeast.
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Author summary

Many statistical tests which link genetic markers in the genome to differences in traits

rely on the assumption that the same polymorphism will have identical effects in different

individuals. However, there is substantial evidence indicating that this is not the case.

Epistasis is the phenomenon in which multiple polymorphisms interact with one another

to amplify or negate each other’s effects on a trait. We hypothesized that individual SNP

effects could be changed in a polygenic manner, such that the proportion of as genetic

ancestry, rather than specific markers, might be used to capture epistatic interactions.

Motivated by this possibility, we develop a new statistical test that allowed us to examine

the genome to identify polymorphisms which have different effects depending on the

ancestral makeup of each individual. We use our test in two different populations of

inbred mice and a yeast panel and demonstrate that these sorts of variable effect polymor-

phisms exist in 14 different physical traits in mice and 38 phenotypes in yeast as well as in

murine gene expression. We use the term “polygenic epistasis” to distinguish these inter-

actions from the more conventional two- or multi-locus interactions.

Introduction

Genetic association studies in humans and model organisms have identified a number of sig-

nificant links between individual polymorphisms and phenotypic variability. A fundamental

assumption of many of these studies is that an allele will have a similar effect in each member

of the population, that is, that epistatic and other higher-order interactions across the genome

can largely be ignored[1–4]. Prior studies to specifically detect epistasis in flies[5], yeast[6],

mice[7,8], and humans[9] have considered pairwise interactions between loci to begin to iden-

tify interacting loci, yet this approach is hampered by a substantial increase in the threshold of

significance due to the increased numbers of tests (from n to at least n
2

� �
, where n are the num-

ber of SNPs tested). In this study, we consider detection of epistasis by testing the effects of

interactions between individual polymorphisms and global ancestry (θ), which we defined as

the percentage of the genome inherited from a given ancestor or ancestral population.

Recently, we developed a SNP-ancestry interaction model and applied it to a human data-

set, detecting only modest evidence of ancestry-specific genetic effects[10]. There is substantial

evidence of interactions with ancestry in model organisms. For example, we observed radically

different phenotypic consequences of null alleles of Tcf7l2 and Cacna1c when expressed on dif-

ferent inbred strain backgrounds[11]. Recently, a number of powerful genetic resources have

been developed for model systems to map variation in complex traits, such as the Hybrid

Mouse Diversity Panel[12], the Collaborative Cross[13,14], the BXD recombinant inbred

panel[15], various outbred mouse and rat populations[16], or the Drosophila Synthetic Popu-

lation Resource[17]. The variation in ancestry present in these populations provide a unique

opportunity to test for ancestry-driven epistasis, but no existing method is suitable for this

task.

To address this problem, we incorporate a linear mixed model capable of accounting for

the highly structured relatedness of constructed model organism[18] into our previous

approach. We then examine two distinct mouse cohorts as well as a panel of yeast crosses and

test for interactions between the effects of individual polymorphisms and the percentage of the

genome for each individual that originated with a specific founder. Although our initial model

was designed to identify both genetic background and environmental effects, the controlled
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environment in which model organisms are raised is intended to minimize sources of environ-

mental variance. This test, which we have called Gxθ, acts as a surrogate measure of the con-

current action of many other SNPs, and allows us to ask whether or not the effect size of a

given SNP changes as a function of overall genetic ancestry. In contrast to a pairwise epistatic

test, where significance means a detected interaction between two specific loci, a natural inter-

pretation of a significant Gxθ interaction is widespread epistasis of the tested genotype G with

many loci across the genome, as we previously showed[10].

We first evaluated the statistical properties of our method on simulated phenotypes based

on real recombinant inbred line data sets[12]. The Gxθ test successfully distinguishes between

the marginal effects driven only by a given SNP or ancestry and effects that arise from their

interaction. We then applied the test to two different populations of mice: recombinant inbred

(RI) lines that are a subset of the HMDP[12] (143 phenotypes), and a 50th generation inter-

cross between the inbred LG/J and SM/J mouse strains[19], whose ancestry proportions have

been clearly and precisely determined[19] (75 phenotypes). To show that our approach is

broadly applicable, we also apply this test to a yeast panel consisting of thousands of progeny

derived from 15 distinct yeast crosses[20] (40 phenotypes). Utilizing gene expression data

from the HMDP cohort in two different conditions, we further demonstrate that our approach

replicates findings across similar populations.

Given this evidence of epistasis, we examined the ancestry distribution at specific sites in

the mouse HMDP RI lines. Under neutrality, on average, we would expect equal representa-

tion of founder ancestry in the panel, however, we observed that for many positions in the

genome there is a statistically significant depletion or overrepresentation of specific founder

ancestries. We interpret this as evidence of selection during the process of RI strain derivation

and we identify regions of the genome with strong selection up to 4 Mb in length. These

regions are evidence of strong Gxθ interactions which inhibit or promote the transmission of

specific alleles to subsequent generations. These regions are enriched for genes involved in

cancer and organogenesis and are enriched (P = 1.8E-4) for metallopeptidases, which play key

roles in fertility and neo/perinatal lethality[21–23].

Our observation of genomic locations where the effect size of a given polymorphism is driven

by overall genomic context and ancestry highlights the importance of studying epistasis and other

effects in model organisms. Studying these context-dependent effects in human cohorts has been

notoriously difficult, but our results indicate that given the right design and analytical framework

these effects can be highly significant, and has implications for our ability to build predictive mod-

els from genotype to phenotype and account for ancestry effects in population studies.

Results

Method overview

Our objective is to determine whether a given SNP i has a different effect size as a function of

changes in overall genetic background. As described in our previous work[10], this is effec-

tively achieved through an interaction test between each SNP and global genetic ancestry θ. In

a standard test of the association between a polymorphism Xi and a phenotype y, we can

model this relationship as y = μ+βiXi+u+e, where μ is the mean phenotypic value, β is the effect

size of the SNP, u is a random variable accounting for relatedness and e is a random variable

accounting for all other sources of error in the study. We extend this analysis to account for

interactions between a polymorphism and ancestry by adding terms to our model such that

the relationship now becomes

y ¼ mþ biXi þ dθ þ bGxyiθ � Xi þ uþ e
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where δ is the global weight of the ancestry effect, θ are the ancestries for all N individuals and

βGxθ are the weights of the Gxθ effect. Our Gxθ test is then an LRT test with a null of βGxθi = 0

and an alternate of βGxθi 6¼ 0.

To account for multiple testing, we follow the best practices of the respective model organ-

ism communities, specifically we use the previously reported genome-wide significance

threshold for the HMDP of 4.2E-6 [24] or the AIL of 8.06E-6 [19]. For Yeast, we follow the

example previously reported of Bloom et al [20] and use an FDR of 5%.

Simulated data

To examine the properties of our approach in a model organism cross, we applied the method

to phenotypes simulated using real genotypes that reflect the underlying relatedness present

within the recombinant inbred (RI) lines of the Hybrid Mouse Diversity Panel (HMDP). Ran-

dom SNPs with a minor allele frequency (MAF) between 25% and 75% were selected from our

panel and phenotypes constructed at 200 values of either a main SNP effect βG or a SNP-ances-

try interaction effect βGxθ where θ is the proportion of all SNPs arising from C57BL/6J (see

Methods) mice for interaction with each individual SNP with 1,000 simulations at each β
(200,000 total simulations) (see Methods).

We observe that changes to either βG or βGxθ independently did not affect the power of

identifying an association for βGxθ or βG, respectively, indicating that these two terms are cor-

rectly being estimated independently of one another. We briefly explored incorporating a sec-

ond genetic relationship matrix (GRM) accounting for population structure arising from

descent from a single ancestor (the B6 mouse)[25], however we observed no significant

improvement in power when incorporating this second GRM (Fig 1A and 1B).

To evaluate what forms of interactions the test is powered to identify we examined a range

of epistatic architectures, focusing specifically on our method’s ability to recover higher-order

interactions, a type of epistasis which traditional models struggle to accommodate. For

100,000 simulations, a SNP was selected at random from SNPs with MAF between 25 and 75%

and combined with 1–10 additional SNPs (10,000 each) and phenotypes generated for these

SNP groupings followed by analysis by the Gxθ algorithm (see Methods). As the number of

interacting SNPs increases, the power to detect the individual SNP decreases as expected (Fig

1C), however the power to detect a Gxθ locus rises (Fig 1D), suggesting that our model is pow-

erfully situated to identify SNPs involved in complex higher-order interactions, especially

those consisting of more than 5 interacting partners (S1 Fig).

Application to in vivo data

Mouse populations. We applied the Gxθ test to two large panels of mice to identify Gxθ
effects (i.e. instances where a given polymorphism interacts epistatically with one or many other

loci as captured in the model by θ, the global ancestry). Our first cohort is the HMDP, a set of 150

+ commercially available inbred strains[26]. Numerous GWAS have been performed in the

HMDP, including several using PYLMM, which forms the core of our algorithm[24,27,28]. The

largest component of the HMDP is comprised of 122 RI strains (28 AxB, 71 BxD, 12 BxH, 11

CxB). Each RI was constructed from re-derivation of novel inbred lines via brother-sister mating

following an F2 cross between the sub-panel’s parental lines. In the case of the HMDP, one of the

parental strains for each RI strain was the commonly studied strain C57BL/6J (B6). Using B6 as

the common ancestral line to the RI panels, we calculated θs for each RI strain (Fig 2A). As

expected, the average ancestry attributable to B6 was roughly 50% (50.63%) and roughly normally

distributed. We removed a single outlier, BXD32/TyJ, whose B6 Ancestry of 25.41% reflects a pre-

viously known additional backcross to DBA/2J, resulting in a strain that is 75% DBA and 25% B6.

PLOS GENETICS Modeling epistasis in mice and yeast using the proportion of two or more distinct genetic backgrounds

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009165 October 26, 2020 4 / 18

https://doi.org/10.1371/journal.pgen.1009165


Each study using the HMDP uses a different subset of the entire panel, and we selected a study on

heart failure induced by the chronic beta adrenergic agonist isoproterenol[29] for analysis as it

used the most RI strains compared to other published HMDP data. We used 123 clinical pheno-

types in conjunction with microarray-derived gene expressions measured in the left ventricle and

on average tested 67 RI strains per phenotype.

Fig 2. Ancestral strain contributions by strain. A) The 122 strains of the RI panel of the HMDP, B) The 1063 animals in the F50 –F56 generation of the AIL Cross.

https://doi.org/10.1371/journal.pgen.1009165.g002

Fig 1. Simulation results A+B) Power calculations based on simulated data with variable main SNP effects βG (A) or

variable Ancestry-SNP effects βGxθ (B). Blue and Purple power curves are the power curves for detecting a significant

SNP effect, while the orange and green curves are the power curves for detecting a significant Gxθ effect. Two

phenotypic models, one incorporating 1 GRM (1K) correcting for relatedness in the SNPs (green, purple) and one

incorporating 2 GRMs (2K) correcting for relatedness in both SNPs and Ancestry (red, blue) were used. (C+D) Effect

of increasing numbers of epistatically interacting SNPs on the algorithms ability to detect a significant main SNP effect

(C) or Gxθ effect (D). The straight line in C and D represents the line where expected and observed P values are the

same, while the grey band indicates the 95% confidence interval in which the observed P-value distribution cannot be

distinguished from the expected P-value distribution.

https://doi.org/10.1371/journal.pgen.1009165.g001
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The second cohort consists of 1,063 animals from the F50 –F56 generation of an advanced

intercross line (AIL) created by crossing the LG/J and SM/J inbred mouse strains [19]. Unlike

the RI strains from the HMDP, AILs are maintained in a manner that minimizes inbreeding

and promotes genetic diversity at each generation. We arbitrarily set LG/J as the ancestral

strain of interest and calculated θs for each of the 1,063 mice in the panel (Fig 2B). For this

study, we focused on a diverse set of 133 phenotypes that had been measured in these mice.

We describe the results of the Gxθ associations in each panel before demonstrating replication

of interactions in a phenotypic trait as well as in expression data.

Evidence of SNP x ancestry interactions in phenotypic data. We applied the Gxθ
method to the 123 observed heart-failure related phenotypes from the HMDP RI strains. We

observed well-calibrated statistics, with genomic inflation factors λGC equal to 0.978 and λGxθC

equal to 1.045 after pooling the p values across all phenotypes. We observed 44 significant Gxθ
loci across 9 phenotypes: E/A ratio, free fatty acid content in the blood, cardiac fibrosis, frac-

tional shortening of the heart during contraction, heart rate, internal diameter of the left ven-

tricle, left ventricular mass and left and right atrial weights (Tables 1 and S1). These Gxθ loci

were largely distinct from previously reported GWAS loci in the same phenotypes in this panel

of mice[27,30], yet contained a number of highly relevant genes, as discussed below.

By way of example, we focus on two important phenotypes from the HMDP panel. Cardiac

fibrosis is a marker of cardiac dysfunction. Genes identified through the Gxθ screen (Fig 3B)

Table 1. Most significant Gxθ associations for each phenotype observed in the AIL or HMDP cohorts as well as all Yeast Gxθ loci passing a cross-wide 5% FDR

threshold See S1 Table for complete list of loci. Act3.2 is ‘activity levels in control animal on day 3 of a conditioned place preference test’, LVIDs is ‘left ventricular inter-

nal dimension at systole’ and PT is post isoproterenol treatment.

Cohort Phenotype Chromosome Basepair rsID P

AIL Act3.2 11 93607101 rs27076868 6.22E-07

AIL Average Body Weight 6 133867165 rs30057768 1.62E-06

AIL Glucose 9 70318603 rs50320206 3.03E-07

AIL Weight at 68 days 6 133899245 rs47230944 2.09E-06

HMDP E wave 3 weeks PT 19 21360156 rs36743940 5.71E-10

HMDP E/A ratio 3 weeks PT 6 8462274 rs47261338 7.10E-08

HMDP Fibrosis control 17 41256115 rs6295287 6.74E-07

HMDP Fractional shortening control X 48286693 rs30272504 3.69E-06

HMDP Free fatty acids control 11 113035483 rs27020574 4.09E-06

HMDP Heart rate 1 weeks PT 18 9408717 rs29769121 2.37E-06

HMDP Heart rate control X 48286693 rs30272504 2.68E-06

HMDP Left atrial weight 3 weeks PT 16 54550810 rs51319671 2.18E-06

HMDP LVIDs control X 48286693 rs30272504 2.92E-06

HMDP Left ventricular mass 1 weeks PT 3 148140470 rs31313229 2.91E-06

HMDP Left ventricular mass 2 weeks PT 17 72564961 rs50549031 8.65E-08

HMDP Right atrial weight 3 weeks PT 16 49837267 rs50479702 4.13E-07

Yeast Cross 2999: EGTA XIV 622639 NA 2.91E-07

Yeast Cross 2999: Lithium Chloride IV 519675 NA 1.04E-07

Yeast Cross 2999: Lithium Chloride XII 341678 NA 1.16E-05

Yeast Cross 2999: Manganese Sulfate XIV 622639 NA 2.30E-06

Yeast Cross 3043: Manganese Sulfate XVI 206053 NA 4.17E-10

Yeast Cross 3043: Paraquat XV 410166 NA 3.14E-08

Yeast Cross 3043: YNB XV 561457 NA 3.67E-07

Yeast Cross 3043: YPD XV 561457 NA 2.50E-06

Yeast Cross B: Maltose VII 1067754 NA 1.20E-07

https://doi.org/10.1371/journal.pgen.1009165.t001
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as potential candidates for cardiac fibrosis include: Crisp2 (rs6295287, p = 6.74E-7), a secreted

biomarker of cardiovascular disease[31], Top2b (rs31538570, p = 2.14E-06), which plays a car-

dioprotective role in response to stress[32], Rarb (rs31538570, p = 2.14E-06), a known regula-

tor of inflammation with unknown function in the heart[33], and Fibrosin (rs33146511,

p = 2.54E-6), a major component of the fibrosis pathway[34]. An increase in left ventricular

mass in response to catecholamine challenge is the primary marker of cardiac hypertrophy in

the HMDP. A single Gxθ locus(rs31313229, p = 2.91E-06) on chromosome 3 (Fig 3C) contains

the gene Lphn2, which has a role in the promotion of cellular adhesion in response to external

stimuli.[35] Crucially, none of these loci, many of which contain candidates of particular inter-

est or relevance to heart failure, were reported in the original study, suggesting the possibility

of new targets for further therapeutic research.

We next applied the Gxθ method to 133 phenotypes measured in the LG/J x SM/J AIL,

including the sex of the animal as a covariate as, unlike the HMDP data, the AIL consists of

both male and female animals. As with the HMDP data, we observed well-calibrated statistics

in this cross, with genomic inflation factors λGC equal to 0.995 and λGxθC equal to 1.033.

Despite the larger sample size, we observed only 4 significant loci across 4 phenotypes: activity

levels in a saline-injected animal on day 3 of a conditioned place preference test; average

weight of animals across 5 different time points roughly a week apart; glucose (mg/dL) in

blood after a 4 hour fast (Fig 3D); weight at ~68 days of age (Tables 1 and S1).

Yeast populations. We also used the Gxθ algorithm to examine 15 previously reported

yeast crosses[20] ranging from 650 to 950 progeny per cross for evidence of significant Gxθ
loci and an average of 71,000 segregating genetic variants. We examined the responses of these

progeny to forty different chemical stimuli[20] and recovered 92 loci across 38 phenotypes

which met a 5% FDR threshold for that cross/phenotype combination (S2 Table). At a more

stringent level of significance (5% FDR across an entire cross), we identify 9 loci across 7 phe-

notypes (LiCl, EGTA, Maltose, MnSO4, Paraquat, YNB, YPD) which show strong evidence of

Gxθ interactions (Table 1, Fig 3A).

Gxθ associations in HMDP cohort gene expression

We next examined gene expression in the hearts of the HMDP cohort using previously

obtained transcriptome microarrays from both control and treated conditions[36]. Each

cohort consists of approximately 70 RI lines, with 66 lines overlapping between the two

Fig 3. Gxθ results in the yeast, HMDP and LGxSM AIL Cohorts. A) Lithium Chloride Exposure in Yeast B) Cardiac

Fibrosis and C) Left Ventricular Weight in the HMDP D) Glucose in the AIL. Significance Threshold in Yeast (A) =

1.2E-5 (FDR 5%) HMDP (B,C) = 4.2E-6[24], AIL (D) = 9.1E-6 (FDR 5%). Summary Statistics may be found in S6–S9

Tables.

https://doi.org/10.1371/journal.pgen.1009165.g003
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cohorts (full lists of strains in S2 Table). We examined 13,155 expressed and varying (Coeffi-

cient of Variation > 5%) genes from the left ventricles of the HMDP cohorts using the ~170k

SNPs with MAF > = 0.05. We observed 1,486 significant associations with 18 genes at a Bon-

ferroni-corrected P value of 3.2E-10 (135,130 associations with 1,350 genes at GW-significant

threshold of 4.2E-6) in the control cohort and 597 significant associations with 39 genes at the

same threshold in the treated cohort (32,043 associations with 1,042 genes at the genome-wide

significant threshold of 4.2E-6[24]) (Full results available in S1 Table).

Phenotypic variability was larger in the catecholamine treated cohort of the heart failure

HMDP study (average Coefficient of Variation in control was 22.6% vs 28.6% for the treated

cohort)[29], which could partially explain the lower number of significant associations

observed in that group of mice. Notably, we saw no enrichment for SNPs in the cis-regions of

the examined genes in contrast to what is observed in standard mapping. Genes in the control

cohort with significant Gxθ associations are enriched for mitochondria-associated genes

(P = 1.8E-10 (P = .032 in treated)), suggesting a role of Gxθ interactions in the regulation of

mitochondrial dynamics. Genes in the treated cohort with significant associations were

enriched for genes involved in post-transcriptional modifications to RNA including RNA

splicing (P = 7.4E-3), highlighting the importance of alternative splicing to the response to cat-

echolamine challenge[37].

Replication of Gxθ Associations across eQTLs from HMDP Cohort. To demonstrate

that the method is able to replicate Gxθ results across cohorts, we examined the reproducibility

of expression Gxθ QTLs in the treated and untreated RI lines of the HMDP. Of the 1,486 asso-

ciations observed in the control data, we observe 305 (21%) with Gxθ interaction (P< .05) in

the treated cohort (36 at FDR< 5%), indicating a strong replication (p = 2.2E-16 from a bino-

mial test) between the two cohorts despite differences in genetic background and the poten-

tially reduced power in the treated cohort caused by the effects of the catecholamine drug. All

significant associations may be found in S10 Table

Distortion from expected allelic frequencies

After population admixture, allelic frequencies will shift in the resulting population. This can

be due to the effects of selection against deleterious allelic combinations (i.e. fitness epistasis),

meiotic drive (i.e. intragenomic conflict resulting in the transmission of one or more alleles

over another during meiosis). Alternatively, allele frequencies may shift through random

genetic drift. We hypothesize that Gxθ loci can be driven by fitness epistasis, or instances

where allelic variation in one locus affects fitness at other loci across the genome. This hypoth-

esis is in line with prior research[38–40] which has explored allelic imbalance or gametic ratio

distortion as a function of epistasis and fitness. Examining the genomes of admixed population

for signs of significant allelic shift may reveal interesting loci that can inform long standing

questions in evolutionary and population genetics about the forces that maintains variation in

fitness in populations, as well as the presence of non-equal chromosomal inheritance.

We therefore conducted a test to search for individual loci with enriched or depleted B6

ancestry in the RI strains. As expected, the average B6 ancestry across all SNPs was 50.68% +/-

8.1%, which is indistinguishable from the ancestry by strain average of 50.63% +/- 6.7% (Fig

4A). At the level of individual loci, however, we observed significant variation in B6 ancestry

across the genome (Fig 4B), with some SNPs displaying very low or very high frequency (Fig

4C). We calculated the statistical likelihood of detecting the observed ancestries at all loci

across the genome (λ = 1.07, Fig 4D).

We subsequently performed a Wald test for ancestry frequency (θ) at each SNP i where

W ¼ ð�y � yiÞ
2

varðyÞ . We used the global variance in the denominator, which assumes that most SNPs
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lie under the null and which is conservative if this assumption is violated and could be replaced

with a more powerful test. For each SNP, we examined strains which were not invariant for

that locus and identified 614 SNPs from the 170k original SNPs with significantly altered

ancestries at an FDR of 5% (S3 Table). We suspect that these SNPs do not represent passive

effects such as genetic drift due to the nature of how RI panels are created, with a single F2 gen-

eration of mice followed by brother-sister mating and eventual fixation as similar effects on

allelic balance have been attributed to genetic incompatibilities in other mouse populations

[41]. Allelic balance of paternal alleles across the RI panel, therefore, may be modeled using a

Bernoulli distribution. In the HMDP, with 122 RI lines, the odds of a 30% imbalance (80% B6

vs 20% other) would be 8.3E-12, which, even across 200,000 SNPs results in 2E-6 expected

SNPs with this level of imbalance across the entire genome.

Nine loci were identified in which 5 or more SNPs were located together (Table 2). These 9

regions contain the majority (525, 86%) of all significant affected loci and indicate regions

where significant allelic imbalances are occurring. One region of particular interest lies on

chromosome 18 and contains 246 SNPs (40% of all significantly altered SNPs) with an average

B6 ancestry of 82.5%. SNPs in this region are found between B6 and C3H/HeJ and B6 and

Fig 4. Allelic frequency imbalances of individual sites across the genome. A) A histogram of B6 ancestry across the

geneome. B) Genome-wide plot of ancestry C) Zoomed in region on chr 12 with significant depletion of B6 allele. D)

QQ plot of all Pvalues calculated by a Wald test. Genomic Inflation Factor λ = 1.07.

https://doi.org/10.1371/journal.pgen.1009165.g004

Table 2. Regions with significant and sustained B6 depletion or selection.

Chromosome Start End Number of SNPs Average B6 Ancestry Average Significance Genes of Interest

1 10763382 10945149 21 10.66 7.96E-05 Cpa6
1 59458339 60046978 54 16.22 5.50E-04 Bmpr2
1 134463208 134712156 10 87.52 0.0048 Nfasc

11 64495476 64538963 5 18.18 0.0011 Myocd
11 110824338 110984075 18 85.75 0.0077 Kcnj2
12 79002481 80362465 72 18.43 0.0011 Gphn
12 106889886 107633641 49 19.15 0.0014 Pigh
15 4743169 6121864 50 18.14 0.0011 Prkaa1
18 5465201 8965173 246 82.50 0.017 Epc1

https://doi.org/10.1371/journal.pgen.1009165.t002
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BALB/cJ. This locus contains a number of interesting candidate genes potentially relating to

organismal fitness, including Epc1, a transcription factor linked to DNA repair, muscle differ-

entiation and cancer suppression[42,43]. It is also the only gene within the locus whose expres-

sion has a suggestive Gxθ association with the locus itself (P = 0.014).

When all genes within 2 MB (the average Linkage Disequilibrium (LD) block size in the

HMDP[26]) of boundaries of these allelic imbalance loci are examined as a whole, we observe

significant enrichments for genes involved in cancer (corrected P-values range from 1.3E-8 to

1.6E-7). These genes, whose functions range from cell cycle control to organismal growth and

DNA damage mediation and repair are not unexpected given their crucial role in organismal

survival. If the B6 or alternative allele deleteriously affect the function of one or more of these

genes when combined with new alleles from other strains located elsewhere on the genome,

then it is reasonable to assume that the ability for an individual to pass on its genetic informa-

tion to the next generation may be significantly reduced. Other enriched gene ontology catego-

ries include the crucial-for-life categories of respiratory tube development (corrected p-

value = 2.7E-4) and heart development (corrected p-value = 7.6E-4), likely mediated through

changes in Matrix Metalloproteinase activity (corrected p-value = 3.9E-8). These enzymes are

canonically responsible for the regulation of the extracellular matrix, but have been linked to

the modulation of responses to many bioactive molecules and have important roles in fertility,

embryonic development and neo/perinatal mortality in addition to many other diseases[23].

Taken together, these enrichments suggest that we may be observing depletion due to epistatic

interactions with other loci which were neutral or beneficial in the original inbred lines, but

which become deleterious for a given allele when placed into a new genetic environment.

Discussion

We present a test which we call Gxθ, that leverages admixed populations such as inbred mouse

strains to identify sites of “polygenic epistasis” where a SNP interacts with an unknown number of

other loci summarized into a single genomic ancestry score, θ. One major advantage of this

approach is that, unlike other epistasis-focused association approaches, it does not increase the

number of tests when compared to a typical GWAS, so similar significance thresholds may be used.

The existence of epistatic interactions and their role in human diseases and phenotypes have

been known for many years, with notable examples of gene-gene interactions in Alzheimer’s dis-

ease[44], Bardet-Biedl syndrome[45] as well as classic interactions governing hair color and skin

pigmentation. Despite these examples and many more like them, epistatic interactions have

proven difficult to find using association techniques[46]. One notable exception has been the suc-

cess of using consomic strains of mice, where one or more chromosome in strain A is replaced

with a chromosome from another strain B[47]. This approach, which increases or decreases the

contribution of a given strain to phenotypic and genetic variance in a clear and controlled manner

has resulted in the identification of numerous epistatic interactions[48,49].

Our method sought to circumvent this traditional pitfall in Epistasis GWAS by examining

each SNP only once for an interaction with a global genomic ancestry to identify interactions

or “polygenic epistasis”. Our model is able to identify much higher order interactions than can

be observed using traditional SNP-SNP interaction models. As demonstrated through simula-

tion, our model in fact increases in power as the complexity of the epistatic interactions

increases, likely reaching peak power in the hypothetical scenario where every SNP interacts

with the tested SNP to affect phenotypic expression. When applied to human populations, a

different form of our test was able to find several significant associations[10]

In this study, we examined two populations of mice: the recombinant inbred lines of the

Hybrid Mouse Diversity Panel[26] and an Advanced Intercross Lines (AIL) based on LG/J and
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SM/J[19] as well as a yeast RIL mapping panel founded by fifteen yeast strains[20]. We

observed significant Gxθ interactions in 14 of the 15 yeast crosses that affected over half of the

examined phenotypes, reinforcing the widespread role of genotype-by-genotype interactions

in regulating quantitative traits across diverse genetic backgrounds and phenotypes. In the

mouse cohorts, however, despite nearly ten times the number of genetically distinct mice as

well as a larger number of phenotypes and genotypes in the AIL, we observed approximately

ten times more significant Gxθ peaks in the HMDP phenotypes than in the AIL phenotypes

(44 vs 4).

Several reasons may account for this difference. First, outbred mice have significantly lower

power due to increased phenotypic variance caused by high rates of heterozygosity at alleles while

inbred populations have increased power due to a lack of this heterozygosity. This can also be

seen in our regular GWAS results[19,29,30]. Second, the different phenotypes studied in each

cohort will have different genetic architecture and experimental noise (e.g. the AIL study includes

many behavioral traits while the HMDP does not). Third, significantly more recombination

events have occurred in the AIL compared to the HMDP, leading to a tighter distribution of

background and a larger number of independent tests. Fourth, the genetic backgrounds of the

two cohorts are different, which might also contribute to differences in observed numbers of Gxθ
interactions. Although individually, LG and SM are only slightly less genetically diverged from

one another as any pair of strains that make up the RI panels of the HMDP (S4 Table), the pres-

ence of five ancestral lines in the HMDP compared to only two in the F50 cross results in much

more genetic diversity in the HMDP compared to the F50 mice. Finally, we observe a higher vari-

ance in ancestral background in the mice HMDP when compared to the AIL. As our method

relies on differences in ancestral background to identify sites with different effect sizes in different

genetic contexts, the reduced variance in the AIL lines necessarily corresponds to a decrease in

the power to detect Gxθ interactions. Taken together, our method is best suited to datasets with

relatively low heterozygosity, clear and numerous differences in genetic background, and with

higher variance in the percentage of SNPs attributable to a given ancestry.

Furthermore, we identify nine regions across the genome of the RI lines of the HMDP

which show a strong selection for or against a particular parental allele. We propose that this is

a result of an epistatic fitness interaction, where individual loci in one ancestral strain are

genetically incompatible with alleles from another strain. We considered other alternatives

explanations, some of which were explored in prior work[40]. One alternative would be popu-

lation structure, where recombination may not have had sufficient time to randomly assort

alleles after a bottleneck event, though we think that this is an unlikely explanation for our

results. One of the key benefits of working with synthetic mapping populations such as RI pan-

els is that the crossing scheme (e.g. fennel cross, round-robin)is designed to minimize such

effects[39]. Another possibility would be assortative mating, where mate selection drives the

selection for or depletion of a particular allele. While possible, and not explicitly arising from

epistasis per se, it would still produce a fitness differential across allelic combinations and be

picked up by our analysis. Finally, epistatic interactions, the focus of this manuscript, can lead

to changes in fitness as demonstrated by prior work[40] which examined Drosophila RI panels

in which all expected genotypic combinations for a diallelic cross were generated. They dem-

onstrated a strong correlation between the degree of allelic imbalance and the effect size of the

fitness effect of each allelic combination. It follows that similar scenarios should exist in mouse

and yeast panels as well. One possible extension of this approach would be to study fitness in

the Collaborative Cross strains, another animal population in which a large proportion of the

strains went extinct, presumably due to genetic incompatibilities.

In the future, our approach could be leveraged to study additional extant populations or

newly created cohorts. For example, our tool could be used to examine whether genetic
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modifications such as knockouts have differential effects across the mice of a cross, and we are

actively exploring its utility in this regard.

Conclusion

The results of our study suggest that heterogenous SNP effects due to differing ancestries is

pervasive in model organism populations. This observation is consistent with prior observa-

tions of epistatic interactions in inbred strains of mice as well as examples of ancestry interac-

tion in human studies[10]. However, the number and magnitude of ancestry interactions we

found was much larger than those found in human studies; we hypothesize this is driven by

the larger genetic distance of the ancestors. Further analyses of the sites of polygenic epistasis

may reveal novel epistatic interactions which drive phenotypic expression, and suggests that

careful attention to genetic ancestry should be considered when studying the role of an indi-

vidual polymorphism on a phenotype.

Methods

Model organism populations and ancestry calling

Model organism data were drawn from previously reported studies[19,20,29]. The LGxSM

AIL consists of 1,063 G50-56 mice derived from an original F1 intercross between the LG and

SM inbred lines. The Hybrid Mouse Diversity Panel consists of over 150 strains of commer-

cially available inbred mice[26], of which 122 strains were recombinant inbred lines and suit-

able for our study. The yeast crosses originated from 15 original strains which were bred in

pairs to create 15 new crosses. SNPwise ancestries were determined by identifying all SNPs

which differed between parental lines (AIL: LG and SM or HMDP: C57BL/6 and A, C3H,

DBA/2 or BALB/c or Yeast: See S5 Table). Genotypes from the G50-56.RI lines or yeast crosses

were filtered for these SNPs and ancestries calculated using either LG or C57BL/6 or one of the

yeast strains as the strain background of interest.

Simulation framework

Power calculations. We created sets of simulated phenotypes based on the genotypes of

the HDMP RI panel, which is an admixed population in which the B6 strain, on average, con-

tributes 50% of each strain’s DNA. For each simulated phenotypes, we drew a SNP (75% >

MAF > 25%) at random from the HMDP genotypes and created a phenotype based on β, the

genetic effect size, ϕ the effect size of the interaction between global ancestry (θ) and the cho-

sen SNP and a multivariate normal (mvn) derived from three variance terms: s2
g , the propor-

tion of variance attributable to genetic effects s2
y
, the proportion of variance attributable to

Gxθ effects and s2
ε, the residual proportional variance attributable to all combined sources of

error and variation not considered in this study. Phenotypes were generated both with and

without the Gxθ variance term to ascertain the necessity of incorporating a second GRM (KA),

which would correct for relatedness in ancestry, into the algorithm.

We simulated four distinct phenotypes for our analysis

1. Phenotypes generated by including a SNP Effect

y ¼ bX þmvnð0;s2

gK þ s
2

e IÞ or

y ¼ bX þmvnð0;s2

gK þ s
2

y
KA þ s2

e IÞ
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2. Phenotypes generated by including a Gxθ Effect

y ¼ bGxyy � X þmvnð0;s2

gK þ s
2

e IÞ or

y ¼ bGxyy � X þmvnð0;s2

gK þ s
2

y
KA þ s2

e IÞ

In each phenotype, s2
g was set to 0.4. When incorporated, s2

y
was set to 0.2 and s2

ε was set to

the remainder of the variance (0.6 or 0.4). The power of our model and independence of our β
and βGxθ terms were queried by varying either β or βGxθ from 0 to 1 (200 values set 0.005 apart)

with 1,000 simulated phenotypes at each step (200,000 total simulations per phenotype).

Epistasis simulation. Using the same panel and set of SNPs described above, we drew

one SNP at random to be our test SNP and one to ten additional SNPs to be simulated epistati-

cally interacting SNPs (10,000 simulations per set of interacting SNPs, 100,000 simulations in

total). For each simulation we created a composite SNP in which only strains with the minor

(non-B6) allele in every one of the tests and interacting SNPs had that allele in the composite

SNP. We used this composite SNP to generate a phenotype as described above with a χ2 test

statistic for the 2–11 interacting SNPs set to a large value of 20 to ensure a consistent and

observable effect that could be recovered using either regular GWAS with pyLMM or our

approach.

Gxθ model

The equation to determine the effects of a SNP and a SNP x Ancestry term on a phenotype can

be written as:

yk ¼ mþ
XM

i¼1
biXi þ dyk þ

XM

i¼1
bGxyi

yiXik þ εk

Where yk is the phenotype of individual k, μ is the mean phenotypic value, M is the number of

markers, β are the weights on the SNPs, X is the m by n array of SNP genotypes, δ is the global

weight of the ancestry effect, θ is the ancestries for all N individuals. βGxθ are the weights of the

Gxθ effect and ε is the combined error term. We want to identify SNPs where βGxθi 6¼ 0 as

these are sites where Ancestry is interacting with our genotypes.

Motivated by our model above, we can write a new model for the effect of a single SNP i on

a phenotypic trait as:

y ¼ mþ biXi þ dθ þ bGxyiθ � Xi þ uþ e

For an individual SNP i. Here, θ is the column vector of ancestries, and θ � X is the element-

wise product. The random effect u accounts for relatedness of individuals based on SNPs. Our

Gxθ test is then an LRT test with a null of bGxy i ¼ 0 and an alternate of bGxy i 6¼ 0:

Reporting Gxθ results and identifying genes of interest

GWAS thresholds were previously determined to be 4.1E-6 in the case of the HMDP[24] or

8.06E-6 in the case of the AIL[19]. An FDR of 5% was used in the yeast crosses as previously

reported[20] Genes of Interest were identified by examining nearby genes (within 2 MB) for

cis-eQTLs as previously reported in the HMDP[29] and/or by literature and database analyses

using bioGPS (www.biogps.org) which draws data from PubMed and other publicly available

databases to help researchers understand the role of their genes of interest.
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Determining significance of allelic imbalance sites

Allelic imbalance significance was determined by performing a Wald test for ancestry fre-

quency (θ) at each SNP i where W ¼ ð�y � yiÞ
2

varðyÞ and only strains where the SNP was not invariant

were included. Allelic imbalances were considered to be significant after Benjamini-Hochberg

correction at a cutoff of 5%.

Gene set enrichment analysis

All gene enrichments were performed using the GeneAnalytics platform[50], which uses a

binomial distribution to assess the enrichment for a user-supplied list of genes within GO

terms, Superpaths and other biologically relevant categories. Reported P-values have been cor-

rected for multiple comparisons using the Benjamini-Hochberg correction.
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