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Cohort studies are costly and time consuming. They require not only labora-
tory equipment and assays but also collaboration from participants and health
agencies. Due to cost constraints, they are often confined to a specific popula-
tion. Nevertheless, they play a crucial role in providing fundamental insights for
medical advancements, shedding light on the origins of diseases, and acting in
socioeconomic influence in policy making.

A “BABY BOOM” OF COHORTS
Weare currently witnessing a significant increase in the establishment of large-

scalemedical cohorts, coveringawide rangeof areas fromphenomics to compre-
hensivemulti-omics (Figure 1). Many of these cohort studies are focused on spe-
cific diseases, such as stroke1 and occupational hazards,2 as well as large-scale
prospective studies.3 One important development is the quick emergence of a
newtypeofgenomicdataasaresultof thewidespreaduseofnoninvasiveprenatal
testing (NIPT), which involves sequencing cell-free DNA from maternal plasma.
These NIPT-derived genotypes (NIPTgs) are analogous to sparse whole-genome
sequencing data, and because they accumulate so quickly, a single cohort of
NIPTgs can be sampled at a far lesser cost than chipped or sequenced cohorts.
The integrationofelectronichealth recordswith localhealth information infrastruc-
ture has the potential to generate new cohorts related to NIPTgs.

The improved sequencing technique, IT technology, and relatively homoge-
neous population structure will make future medical cohorts (or biobanks) in
China superior to traditional cohorts such as the Framingham cohort. Data will
be sourced not only from research institutes but also from hospitals and smart
device companies. An analogy to conceptualize emerging biobanks is as a
banking system that facilitates various transactions within and between bio-
banks. Data exchange and interactions have been routine in medical research,
but when human subjects, particularly DNA data, are involved, accomplishing
data exchange becomes a major challenge. This poses a liquidity risk for the
biobank system, which needs to establish trustworthiness.

The comprehensive delineation of biobank research is difficult. Our focus is
directed toward genetic and genomic aspects, which are governed by strict reg-
ulations for data exchange and sharing. We investigated potential scenarios for
data exchange and assessed how new technologies might address these chal-
lenges. The typical applications of cohorts, such as genome-wide association
studies (GWASs) and polygenic score (PGS), depend on the sample size of the
discovery dataset. Considering the genetic homogeneity of the Chinese popula-
tion, merging cohorts can enhance statistical power.

ROUTINE 1: GENOME-WIDE ASSOCIATION META-ANALYSIS
Genome-wide associationmeta-analysis (GWAMA) has been a safemethod to

share summary statistics and, consequently, has facilitated statistical discov-
eries for genes underlying complex traits and diseases. The most recent
GWAMA has involved over 5 million GWAS samples. However, one limitation
of GWAMA is that the summary statistics are predefined and adjusted, poten-
tially limiting their parameterization space. Efforts are now being made to
enhance this powerful tool.

ROUTINE 2: GENOTYPE IMPUTATION
In GWASmeta-analysis, genotype imputation is imperative formaximizing sta-

tistical power. It has been a routine for genetic studies, which saturates geno-
ll
types via an in silico solution. High-quality reference panels and better ethnicity
matching are required. Recently, the China National GeneBank Database
has been certified as a Trustworthy Data Repository by the CoreTrustSeal Stan-
dards and has established such an imputation service (https://db.cngb.org/
imputation/). Its reference panel is from10,000 stroke individuals from the China
Kadoorie Biobank. In addition, a meta-imputation algorithm was developed that
allows imputation results generated using different reference panels to be com-
bined into a consensus imputed dataset, which addressed the loss of power
caused by privacy restrictions to some degree.4 As imputation inevitably involves
at least two datasets, to date, homomorphic encryption has been implemented
to facilitate secure outsourcing of genotype imputation.

ROUTINE 3: POLYGENIC GENETIC SCORE
As single variants have small effects in determining the variation of complex

traits, PGS has been extensively used to predict individual-level liability to a trait
or disease. The statistical power of PGS is based on the sample size. Often, the
aggregated sample size is from either single bulk data for common complex
quantitative traits (such as the UK Biobank of approximately 500,000 samples)
or multiple datasets for a complex disease (such as GWAMA by pooling together
all available cohorts). However, our practically useful sample size is approxi-
mately 10,000 currently, so it may take STROMICS and ChinaMAP some time
to collect as many samples as UK Biobank. To fully unleash the power of PGS,
parameterization of a trainingmodel is often required,which in turn requires com-
plete access to the original data or innovative computational strategies.

ROUTINE 4: LARGE LANGUAGE MODEL FOR MEDICINE
The ChatGPT has achieved remarkable success in handling diverse tasks and

has demonstrated competency in the USMedical Licensing Examinations. Given
the pressing need for high-quality healthcare, there is a growing interest in the
development of an advanced and tailoredmedical GPT-like systembased on nat-
ural language processing. Such a system could significantly impact clinical prac-
tice, improve efficiency, and enhance the effectiveness of clinical and educational
work within the healthcare system.While there have been advancements in "few
shots" or "zero shots" in large language models (LLMs), the acquisition of high-
quality and high-volume medical records, including image data for a multimodal
clinical LLM, remains essential. This is particularly relevant for the potential intro-
duction of the LLM formedical applications in China, where the use of ICD-10 and
ICD-11 is prevalent and anticipated to align with ICD-11 in the near future. These
medical records are often centralized at national or provincial health commis-
sions, and efforts are underway to establish or enhance the infrastructure for
data sharing between the central hub and hospitals. It is imperative to recognize
that LLMs play a pivotal role in currentmedical artificial intelligence systems, and
the governance structures need to address not only the permissibility of such
tools but also the potential risks, including adversarial attacks, especially in the
context of chatbot-style models that could potentially harm patients.

ROUTINE 5: SEARCHING RELATIVES ACROSS COHORTS
When cohorts expand, there is an inherent interest in exploring common

individuals or relatives across these cohorts for medical purposes, such as
investigating kinship between donors and recipients. While there are different
methods available to confirm kinship, establishing a sharing mechanism across
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Figure 1. Metaphor of data sharing in medical
research New medical cohorts or biobanks have
mushroomed in an unprecedented way, but they are
so difficult to access and share for many researchers.
Are we really lacking in data or lacking the willingness
for data sharing?
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inter-cohort settings can be challenging. It is noteworthy that an algorithm for
determining kinship using inter-cohort genomic data has been successfully
developed in China recently.5

WHAT IMPEDES DATA SHARING
In the United States, research sponsored by the National Institutes of Health is

required to release the relevant datasets or deposit them into dbGaP. In China,
medical cohort funding often comes from various sources, and enforcing data
sharing by one agency may not lead to widespread adoption by others. It is
important to highlight the successful data sharing of the Chinese Glioma
Genome Atlas, which releases medical data of various tiers (http://www.cgga.
org.cn). However, many other cohort studies do not regularly practice this.
Most cohorts are still in the early stages, and researchers are hesitant to share
their data. As academic requirements often prioritize monopolistic authorship,
data sharing consequently seems harmful if proper compartmentalization is
not practiced. However, if we consider the cost for a single cohort, such as
one of the aforementioned cohorts, approximately 38 million RMB is spent for
sequencing, and the total expense is even magnified, say, 60 million RMB. A
budget of 60million RMB is analogous to a funding competition arena that hosts
500 applicants (0.6 million RMB and approximately 20% success rate) or 1,000
junior applicants (0.3million RMBand approximately 20%success rate).Would it
sound reasonable that a such cohort should be consequently accessed by a
similar number of researchers?

A commonly raised truism is the privacy risk associatedwith data sharing, and
there is a balance between research activities and data security. While it may
seem like the cohort owner is primarily responsible for data security, it presents
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challenges yet also offers opportunities for the development of new technolo-
gies. Access control and authorized users are themost frequently utilized strate-
gies, and they require fundamental infrastructure development, often guided
by various national institutes. However, research activities often go beyond
these established routines. Therefore, more adaptable and efficient tools are
necessary. Building and sharing, which may currently seem like obstacles, are
the inevitable paths for medical cohorts.
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