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degenerative diseases. Notably, we provide a comprehensive summary of exosome biogenesis, microRNA
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1. Introduction

1.1. The urgency of developing innovative approaches to address
degenerative diseases

The global population is aging. By 2050, over 80% of older people
are predicted to reside in low- and middle-income countries; this
demographic shift will have considerable social and economic
implications [1]. Therefore, prioritizing the development of new
treatments and interventions for degenerative diseases is impera-
tive to ensure enhanced health outcomes and improved quality of
life for the aging global population (see Table 1).

Thus, innovative therapies and technologies for degenerative
diseases must be explored. This involves genetics, regenerative
medicine, and personalized treatment [2—4]. This review article
explores new approaches in regenerative medicine, with a
particular focus on the therapeutic applications of exosomes
derived from MSCs. It further examines how MSC-derived
exosomes (MSC-Exos) could potentially manage and reverse
the effects of degenerative diseases, thereby opening new
pathways to enhance the health and longevity of the aging
population.

1.2. Mesenchymal stem cells and extracellular vesicles

Stem cells with multipotent differentiation potential and
regenerative capacity can be broadly categorized into two groups:
embryonic and adult stem cells [5]. Embryonic stem cells are
derived from sources such as the term placenta, amniotic fluid, and
umbilical cord. Adult stem cells are found in various tissues or or-
gans, including the bone marrow (BM) [6], trabecular bone [7],
adipose tissue [8], synovial fluid [9], synovium [10], and peripheral
blood [11]. These cells are often used in treating knee osteoarthritis
(OA). Stem cells from different sources exhibit varying differentia-
tion capacities, clinical benefits, and culture characteristics.
Therefore, selecting the appropriate cell source is crucial for suc-
cessful mesenchymal stem cell therapies. Common sources include
the bone marrow, adipose tissue, synovial fluid, and synovium.
Several studies have indicated that bone marrow—derived MSCs
(BM-MSCs) are often the primary cell source, followed by adipose
tissue-derived MSCs (ADSCs).

Exosomes are a type of extracellular vesicle (EV) that range from
30 to 150 nm in diameter [12]. They are present in various cell types
[13] and extracellular fluids, such as plasma [14], synovial fluid [15],
urine [16], amniotic fluid [17], saliva [18], cerebrospinal fluid [19],
breast milk [20], and tears [21]. MSC-Exos facilitate the transfer of
bioactive lipids, nucleic acids (including DNA, mRNAs, and non-
coding RNAs) [22], and proteins between cells. This transfer elicits
biological responses such as gene regulation [23], proliferation,
apoptosis [24], and immunomodulation [25] in recipient cells [26].
MSC-Exos exhibit heterogeneity, with extracellular RNA extracted
from exosomes and nonvesicles derived from the same cell also
displaying heterogeneity [27].
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2. Osteoarthritis

Research on the effects of exosomes from various cell types on
OA has yielded significant findings. For example, exosomes derived
from chondrocytes (CC-Exos) have been demonstrated to enhance
the proliferation of cartilage progenitor cells and significantly
promote chondrogenesis-related factors. They also increase
collagen deposition, reduce vascular ingrowth, and consistently
develop into cartilage [28]. Additionally, studies have indicated that
exosomes from bone marrow—derived mesenchymal stem cells
(BMSC-Exos) alleviate cartilage damage in rats with OA by carrying
high levels of miR-135b, which targets proinflammatory factors
elevated in the serum and reduces cartilage tissue damage [29].
These exosomes also inhibit chondrocyte apoptosis and the
expression of matrix metalloproteinases (MMPs) by regulating
Drp1-mediated mitophagy [30]. Exosomes from embryonic MSCs
(EMSC-Exos) contribute to maintaining the chondrocyte phenotype
by increasing the synthesis of collagen type Il and reducing the
expression of ADAMTS5. The beneficial effects of EMSC-Exos may
be linked to adenosine activation of protein kinases, transforming
growth factor-f (TGF-B), and insulin-like growth factor (IGF) [31].

A key finding in recent research is the role of human synovial
mesenchymal stem cell—derived exosomes (hSMSC-Exos) in stim-
ulating chondrocyte proliferation and migration. This effect is
mediated by the upregulation of Wnt5a, which activates yes-
associated protein (YAP) signaling pathways and suppresses
extracellular matrix formation [32,33]. YAP is a transcriptional co-
activator in the Hippo signaling pathway, is crucial for promoting
cell growth and inhibiting apoptosis when activated. The activation
of YAP signaling by Wnt5a is pivotal for enhancing tissue regen-
eration processes. This discovery has significant therapeutic im-
plications for treating osteoarthritis, offering a potential route to
enhance joint repair and functionality.

Recent research has underscored the chondroprotective role of
exosomes from subcutaneous adipose-derived stem cells (ADSC-
Exos). These exosomes reduce senescence-associated [-galactosi-
dase activity and the production of inflammatory mediators from
OA osteoblasts and catabolic mediators from OA chondrocytes [34].
Furthermore, chondrocytes treated with exosomes isolated from
infrapatellar fat pad mesenchymal stem cells (IPFP-Exos) were
observed to exhibit upregulated Sox-9, aggrecan, and type II
collagen expressions, outperforming exosomes derived from IPFP-
MSCs pretreated with kartogenin [35]. These findings highlight
the potential of ADSC-Exos in OA treatment.

3. MSC exosomal miRNA therapy for cartilage protection

Studies on periosteal cells treated with exosomes have revealed
a correlation between elevated levels of miR-145 and miR-221 and
enhanced proliferation and chondrogenic potential of these cells,
respectively [36]. Additionally, miR-100-5p derived from IPFP-
MSCs significantly promotes chondrocyte autophagy by inhibit-
ing mTOR. The intra-articular injection of antagomir-100-5p has
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Table 1
Current applications of MSC-EVs in treating degenerative conditions. In vitro and in vivo efficacy and promotion of cellular functions to facilitate tissue repair.

EV Source

Model

Results

Reference

Osteoarthritis
Chondrocyte-derived exosomes (CC-
Exos)

BMSC-derived exosomes (BMSC-Exos)

Embryonic MSC-derived exosomes
(EMSC-Exos)

Human synovial MSC-derived
exosomes (hSMSC-Exos)

ADSC-derived exosomes (ADSC-Exo0s)

IPFP-derived exosomes (IPFP-Exos)

ADSC-Exos

IPFP-Exos

hSMSC-Exos

BMSC-Exos

BMSC-Exos

Cardiovascular disease
HIF-1a engineered MSC-derived EVs
(HIF-10-EVs)

Human bone marrow MSC-derived EVs
(MSC-EVs)

MSC-Exos derived from MSCs
pretreated with ischemic rat heart
extract (MSCE-Exos)

In vitro, chondrocyte

In vivo, anterior cruciate ligament
transection (ACLT) + destabilization of
the medial meniscus (DMM) OA model

In vitro, chondrocyte

In vitro, chondrocyte

In vitro, OA chondrocyte

In vitro, chondrocyte

In vitro, chondrocyte

In vivo, DMM-induced OA animal model

In vivo, ACLT-induced OA model

In vivo, collagenase-induced OA mouse
model

In vivo, ACLT + DMM OA surgery model

In vitro: cardiomyocytes and
endothelial cells under hypoxia and
serum deprivation (H/SD); In vivo:
Sprague Dawley rats with acute
myocardial infarction (AMI)

In vitro: human umbilical vein
endothelial cells; In vivo: rat MI model

In vitro: human umbilical vein
endothelial cells (HUVECs)
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1. Enhanced cartilage progenitor cell expansion
and increased expression of chondrogenesis-
related factors.

2. Promoted collagen deposition, reduced
vascular ingrowth, and developed into
cartilage.

1. Mitigated cartilage damage by targeting
proinflammatory factors with miR-135b.

2. Inhibited chondrocyte apoptosis and MMP
expression by modulating Drp1-mediated
mitophagy.

1. Maintained chondrocyte phenotype with
increased collagen type II synthesis and
reduced ADAMTS5 expression.

2. Effects linked to adenosine-triggered protein
kinases, TGF-B, and IGF activation.

Promoted chondrocyte proliferation and

migration by upregulating Wnt5a, activating

YAP signaling pathways, and suppressing

extracellular matrix formation.

Reduced senescence-associated B-galactosidase

activity and the secretion of inflammatory

mediators from OA osteoblasts and catabolic
mediators from OA chondrocytes.

Elevated levels of Sox-9, aggrecan, and type I

collagen expression, more effective than IPFP-

Exos pretreated with kartogenin.

Increased periosteal cell proliferation and

chondrogenic capacity linked to miR-145 and

miR-221, respectively.

1. Enhanced chondrocyte autophagy through
miR-100-5p inhibition of mTOR.

2. Intra-articular administration of antagomir-
100-5p protected cartilage from deteriora-
tion and improved gait by repressing chon-
drocyte apoptosis through the mTOR-
autophagy pathway.

hSMSC-Exos overexpressing miR-140-5p

augmented cartilage regeneration and slowed

knee OA progression in a rat model.

BMSC-Exos overexpressing miR-92a-3p

suppressed cartilage degradation by directly

targeting WNT5A and preserving articular
chondrocyte function.

TGF-p1 promoted chondrocyte proliferation by

modulating Sp1 through miR-135b sourced

from BMSC-Exos, aiding cartilage restoration.

1. Reduced cardiomyocyte apoptosis and
enhanced endothelial cell angiogenesis.

2. Reduced fibrosis and improved cardiac
function in rats.

3. Enhanced effects with RGD-biotin hydrogels.

1. Promoted endothelial cell proliferation,
migration, and tube formation in vitro.

2. Enhanced blood flow recovery, reduced
infarct size, and preserved cardiac
performance in vivo.

1. Enhanced HUVEC  proliferation  and
migration.

2. Proteomic analysis revealed upregulation of
angiogenesis-related proteins, including
DMBT1.

3. DMBT1 delivery via MSCE-Exos was crucial
for angiogenesis, with silencing of DMBT1
impairing HUVEC activity.

4. Ischemic heart extracts revealed increased
levels of IL-22 and subsequent upregulation
of VEGF and DMBT1 in MSCs, which

(28]

[29,30]

[31]

[32,33]

[34]

[35]

[36]

(371

(38]

[39]

[40]

[81]

(84]

[85]

(continued on next page)
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EV Source

Model

Results Reference

Human umbilical cord MSC-derived
exosomes (hucMSC-Exos)

Mesenchymal stem cell—derived
exosomes (MSC-Exos)

MicroRNA-1-transduced MSCs
(MSC(miR-1))

Age-related macular degeneration
Human umbilical cord MSC-derived
exosomes (hucMSC-Exos)

Adipose-derived MSC exosomes (Ad-
MSC-Exos)

MSC-derived exosomes (MSC-Exos)

Human bone marrow—derived MSCs
(hBMSCs)

Alzheimer's disease
Human adipose tissue-derived MSC
exosomes (ADSC-Exos)

Mesenchymal stem cell-derived EVs
(MSC-EVs)

Mesenchymal stem cells and cell
—derived EVs (MSC-EVs)

In vivo: AMI rats; In vitro: hypoxic H9C2
cells

In vivo: mouse model of myocardial
ischemia/reperfusion (I/R); In vitro:
macrophage polarization studies

In vivo: C57BL/6 mice with MI

In vitro: RPE cells; In vivo: laser-induced
CNV and subretinal fibrosis model in
mice

In vivo: streptozotocin-induced
diabetes in rabbits

In vivo: mouse models of photoreceptor
loss (MNU-induced and Pde6bmut)

In vitro: Cultured hBMSCs

In vitro: N2a neuroblastoma cells

In vivo: APP/PS1 mouse model of
Alzheimer's disease

In vitro: Transwell cocultures with rat
hippocampal neurons
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enhanced the angiogenic effects of the
derived exosomes.
1. miR-19a was transferred, which offered [86]
protection for cardiomyocytes through the
reduction of apoptosis and infarct size.
2. miR-19a targeted SOX6; inhibition of SOX6
reduced hypoxic damage.
3. Enhanced cardioprotection through the
activation of AKT and inhibition of J]NK3/
caspase-3 pathway.
1. Reduced infarct size and inflammation [87]
postmyocardial I/R.
2. Facilitated macrophage polarization from
M1 to M2, improving cardiac recovery.
3. miR-182  targeted TLR4, influencing
macrophage polarization and reducing
inflammation.
1. Enhanced differentiation of transplanted [88]
MSCs into cardiomyocytes in the infarcted
zone.
2. Improved cardiac function.
3. Increased cell survival and cardiomyogenic
differentiation.

1. Intravitreal injection of hucMSC-Exo [94]
reduced subretinal fibrosis and CNV.
2. Suppressed RPE cell migration and promoted
mesenchymal—epithelial transition via miR-
27b.
3. miR-27b targeted HOXC6, inhibiting the EMT
process induced by TGF-f2.
1. Improved retinal structure, with SC and 10 [95]
routes showing well-defined retinal layers
similar to normal retina.
2. IV route resulted in less organized retinal
layers.
3. Significant increase in micRNA-222 expres-
sion associated with retinal repair and
regeneration.
1. Intravitreal MSC transplantation and [101]
exosomal transplantation counteracted
photoreceptor apoptosis and alleviated
retinal degeneration.
2. Effects sustained for 1—-2 months after a
single injection.
3. miR-21 targeted Pdcd4, protecting
photoreceptors and preventing retinal
dysfunction.
1. Overexpression of the miR-183/96/182 [102]
cluster upregulated neuroretinal genes such
as OTX2, NRL, PKCa, and recoverin.
2. Ectopic expression of the miR-183 cluster
increased CRX and rhodopsin levels at mRNA
and protein levels, suggesting initiation of
photoreceptor cell differentiation.
3. No morphological changes in cells despite
gene expression alterations.

1. Carried enzymatically active neprilysin [118]
(NEP), a pivotal B-amyloid-degrading
enzyme.

2. Transferred NEP into N2a cells, significantly
reducing both secreted and intracellular Af
levels.
3. More effective than bone marrow—derived
MSC exosomes.
1. Reduced inducible nitric oxide synthase [119]
(iNOS) mRNA and protein levels in primary
cultured neurons and APP/PS1 mice.
2. Improved cognitive behaviors and rescued
synaptic transmission and long-term poten-
tiation in the hippocampal CA1 region.
1. Protected hippocampal neurons from [120]
amyloid-beta oligomer (ABO)-induced
oxidative stress and synapse damage.
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EV Source Model

Results Reference

Human Wharton's jelly MSC-derived

EVs (hMSC-EVs) exposed to ABOs

Mesenchymal stem cell—derived

exosomes (MSC-Exos) disease

Human umbilical cord MSC-derived

exosomes (hucMSC-Exos) microglial cells

Allogenic human adipose MSC-derived
exosomes (ahaMSCs-Exos)

In vitro: Primary hippocampal cultures 1.

In vivo: mouse model of Alzheimer's

In vivo: AD mouse model; In vitro: BV2 1.

Phase I/II clinical trial in patients with 1.
mild to moderate Alzheimer's disease

2. Protection involved internalization and
degradation of ABOs, release of catalase-
containing EVs, and secretion of anti-
inflammatory cytokines and growth factors.
Internalized by hippocampal neurons,
enhanced in the presence of ABOs.

2. Protected neurons from oxidative stress and
synaptic damage induced by ABOs.

3. Neuroprotection mediated by catalase EVs,
abolished by catalase inhibition.

1. Stimulated neurogenesis
subventricular zone.

2. Alleviated  beta-amyloid  1-42-induced

cognitive impairment in Morris water maze

and novel object recognition tests.

Alleviated neuroinflammation and reduced

amyloid-beta deposition in AD mouse

models.

2. Improved cognitive function and modulated
microglial activation.

3. Regulated inflammatory cytokine levels both

in vivo and in vitro.

No adverse events were reported during the

trial.

2. The medium-dose arm exhibited significant
improvement in cognitive function, as
measured using ADAS-cog and Montreal
Cognitive Assessment scores.

3. Although no significant changes in amyloid
or tau levels were observed, a reduction in
hippocampal volume loss was noted in the
medium-dose arm.

[121]

in the [123]

[125].

[129]

Choroidal Neovascularization (CNV); cone-rod homeobox (CRX); subconjunctival (SC); and intraocular (I0); yes-associated protein (YAP).

been demonstrated to protect cartilage from damage and improve
gait patterns in mice with destabilization of the medial meniscus
(DMM)-induced OA by suppressing chondrocyte apoptosis
through the mTOR-autophagy pathway [37]. Furthermore, exo-
somes derived from human synovial MSCs overexpressing miR-
140-5p were demonstrated to enhance cartilage regeneration
and delay the progression of knee OA in a rat OA model [38].
Exosomes from human bone marrow—derived MSCs over-
expressing miR-92a-3p inhibited cartilage degradation in a
collagenase-induced OA mouse model by directly targeting
WNT5A, thereby preserving articular chondrocyte the function
[39]. Furthermore, in an animal study, TGF-f1 was demonstrated
to promote chondrocyte proliferation and facilitate cartilage repair
in a rat OA model by regulating Sp1 through miR-135b derived
from BMSC exosomes [40]. These findings highlight the critical role
of miRNA regulation in modulating gene expression during
chondrogenic differentiation. Validating these miRNAs and their
targets could support further research into safe and effective de-
livery systems, enhancing the therapeutic potential of miRNAs in
OA treatment.

4. MSC-derived exosomal miRNA therapy for rheumatoid
arthritis

Rheumatoid arthritis (RA) is a long-term inflammatory auto-
immune disorder that mainly targets the joints. It is characterized
by persistent synovial inflammation, which results in the deterio-
ration of cartilage and bon [41]. Numerous genetic and environ-
mental factors have been linked to a heightened risk of developing
RA [42]. Along with synovial membrane hyperplasia and over-
activation of osteoclasts, increased bone degradation is another key
hallmark of RA [43,44]. Research has demonstrated that a range of
immune cells, including T cells, B cells, and macrophages, play a role
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in the development of arthritis [45,46]. Despite the availability of
conventional synthetic DMARDs (csDMARDs), biologic agents
(bDMARDs), and targeted synthetic DMARDs (tsDMARDs), these
treatments often encounter challenges such as side effects [47].
Additionally, up to 40% of patients experience inadequate re-
sponses to these therapies (primary inefficacy) or lose their effec-
tiveness over time (secondary inefficacy) [48]. Consequently, the
potent immunomodulatory properties of MSC-Exos present a
promising new approach for treating joint swelling and cartilage
erosion.

While several clinical trials have demonstrated the effects of
MSC-based therapy in RA patients, an optimal MSC-based thera-
peutic protocol has yet to be established [49]. Thus, utilizing MSCs
for RA treatment remains challenging. Most studies have employed
allogeneic MSCs, as obtaining and cultivating a sufficient quantity
of autologous MSCs from RA patients can be difficult. Additionally,
autologous MSCs from RA patients may possess intrinsic genetic
defects that could impair their anti-inflammatory capabilities.
MSC-Exos have not yet been utilized in the treatment of RA.
However, the effectiveness of MSC-Exos-based therapy has been
demonstrated in experimental animal models of RA. In these
studies, MSC-Exos-based therapy has been shown to significantly
reduce the onset and progression of experimental arthritis.

Li et al. reported that MSC-derived Exos expressing miRNA-150-
5p reduced the secretion of inflammatory cytokines, such as TNF-a.
and IL-1B, in CIA mice, thereby suppressing RA progression in vivo
[50]. Furthermore, MSC-derived exosomal circFBXW7 was shown
to suppress the proliferation, migration, and inflammatory re-
sponses of rheumatoid fibroblast-like synoviocytes and mitigate RA
in rats by sponging miR-216a-3p and activating HDAC4 [51]. Tava-
solian et al. reported that in CIA mice, miR-146a-transduced ADSC-
Exos increased the expression of FoxP3, TGFp, and IL-10, while miR-
155-transduced ADSC-Exos elevated levels of RORyt, IL-17, and IL-6
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[52]. This indicates that Exos can serve as vehicles for the intra-
cellular transfer of miRNAs, presenting a potential therapeutic
strategy for RA. Moreover, other in vitro studies demonstrated that
Exos derived from bone marrow stem cells contained increased
levels of target miRNAs, such as miR-150-5p, miR-548e, miR-34a,
miR-320a, miR-124a, miR-216a-3p, miR-192-5p, and miR-143-3p,
which inhibited inflammation in mice with RA [51,53—58]. There-
fore, MSC-Exos could potentially serve as innovative therapeutic
agents for cell-free or cell-component-based treatment of RA.

5. Cardiovascular diseases

Cardiovascular diseases (CVDs) are the leading cause of death
worldwide, accounting for approximately 17.9 million deaths
annually. These diseases include various heart and vascular con-
ditions such as coronary and cerebrovascular diseases [59]. More
than 80% of these deaths result from heart attacks and strokes, with
a significant number occurring prematurely in individuals under 70
years of age. Inflammation plays a crucial role in their development
of CVDs, and anti-inflammatory therapies have been demonstrated
to be effective in managing these conditions [60]. Myocardial
infarction (MI) and ischemic heart disease are particularly influ-
enced by inflammation and fibrosis. Various cell types produce EVs
that influence these processes, making EVs valuable tools for
diagnosis, prognosis, and treatment.

Following an acute MI, the body swiftly initiates immune re-
sponses at both cellular and humoral levels [61]. A notable reaction
involves the differentiation of monocytes into macrophages [62]. A
study indicated a substantial increase in EV release in the heart
within 15—24 h post-MI [63]. These EVs, originating from car-
diomyocytes and endothelial cells, trigger the release of chemo-
kines and cytokines from monocytes and modulate macrophage
inflammatory responses, depending on the donor cell's condition
(ischemic vs. nonischemic) [64]. Post-M], the interaction between
cardiomyocytes extends beyond the heart, with myocardial micro-
RNAs (miRNAs) such as miR-1, miR-208, and miR-499 transported
via EVs to distant organs such as the bone marrow, where they
suppress the expression of CXC chemokine receptor 4 (CXCR4) in
mononuclear cells. This facilitates their release into the blood-
stream [65]. Additionally, EVs originating from endothelial cells
mobilize and activate monocytes from the spleen [66]. These EVs,
regardless of their cell origin, recruit and alter the phenotype of
peripheral mononuclear cells. Moreover, the quantity of EVs is
strongly correlated with the severity of myocardial damage, indi-
cating their potential as diagnostic and prognostic markers in MI
[66]. Interestingly, EVs produced by endothelial cells over-
expressing Kriippel-like factor 2 (KLF2) mitigate the recruitment of
Ly6CMe" monocytes and reduce ischemia-reperfusion injury post-
MI [67]. EVs released from cardiac stromal-progenitor cells across
different species, including mice, rats, and humans, demonstrate
immunomodulatory actions by influencing macrophage polariza-
tion in MI models, underscoring their therapeutic potential [68,69].
EVs from noncardiomyocyte sources also shape inflammatory and
fibrotic responses post-MI. Macrophages release various noncoding
RNAs via EVs, which influence the behavior of cardiac fibroblasts.
Notably, EVs carrying circular RNA circUbe3a exacerbate myocar-
dial fibrosis by altering cardiac fibroblast proliferation, migration,
and phenotype [70]. Activated macrophages transport miR-155-
rich EVs to cardiac fibroblasts, inhibiting their growth and
enhancing inflammation, thereby increasing the risk of cardiac
rupture [71]. Furthermore, the delivery of miR-155-loaded EVs
from macrophages to endothelial cells exacerbates ischemic dam-
age by inducing antiangiogenic effects [72]. Despite causing cardiac
damage, EVs from innate immune cells offer beneficial effects post-
MI. For instance, EVs from dendritic cells activate CD4" T cells,
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thereby improving cardiac function post-MI [73]. Recent research
has increasingly focused on the therapeutic modulation of T cells in
MI, mainly using regulatory T cells (Tregs) and their EVs. Studies
have demonstrated that EVs from cardiac stromal-progenitor cells
enhance Treg functions, promoting their proliferation and IL-10
production and contributing to cardioprotective outcomes in
inflammation models [74]. The dynamic interplay between EVs and
various cell types is critical in immune and repair responses post-
MI. EVs contribute to inflammatory and fibrotic processes and
have promising diagnostic and therapeutic applications, mainly
through immune cell modulation. Approaches that leverage EV
properties, particularly those derived from regulatory T cells and
cardiac progenitor cells, are a promising avenue for improving
outcomes in patients with cardiac injuries.

Heart failure (HF) is a chronic and progressive condition
resulting from structural or functional cardiac irregularities, pre-
senting primarily in two forms: heart failure with reduced ejection
fraction and heart failure with preserved ejection fraction (HFpEF)
[75]. Characterized by compromised ventricular blood ejection or
filling, HF typically manifests as symptoms including fatigue, dys-
pnea, and edema, posing a considerable public health challenge
globally and resulting in considerable morbidity and mortality. The
mechanisms underlying HF are diverse and often linked to its root
causes. EVs, extensively implicated in numerous aspects of HF
pathophysiology, particularly chronic inflammation [76], play a
critical role in intercellular communication in the context of HF. By
transporting miRNAs and proinflammatory cytokines, EVs influ-
ence cardiac function and repair mechanisms. For instance, EVs
derived from cardiac cells carrying miR-21-5p and miR-378 have
been demonstrated to regulate angiogenesis, cardiomyocyte sur-
vival, and fibrosis, indicating their potential as modulators of dis-
ease progression [77]. Additionally, the bidirectional
communication facilitated by specific miRNAs in EVs, such as miR-
155 and miR-217, among cardiomyocytes, macrophages, and fi-
broblasts, underscores their role in either exacerbating or miti-
gating cardiac hypertrophy and ischemia [78]. Furtheremore,
exosomes have been investigated as potential biomarkers for CVDs
due to their ability to circulate in body fluids stably and because
they encode information on a variety of disease status indicators
[79]. Exosomes derived from cardiomyocytes, endothelial cells, and
fibroblasts play a role in intercellular communication under both
physiological and pathological conditions [80]. Their ability to
mirror the cellular origin and the pathological disturbance renders
them suitable for noninvasive diagnosis and prognosis of CVDs [79].

MSCs secrete exosomes that possess properties that boost car-
diac repair, underscoring their therapeutic potential in CVDs
[68,81—-83]. Preclinical studies have revealed that MSC-Exos can
interact with vascular endothelial cells, promoting angiogenesis, a
pivotal process in heart tissue repair [84,85]. These exosomes,
mainly originating from human umbilical cord mesenchymal stem
cells (hucMSCs), have been observed to transport microRNA-19a
(miR-19a) to cardiomyocytes, thereby promoting cell survival by
targeting the SOX6 gene and modulating the AKT/JNK3/caspase-3
signaling pathway [86]. Furthermore, MSC-Exos can modulate the
immune response in the heart by promoting the polarization of
macrophages toward the anti-inflammatory M2 phenotype as
opposed to the proinflammatory M1 phenotype, thereby mitigating
inflammation and reducing infarct size in mouse models [87].
Additionally, studies have indicated that the transplantation of
MSCs into the infarcted region enhances cardiac function, with
further enhancement achieved by genetically modifying MSCs to
overexpress miR-1, which enhances their survival and differentia-
tion into cardiomyocytes [88]. Despite these promising findings,
the practical application of MSC-Exos in CVD treatment faces
challenges due to the limited expansion and survival of natural
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MSCs posttransplantation. Therefore, ongoing efforts are directed
toward optimizing and engineering MSCs to enhance their thera-
peutic efficacy in CVD treatment [89].

6. Age-related macular degeneration

Age-related macular degeneration (AMD), a leading cause of
vision loss in older adults, has both dry and wet forms and is
characterized by the accumulation of lysosomal lipofuscin, the
formation of drusen, and the degeneration of retinal pigment
epithelium (RPE) [90]. In wet AMD, neovascularization originating
from the choriocapillaris leads to detrimental swelling due to
increased VEGF expression. Despite the availability of current
treatments such as anti-VEGF drugs, their efficacy varies, particu-
larly in the advanced stages of the diseases. EVs, particularly those
derived from aged RPEs and marked by lysosomal associated
membrane protein 2 (LAMP2), CD63, and CD81, are implicated in
drusen formation and may influence RPE function by enhancing
exocytosis and releasing proteins that contribute to dysfunction
through oxidative stress. Oxidative stress prompts EV release from
RPEs, transferring stress signals to healthy cells and inducing
apoptosis and inflammation [91]. In response to blue-light stimu-
lation, EVs containing inflammasome mRNA contribute to AMD
progression by stimulating angiogenesis and choroidal neo-
vascularization. To address this problem, researchers have explored
the therapeutic potential of ADSCs and MSCs [92]. Studies have
indicated that ADSCs enhance their migratory capacity in response
to conditioned medium derived from stressed RPE cells and effec-
tively protect RPE cells from oxidative damage. Similarly, MSCs
have been demonstrated to shield RPE cells from sodium
iodate—induced death by suppressing the NF-kB pathway, which
activates the NLRP3 inflammasome, while also preserving mito-
chondrial integrity [93].

These interventions significantly reduce the levels of inflam-
matory markers such as IL-6, iNOS, IFN-y, and IL-17, but increase
the levels of anti-inflammatory factor TGF-, thereby alleviating
inflammatory conditions in the eye and improve visual functions in
AMD models. Such enhancements encompass improvements in
visual acuity, visual field, and multifocal photopic electroretino-
gram (mf-ERG) findings in clinical settings. These results under-
score the potential of MSC-Exos to complement RPE replacement
therapies for patients with AMD.

The therapeutic and diagnostic potential of MSC exosomes in
AMD has garnered considerable attention for their ability to regulate
vital pathological processes in degenerative ocular diseases. Studies,
such as those conducted by Li et al. and Safwat et al,, have under-
scored the efficacy of exosomes derived from human umbilical cord
and adipose tissue MSCs in addressing subretinal fibrosis, choroidal
neovascularization, and retinal layer restoration. These exosomes
transport essential miRNAs—such as miR-27b and proteins that
promote cellular repair and inhibit processes, for example, the
epithelial-mesenchymal transition (EMT)—effectively addressing
the complex pathophysiology of neovascular AMD [94,95]. More-
over, MSC-Exos protect against degenerative retinal diseases
through various pathways. These include the inhibition of retinal
tissue inflammation [96,97], downregulation of VEGF expression to
suppress choroidal neovascularization [98,99], amelioration of sub-
retinal fibrosis [97], inhibition of microglial activation [100], and
protection against photoreceptor apoptosis [101—103]. These
multifaceted range of effects highlight the potential of MSC-Exos in
AMD treatment in their targeting of the mechanisms underlying
disease progression and enhancing of regenerative processes that
are crucial for ocular tissue recovery and healing.

The role of exosomal cargos, such as miRNAs and proteins, ex-
tends to their potential as biomarkers for AMD diagnosis. Proteins
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released from RPE-derived EVs, including cathepsin D and Hsp70,
detected in the aqueous humor of patients with AMD, suggest their
use as biomarkers and therapeutic targets [ 104]. Exosomal miRNAs
such as miR-410 and miR-19a play a role in critical VEGF signaling
pathways, influencing apoptosis and angiogenesis, which are
crucial for the development of choroidal neovascularization [105].
Studies have suggested that miRNA-410 may reduce VEGF expres-
sion and inhibit retinal angiogenesis. Furthermore, EVs released by
retinal astrocytes exhibit antiangiogenic properties, inhibiting
laser-induced choroidal neovascularization [106]. These findings
underscore the dual potential of MSC-Exos in mitigating AMD
symptoms and serving as diagnostic tools. However, despite
promising preclinical results, more extensive studies on the safety,
efficacy, and mechanisms of action of EVs must be conducted
before they can be brought from the lab to the clinic. Continued
research and clinical trials are imperative to establish the applica-
bility and effectiveness of EV-based therapies in AMD, paving the
way for new advancements in managing this debilitating condition.

7. Alzheimer's disease

Alzheimer's disease (AD) is the leading cause of dementia and
accounts for 60%—80% of cases of dementia. AD is characterized by
the accumulation of amyloid-beta plaques and neurofibrillary
tangles, leading to a progressive decline in neurological function
[107]. The clinical symptoms of AD include memory loss and
worsening cognitive impairment, severely affecting daily func-
tioning and increasing dependency [108]. The FDA has approved
several medications for AD treatment, including cholinesterase
inhibitors (donepezil, rivastigmine, and galantamine) and mem-
antine, an NMDA receptor modulator [109]. Although these treat-
ments aim to alleviate symptoms and enhance the patient's quality
of life, they cannot effectively halt disease progression. This em-
phasizes the urgent need for identifying innovative therapeutic
approaches that can directly target the underlying causes of AD.

The innovative use of MSC-Exos in treating AD highlights their
remarkable multifunctionality and immense potential in modern
medicine. MSC-Exos are ushering in a new era of medical ad-
vancements, offering hope to millions with AD through their
extraordinary versatility. First, MSC-Exos are an ideal tool for
“liquid biopsy.” They can be extracted from peripheral blood and
enriched using immunoprecipitation techniques, providing a
highly sensitive and specific method for early AD diagnosis
[110—112]. Additionally, MSC-Exos serve as effective drug delivery
vehicles. Their excellent biocompatibility and ability to cross the
blood—brain barrier allow them to transport drugs directly to tar-
geted brain areas [113,114]. MSC-Exos also play a crucial role in
clearing pathogenic proteins. They facilitate the removal of beta-
amyloid and tau proteins, which are associated with neuronal
damage and death, leading to progressive memory and cognitive
decline [115—121]. Furthermore, glycosphingolipids on the surface
of exosomes can bind to Af, accelerating its clearance [122]. In
terms of therapeutic applications, MSC-Exos are highly promising
as a means to treat AD. Research conducted by Reza-Zaldivar et al.
demonstrated that MSC-Exos can promote neurogenesis and alle-
viate cognitive impairments in an AD mouse model, indicating their
potential in developing cell-free therapies [123]. These exosomes
are particularly appealing due to their minimal immunogenicity.
Guo et al. reviewed their ability to modify the progression of AD,
emphasizing their suitability as a therapeutic tool [124]. Moreover,
MSC-Exos derived from human umbilical cord mesenchymal stem
cells can alleviate neuroinflammation and reduce amyloid-beta
deposition in AD models by modulating microglial activation
[125]. They regulate miRNA content and neuronal excitability,
contribute to synaptic plasticity [126,127], enhance neuronal
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Fig. 1. Overview of the protective, regenerative, and immunomodulatory abilities of MSC-Exos in experimental models of various degenerative diseases. Exosomes have
demonstrated potential across a range of degenerative diseases, offering a versatile platform for therapeutic intervention. These tiny vesicles, originating from various cell types,
have a diverse range of functions depending on environmental cues and their source. They play crucial roles in intercellular signaling, immune regulation, and tissue repair
mechanisms. Notably, MSC-Exos demonstrate the ability to modulate immune responses within cartilage, cardiac, ocular, and brain tissues. Furthermore, the miRNAs or proteomic
carried by exosomes can reflect disease status, making them potential disease-specific biomarkers. Their inherent qualities as efficient drug carriers further enhance their appeal as
optimal delivery systems. Therefore, the integration of exosome-based therapies and diagnostics presents a promising avenue for addressing age-related degenerative conditions in

clinical settings.

activity, and regulate oxidative stress, thereby aiding in neural re-
covery [128]. Overall, MSC-Exos offer promising new diagnostic
and therapeutic approaches for AD treatment strategies, making
them a powerful tool against this increasingly severe neurode-
generative disease.

A clinical trial (NCT04388982), conducted in phases I and II,
investigated the efficacy and safety of intranasally administered
allogenic human adipose MSCs-derived exosomes (ahaMSCs-Exos)
in patients with mild to moderate AD [129]. Over a period of 12
weeks, participants received the treatment twice weekly, with no
adverse events reported, indicating the treatment's safety and
tolerability. Notably, the group receiving a medium dose exhibited
significant cognitive improvement. By the 12th week, a reduction in
the Alzheimer's Disease Assessment Scale-Cognitive section
(ADAS-cog) scores by 2.33 points and an increase in the Montreal
Cognitive Assessment scores by 2.38 points relative to the baseline
were observed. These findings suggest enhanced cognitive func-
tion, with continued improvement in ADAS-cog scores observed up
to week 36. Additionally, this group exhibited less hippocampal
volume shrinkage, indicating potential benefits in preserving brain
volume. These findings support further investigation into the use of
ahaMSCs-Exos for AD treatment, particularly at dosages of at least
4 x 108 particles, given their potential to serve as a novel thera-
peutic approach.

Exosomes have also been explored as potential biomarkers for
neurological disorders such as AD, Parkinson's disease, and stroke
[130]. Exosomes originating from the central nervous system are
detectable in cerebrospinal and peripheral bodily fluids, and the
contents of these exosomes vary with disease status [130]. For
example, exosomes isolated from plasma or cerebrospinal fluid
samples of patients with AD have been observed to carry disease-
related proteins, suggesting their utility as biomarkers for AD [130].

Exosomes derived from human umbilical cord mesenchymal
stem cells (huc-MSCs) have shown promising therapeutic effectsina
mouse model designed to mimic AD (ABPP/PS1 double transgenic
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mice). These exosomes improved cognitive abilities in the mice,
particularly in spatial learning and memory. Furthermore, they led
to a significant decrease in amyloid-beta plaques within the cortex
and hippocampus. Additionally, the activity of enzymes responsible
for degrading the AP peptide, namely neprilysin and insulin-
degrading enzymes (IDE), increased upon exosome administra-
tion. The treatment also effectively reduced neuroinflammation, as
evidenced by decreased levels of proinflammatory cytokines and
increased production of anti-inflammatory cytokines. However, the
precise mechanism underlying this inflammatory response remains
unknown. In another study, the administration of exosomes
secreted from MSC cells to an AD mouse model improved cognitive
function by promoting neurogenesis in the subventricular zone.
Exosomes derived from adipose stem cells also hold promise in
protecting against AD and may serve as a novel therapeutic
approach. These exosomes were found to reduce levels of AB, alter
the AB1-42/1—40 ratio, and reduce neuronal apoptosis, all charac-
teristic features of AD. Additionally, they were shown to promote
neurite outgrowth. Neprilysin and IDE, enzymes responsible for
degrading AB, were detected in these exosomes, further supporting
their therapeutic potential in AD. Exosomes carrying neprilysin
contribute to the reduction of AB levels when internalized, and
statins have been found to increase the secretion of exosomes car-
rying IDE protein, aiding in Af clearance. However, the mechanisms
involved remain unclear. Furthermore, other enzymes capable of
degrading AP, such as endothelin-converting enzymes 1/2 and
metalloproteinases, as well as cystatin C, a protein that inhibits
cysteine protease and found to be imbalanced in AD, are released by
exosomes. Studies on primary cortical neurons overexpressing PS2
mutations related to familial AD have demonstrated reduced levels
of various forms of exosomal cystatin and AB1-40 concentrations.
Cystatin may offer therapeutic benefits in treating AD due to its
potential positive effects on the brain, prompting considerable in-
terest in regulating its levels for medical purposes. Exosomes,
known for their ability to traverse the blood—brain barrier, offer a
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promising avenue for AD therapy, particularly in gene therapy ap-
plications, where they can accurately deliver nucleic acids. A
notable strategy involves the use of exosomes to transport short
interfering RNA molecules that target and suppress the BACE1
enzyme responsible for cleaving APP and generating Af peptide.
Studies have indicated that neuronal exosomes carry AP, contrib-
uting to the formation of amyloid plaques. Strategies for reducing
the secretion or uptake of exosomes by neural cells might prove
beneficial. For instance, inhibiting exosome uptake, which relies on
the dynamin protein, has shown promise. In experimental models,
blocking the enzyme-neutral sphingomyelinase 2, which is
involved in ceramide production, may reduce exosome levels,
plaque formation, and neuronal cell death. However, caution is
warranted when considering the elimination of exosome secretion
due to their beneficial roles in AD.

Exosomes have been used as vehicles for delivering therapeutic
agents for AD. An innovative strategy entailed loading exosomes
with curcumin to target disease mechanisms in an AD mouse
model treated with okadaic acid. These curcumin-loaded exosomes
effectively countered tau hyperphosphorylation, leading to
enhanced cognitive functions. This improvement was attributed to
the activation of AKT and inhibition of GSK-3f8, a key player in
neurofibrillary tangle formation. Although these results are prom-
ising, further research is necessary to confirm the therapeutic po-
tential of exosomes in AD treatment.

8. Conclusion

Exosomes derived from stem cells play a pivotal role in trans-
ferring their cargo, including miRNA, to parenchymal cells under
various conditions such as cartilage degradation, CVDs, brain disor-
ders, and eye diseases. This ability makes exosomes essential for
promoting plasticity and functional recovery in degenerative dis-
eases. Given the necessity for complex paracrine signaling, exosomes
offer a promising therapeutic approach for managing intricate con-
ditions such as degenerative diseases. The diverse miRNA content in
stem cell—derived exosomes allow for tailored therapeutic responses,
enhancing their efficacy. Furthermore, exosomes exhibit considerable
potential as diagnostic markers for these diseases.

Exosomes offer numerous advantages over traditional cell-
based therapies for treating degenerative diseases, as evidenced
by clinical trials. Unlike the systemic injection of cells into the
bloodstream, which can cause vessel blockages, exosomes with
diameters at the nanometer scale can swiftly penetrate the
blood—brain barrier and reach the brain without obstructing small
vessels. Moreover, exosomes can be effectively retained within
joints to treat joint damage. Overall, exosome therapy offers a more
targeted and efficient approach for tissue regeneration compared
with MSC therapies.

Ongoing research explores the advantages of using stem
cell—derived exosome therapy for degenerative diseases. These
exosomes, whether natural or engineered, offer therapeutic po-
tential. Although some studies have shown positive results in acute
injury disease models, there remains a gap in research concerning
chronic degenerative diseases such as OA, CVD, AMD, and AD and.
Further investigations are necessary to understand the pathogen-
esis of these degenerative diseases and to assess the potential
benefits of exosomes derived from various sources of MSCs,
different preconditioning statuses, doses, and therapeutic regimens
(Fig. 1).

9. Perspectives

Exosomes play crucial roles in intercellular communication and
hold immense potential for advanced therapeutics. Their diverse
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origins and inherent targeting abilities make them effective in
treating various diseases, including cancer, neurodegenerative
disorders, and CVDs. Through the modulation of target cells, exo-
somes influence proliferation, differentiation, and immune re-
sponses as well as serve as carriers for therapeutic payloads,
promoting tissue repair and enhancing treatment efficacy. This
review explored the multifaceted role of exosomes, emphasizing
their diverse sourcing from various cell types and organs, and their
pivotal role in developing clinical treatments for cancers and
regenerative medicine. Additionally, exosome biogenesis, molecu-
lar composition, and current advancements in exosome-based
therapies were explored, and challenges and future directions in
exosome research were addressed with the aim of translating these
therapies into clinical practice. Understanding the complex mo-
lecular landscapes of exosomes is crucial for harnessing their
diagnostic and therapeutic potentials, leading to innovative stra-
tegies in regenerative medicine and disease treatment.

Recent research has increasingly focused on leveraging the
therapeutic potential of exosomes for the treatment of various
diseases, including cancer, neurodegenerative disorders, CVDs, and
regenerative medicine. Exosomes have unique properties, such as
remarkable stability and inherent targeting capabilities, which
make them promising candidates for therapeutic applications,
particularly in cell therapy. Studies have demonstrated that exo-
somes differ in their biological activities depending on the cell
source they are derived from and can effectively modulate various
cellular processes, underscoring their potential in targeted drug
delivery and therapy. Despite challenges such as their limited cir-
culation lifetime and relatively weak targeting capacity, researchers
are working to improve the performance and clinical utility of
exosome engineering and therapies.

In conclusion, exosomes are promising therapeutic vehicles in
cell therapy given their distinct properties and abilities. However,
additional research is necessary to address current challenges and
fully harness their potential in this field. This review offers a
comprehensive overview of exosomes and their evolving role in
intercellular communication, with a particular focus on their utility
in cell therapy, along with discussions on exosome biogenesis,
composition, mechanisms of intercellular transfer, and the current
landscape of exosome-based treatments in both preclinical and
clinical settings.
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