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Mitochondrial dysfunction in cardiomyocytes is a hallmark of heart failure
development. Although initial studies recognized the importance of
different mitochondrial subpopulations, there is a striking lack of direct com-
parison of intrafibrillar (IF) versus perinuclear (PN) mitochondria during the
development of HF. Here, we use multiple approaches to examine the mor-
phology and functional properties of IF versus PN mitochondria in pressure
overload-induced cardiac remodelling in mice, and in non-failing and failing
human cardiomyocytes. We demonstrate that PN mitochondria from failing
cardiomyocytes are more susceptible to depolarization of mitochondrial
membrane potential, reactive oxygen species generation and impairment
in Ca2+ uptake compared with IF mitochondria at baseline and under phys-
iological stress protocol. We also demonstrate, for the first time to our
knowledge, that under normal conditions PN mitochondrial Ca2+ uptake
shapes nucleoplasmic Ca2+ transients (CaTs) and limits nucleoplasmic
Ca2+ loading. The loss of PN mitochondrial Ca2+ buffering capacity trans-
lates into increased nucleoplasmic CaTs and may explain disproportionate
rise in nucleoplasmic [Ca2+] in failing cardiomyocytes at increased stimu-
lation frequencies. Therefore, a previously unidentified benefit of restoring
the mitochondrial Ca2+ uptake may be normalization of nuclear Ca2+ signal-
ling and alleviation of altered excitation–transcription, which could be an
important therapeutic approach to prevent adverse cardiac remodelling.

This article is part of the theme issue ‘The cardiomyocyte: new revel-
ations on the interplay between architecture and function in growth,
health, and disease’.

1. Introduction
Despite major improvements in available therapeutic options, heart failure (HF)
remains one of the leading causes of death worldwide [1]. While common
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pharmacotherapeutics target systemic changes in the neurohor-
monal status of HF patients [2], no intervention that directly
improves cardiomyocyte function and viability has been success-
fully implemented in clinicalpractice.Thus, elucidatingmolecular
changes occurring at a cellular level during the initiation and pro-
gression of HF is critical for the development of new therapeutic
strategies. Mitochondrial dysfunction in cardiomyocytes has
been identified as one of the hallmarks of HF development,
and it has been shown to contribute to impaired contractility of
the heart [3] and survival of cardiomyocytes [4]. Remarkably, all
mitochondrial functions affected in HF require tight regulation
of calcium (Ca2+) fluxes [5] and include reduced cellular respir-
ation rate [6–8], increased production of reactive oxygen species
(ROS) [9], impairment of intraorganellar Ca2+ cycling [10,11]
and lower rates of mitophagy [12,13], making mitochondrial
Ca2+ homeostasis an important determinant of cardiac health.

In cardiomyocytes, a transient rise in the cytoplasmic Ca2+

concentration, [Ca2+], occurs during each heartbeat. The coor-
dinated regulation of Ca2+ cycling under the conditions of
different workload demand is achieved by the close physical
proximity of the main Ca2+ cellular store, the sarcoplasmic reti-
culum (SR), and mitochondria distributed throughout the cell.
At the junction between the SR and mitochondria, a space
known as the subcellular microdomain, local Ca2+ fluxes of
high magnitude lead to mitochondrial Ca2+ uptake [14,15].
Mitochondrial Ca2+ entry is operated by the coordinated
action of voltage-dependent anion channels (VDACs), located
on the outer mitochondrial membrane [16] and the mitochon-
drial Ca2+ uniporter (MCU), located on the inner membrane
[17], and it is critical for meeting the energy demands of cardi-
omyocytes [7,17,18]. For example, increased pacing frequency
and adrenergic stimulation result in increased mitochondrial
[Ca2+], which enhances tricarboxylic acid cycle dehydrogen-
ases, leads to faster NAD(P)H reduction and finally increases
ATP generation by feeding the electron transport in the
respiratory chain (reviewed in [19]).

However, the process of mitochondrial Ca2+ uptake is com-
promised in HF [16,17,20,21] and exacerbated further by the
reduction in relative mitochondrial content in early [22] and
late [23] cardiac remodelling, supporting the idea that it is
causally implicated in the pathogenesis of HF. Indeed, recent
work has demonstrated that interventions leading to enhanced
mitochondrial Ca2+ uptake can have beneficial effects on the
development of HF [21,24].

Cardiomyocytes contain multiple subpopulations of
mitochondria: subsarcolemmal (SSL), intrafibrillar (IF) and peri-
nuclear (PN), all of which show distinct characteristics. SSL
mitochondria are packed in spaces just under the plasma mem-
brane, IF mitochondria are organized in long parallel threads
surrounding thecontractilemyofilaments,where they formstruc-
tural and functional complexes with the SR, while dense clusters
of smaller grain-like mitochondria surrounding the nuclei are
observed in PN regions [25]. Unlike the SSLand IFmitochondrial
subpopulations, which were the focus of numerous previous
investigations, the PN mitochondria have scarcely been studied.
Lu et al. recentlydemonstrated that in contrast to IFmitochondria,
which are remarkably static, PN mitochondria are relatively
mobile, appear to participate in fission/fusion dynamics and
play a central role in mitochondrial genesis and turnover [26].
Mitochondrial fission is required to create new mitochondria
andsegregatedamagedones formitophagy,whilemitochondrial
fusion results in elongated mitochondria and allows content
mixing between two fusing organelles. Hence, PNmitochondria
appear to play an important role in regulating the adaptation of
the mitochondrial network to meet the metabolic needs of the
cell. Furthermore, PN mitochondria show higher autofluores-
cence of mitochondrial NADH than IF mitochondria [25],
possibly owing to lower mitochondrial respiration and/or a
shift in metabolism towards glycolysis [27].

Accumulating knowledge on mitochondrial dysfunction in
HFhas been recently reviewed [28] and it comprises redox imbal-
ance, ROS-induced ROS generation, impaired mitochondrial
Ca2+ homeostasis, increased glycolysis, decreased fatty acid oxi-
dation, and increased inflammation and rates of cell death
via mPTP opening. While initial studies have investigated func-
tional remodelling of mitochondrial subpopulations, there is a
striking lack of direct comparison between IF versus PN mito-
chondria during cardiac remodelling and its progression to HF.
Furthermore, the functional consequences of mitochondrial dys-
function on nuclear signalling, including Ca2+ cycling, are yet to
be elucidated. Here, we use multiple approaches to examine the
morphologyand functional properties of IF versus PNmitochon-
dria in pressure overload-induced cardiac remodelling and
failure in mice (via trans-aortic constriction, TAC), and as a
proof-of-principle for clinical relevance of our findings, we
repeated a subset of experiments in non-failing and failing
human cardiomyocytes. We have demonstrated that PN mito-
chondria from failing cardiomyocytes are more susceptible to
changes in mitochondrial membrane potential (ΔΨm), ROS gen-
eration and impairment in Ca2+ uptake compared with IF
mitochondria at baseline and under physiological stress. We
have also shown, for the first time to our knowledge, that
under normal conditions PN mitochondrial Ca2+ uptake shapes
nucleoplasmic Ca2+ transients (CaTs) and limits nucleoplasmic
Ca2+ loading. The loss of PN mitochondrial Ca2+ buffering
capacity translates into increased nucleoplasmic CaTs and may
help to explain the disproportionate rise in nucleoplasmic
[Ca2+] in failing cardiomyocytes at increased stimulation frequen-
cies. Therefore, normalization of mitochondrial Ca2+ regulation
may be a novel therapeutic approach to restore altered Ca2+-
mediated transcription and prevent adverse cardiac remodelling.
2. Material and methods
The data supporting findings of this study are available from the
Dryad Digital Repository: https://doi.org/10.5061/dryad.
pvmcvdnn9. Materials and methods are described in detail in
the electronic supplementary material.

All procedures involving animals were carried out in accord-
ance with the Federal Act on the Protection of Animals (Medical
University of Graz) or the NIH Guide for the Care and Use of
Laboratory Animals (UC Davis) and were approved by the Insti-
tutional Animal Care and Use Committee. Human hearts (from
patients and organ donors whose hearts could not be used for
transplantation) were acquired via collaboration with the Division
of Cardiac Surgery (Medical University of Graz). The use of
human samples was approved by the Ethical Committee of the
Medical University of Graz, and all experimental procedures
were carried out in accordance with the Declaration of Helsinki.
3. Results
(a) Distribution and morphology of intrafibrillar and

perinuclear mitochondria in pressure overload
To address potential changes in the organization and function
of mitochondrial subpopulations during pressure overload-
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Figure 1. Intrafibrillar (IF) and perinuclear (PN) mitochondrial localization and their morphological alterations in failing mouse ventricular cardiomyocytes.
(a) Representative EM images (i) and schematic overlay (ii) distinguishing populations of IF and PN mitochondria in left ventricular sections of a healthy
mouse heart. (b) Average values of IF and PN mitochondrial perimeter (i) and aspect ratio (ii) in healthy mouse ventricular myocytes. n = 120 mitochondria
from N = 3 mice per group. (c) Representative fluorescence image of a live adult mouse cardiomyocyte stained with MitoTracker® Green (i) and magnification
of corresponding cell areas containing IF and PN mitochondria (ii). Nuclear localization was confirmed by DAPI staining. (iii) EM image of PN mitochondria accu-
mulated in the space between two nuclei of a typically binucleated mouse ventricular myocyte. (d ) Average values of IF and PN mitochondrial size (i), number per
area (ii) and aspect ratio (iii) in ventricular cardiomyocytes isolated from sham- and seven-week post-TAC surgery mice. For pressure overload-induced changes in
morphological parameters 68–120 individual mitochondria from N = 3 mice (4–8 cells) or 43–44 cellular sections (15 cells) per group were traced. p-values were
calculated using Mann–Whitney test comparing TAC group to the respective sham control. n.s., not significant.
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induced HF, we first performed confocal and electron
microscopy (EM) imaging of intact adult ventricular cardio-
myocytes and mouse myocardium preparations, respectively.
As previously observed in EM images of rabbit hearts [26],
ultrastructural morphometric analysis showed that IF mito-
chondria are organized longitudinally, densely filling the
space between the myofibrils, while PN mitochondria are
tightly packed on the longitudinal poles of the nucleus
(figure 1a), and in the space between the two nuclei in typically
binucleated ventricular cells (figure 1c). Quantification of
mitochondrial size and shape by individual tracing ofmitochon-
dria defined as organelles enclosed by a double contoured
membrane in cytoplasmic andPNspaces showed thatmitochon-
drial perimeter and aspect ratio are significantly different in the
two subpopulations (figure 1b), with PN mitochondria being
smaller and more spherical. Interestingly, IF mitochondria in
TAC-operated mice at seven weeks post-intervention appeared
smaller and rounder, and were increased in number per area
when compared with controls (figure 1d), while these par-
ameters remained unchanged for PN mitochondria. These data
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Figure 2. Abundance of intrafibrillar (IF) and perinuclear (PN) mitochondria in hypertrophic and failing mouse ventricular cardiomyocytes. (a) Representative flu-
orescence images of a live ventricular cardiomyocyte isolated from control and failing mice and stained with TMRM (i,iii), and magnification of corresponding cell
areas containing PN mitochondria (mito.; (ii,iv)). (b) Average cross-sectional area ofwhole cell, nucleus, IF and PN mitochondria in ventricular cardiomyocytes isolated
from sham- and TAC-operated mice one (1W) or seven (7W) weeks after the intervention. p-values were calculated using ANOVA with Dunnett post hoc test (with
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suggest a shift of typical IF mitochondria towards a phenotype
more resembling that of PN mitochondria during the develop-
ment of HF. As PN mitochondria are critically involved in
mitochondrial genesis and turnover, this phenotypic shift
could be a result of premature mitochondrial recruitment and/
or delayed degradationwith important functional consequences
for cardiomyocyte bioenergetics.
(b) Abundance of intrafibrillar and perinuclear
mitochondria in hypertrophic and failing mouse
ventricular cardiomyocytes

To assess the effect of short- and long-term pressure overload
on the relative abundance of IF and PN mitochondria, we
systematically quantified the subcellular composition of car-
diomyocytes isolated from sham and one- and seven-week
post-TAC hearts (figure 2). At the (sub)cellular level, cardio-
myocyte and nuclear cross-sectional area and the area
occupied by IF and PN mitochondria increased progressively
in response to mechanical overload (figure 2a,b). However,
myocyte growth was even greater, resulting in a reduced
mitochondrial volume as a fraction of cell volume
(figure 2c). This reduced relative mitochondrial volume was
already decreased substantially for IF mitochondria at one
week post-TAC, with similar values obtained at seven
weeks post-TAC. These values are in remarkable agreement
with a previous study using the same model, in which an
advanced three-dimensional stereology method for quantifi-
cation of cardiomyocyte composition was used [23]. The
relative abundance of PN mitochondria within the cell
tended to be lower at one week post-TAC and was statistically
lower compared with sham at seven weeks post-TAC,
although it remained proportional to the nuclear surface
area (figure 2d ). This relative decrease in IF and PN mito-
chondrial availability with increased heart size indicates
that, despite the absolute increase in mitochondrial content,
the mitochondria were diluted with respect to the growing
myofibrillar elements.
(c) Mitochondrial membrane potential (ΔΨm) of
intrafibrillar versus perinuclear mitochondria in
failing mouse and human cardiomyocytes

Given that acute pressure overload reduces IF and PN mito-
chondrial cellular abundance in mice, we next sought to
address the potential functional alterations of the two sub-
populations over the course of TAC-induced remodelling.
We found that mitochondrial membrane potentials (ΔΨm)
determined using either potential-sensitive dye TMRM redis-
tribution (electronic supplementary material, figure S1)
or quench/de-quench modes (figure 3; please note that in
this imaging mode increased fluorescence intensity implies
depolarization of ΔΨm) were remarkably preserved in
one- and seven-week post-TAC cardiomyocytes for IF
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mitochondria, while PN mitochondria exhibited a significant
loss in ΔΨm, both at one and seven weeks post-TAC
(figure 3a,b). Application of high-frequency pacing (5 Hz)
had no effect on IF and PN ΔΨm in cardiomyocytes isolated
from sham controls, but pacing led to a significant decrease
in ΔΨm of IF mitochondria from late TAC mice, which
matched the ΔΨm levels of already depolarized PN mito-
chondria after 10 min of pacing (figure 3c,d ). Similar
experiments in cardiomyocytes isolated from human control
and failing myocardium confirmed the inability of PN mito-
chondria to maintain ΔΨm in HF (figure 3e,f ), underscoring
the clinical relevance of the data obtained in the experimental
mouse model.
(d) Reactive oxygen species production and Ca2+

uptake of intrafibrillar versus perinuclear
mitochondria in control and failing mouse
cardiomyocytes

Oxidative stress and increased ROS production are a hall-
mark of mitochondrial dysfunction in HF. To examine
whether IF and PN mitochondria from TAC-operated mice
exhibit distinct degrees of oxidative stress compared with
control mice, ROS generation was measured in cardiomyo-
cytes using CellROX® Deep Red reagent. Figure 4a,b
shows that cardiomyocytes from TAC-operated mice had
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significantly higher ROS production in both IF and PN mito-
chondria, and that increasing pacing frequency to 5 Hz further
increased the oxidative stress in both subpopulations of
mitochondria. Notably, increase in ROS production in PN mito-
chondria exceeded that in IF mitochondria, especially at high-
frequency pacing (mean ± s.e.m. for IF versus PN mitochondria
respectively; 149 ± 19 versus 216 ± 29 a.u., p= 0.039).

Compromised mitochondrial Ca2+ uptake is a further
characteristic of HF. We used saponin-permeabilized isolated
cardiomyocytes loaded with Rhod-2 fluorescent indicator and
incubated them for 5 min in solutions with increasing [Ca2+]
to assess mitochondrial Ca2+ uptake in IF and PNmitochondria
from control and failing mice (figure 4c–e). In agreement with
previous work [26], we observed slower Ca2+ uptake in PN
versus IF mitochondria (figure 4c,e); however, the steady-state
amplitude in both subpopulations reached similar levels for
each [Ca2+] studied. TAC caused a dramatic reduction in mito-
chondrial Ca2+ uptake in both IF and PN mitochondria at
each of the three values of [Ca2+] studied (figure 4c,d). Again,
functional capability to sequestrate Ca2+ was disproportionally
impaired in PN mitochondria, which also exhibited a higher
threshold level of [Ca2+] for uptake compared with
IFmitochondria (figure 4e; note no uptake by PNmitochondria
at 1.35 µM). The seemingly faster Ca2+ uptake observed in TAC
versus sham PNmitochondria at higher [Ca2+] (2 and 10 µM) is
likely due to already saturated mitochondrial [Ca2+] after
exposure to 1.35 µM Ca2+ in sham mice.

Ca2+ uptake by mitochondria plays an important role in
(sub)cellular Ca2+ cycling, and its dysregulation has a pro-
found effect on excitation–contraction coupling and
cytoplasmic [Ca2+] in HF. As PN mitochondria are
particularly functionally impaired in TAC animals and
failing human hearts, this raises an interesting question as
to whether altered Ca2+ uptake by PN mitochondria may
have a measurable effect on nucleoplasmic Ca2+ homeostasis
in HF.
(e) Effect of impaired perinuclear mitochondrial Ca2+

uptake on nucleoplasmic Ca2+ transients in failing
mouse cardiomyocytes

To address this question, we first tested the effect of
pharmacological inhibition of mitochondrial Ca2+ uptake
on nucleoplasmic CaTs in ventricular myocytes isolated
from healthy mouse hearts (figure 5a–c). Cells were simul-
taneously labelled with the Ca2+ indicator Fluo-4 for
quantification of subcellular CaTs and TMRM for detection
of mitochondrial localization in the absence and presence
of the specific MCU inhibitor Ru360 (10 µM) [29,30].
Ru360 slows mitochondrial Ca2+ uptake to the extent that
mitochondrial Ca2+ uptake on a time scale of action poten-
tial-induced CaTs is essentially blocked [31]. In the absence
of Ru360, PN regions were clearly noticeable as areas of
lower [Ca2+] and high TMRM signal surrounding the nucleus
on both poles (figure 5a,b), compatible with the idea that
PN mitochondria may buffer Ca2+ around the nucleus
during electrically stimulated CaTs, therefore shaping
the nucleoplasmic-to-cytoplasmic [Ca2+] gradients in cardio-
myocytes during the cardiac cycle. Similar regions were
observed in cardiomyocytes from non-failing human hearts
(figure 5d ), hence strengthening their general applicability
and clinical relevance.
The addition of Ru360 had no effect on cytoplasmic CaTs,
but dramatically enhanced PN CaTs, as indicated by the sig-
nificantly higher diastolic Ca2+ levels and amplitude
(figure 5b,c). Notably, increased Ca2+ cycling in PN regions
also translated into higher nucleoplasmic CaTs, in terms of
both diastolic [Ca2+] and amplitude of CaTs. These data
raise the possibility that the lack of PN mitochondrial Ca2+

uptake as observed in TAC cardiomyocytes may lead to
more rapid propagation of CaTs from the cytoplasm to the
nucleus, and moreover, to the disproportional increase in
nucleoplasmic versus cytoplasmic CaTs in diseased myo-
cytes, especially at higher pacing rates where mitochondria
are expected to take up more Ca2+ [32]. Indeed, we pre-
viously showed that in TAC cardiomyocytes, higher pacing
frequencies elevate diastolic [Ca2+] in the nucleoplasm to a
much larger extent than in the cytoplasm, leading to the acti-
vation of nuclear CaMKII and consequential nuclear export
of the transcriptional regulator HDAC4 [33].

Here, we complemented those data with experiments per-
formed in cardiomyocytes from sham- and TAC-operated
mice stimulated at increasing pacing frequencies in the
absence or presence of inhibition of mitochondrial Ca2+

uptake with Ru360 (figure 6). In agreement with our previous
work, we show that in TAC-operated mice, diastolic [Ca2+]
increased, CaTs amplitude decreased and kinetics slowed at
any frequency studied. Additionally, changes in nuclear
[Ca2+] were much more pronounced than those in the cyto-
plasm. While preincubation with Ru360 caused significant
enhancement of nucleoplasmic CaTs in sham-operated
control mice (figure 6, red squares), it had no effect on cyto-
solic [Ca2+] in TAC-operated mice. These data are consistent
with the finding of blunted PN mitochondrial Ca2+ uptake
in TAC cardiomyocytes (figure 4c,d ) and suggest that func-
tional impairment of mitochondria can contribute to the
disproportionate rise in diastolic [Ca2+] in failing cardiomyo-
cytes, especially in the nuclear compartment. Notably, Ru360
had no effect on cytoplasmic [Ca2+] in either sham- or TAC-
operated mice. The reduction in nuclear CaT amplitude
seen in TAC (figure 6b, right) is explained by the dramatic
rise in diastolic nuclear [Ca2+] in failing TAC myocytes
(figure 6a, right), which limits nuclear Ca2+ efflux between
beats that is caused by altered Ca2+-regulating proteins and
nuclear envelope structure [33].

We conclude that the normal buffering of PN [Ca2+] by
healthy PN mitochondria, which is revealed by Ru360 treat-
ment, is necessary to accelerate nuclear [Ca2+] decline,
lower diastolic nuclear [Ca2+] and lower nuclear CaT ampli-
tudes to limit Ca2+-dependent transcriptional signalling.
The loss of this Ca2+-buffering ability in failing heart PN
mitochondria is why Ru360 no longer makes things worse
(they are already bad).
4. Discussion
The results of the present study indicate that PN mitochondria
are functionally altered to a higher degree than IF mitochon-
dria in failing cardiomyocytes, as manifested by the severely
depressed Ca2+ uptake across a range of different [Ca2+],
reduced mitochondrial membrane potential and increased
ROS production in failing cardiomyocytes exposed to
increased frequency of pacing. Depressed Ca2+ uptake in PN
mitochondria has a direct effect on nucleoplasmic CaTs and
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may play a causal role in disturbed excitation–transcription
coupling and progression of maladaptive cardiac remodelling.
These data identify a novel subcellular mechanism of func-
tional decline during HF development that could help the
advancement of new cardioprotective strategies and/or
better understanding of molecular mechanisms underlying
the beneficial effects of current cardiometabolic therapies.

(a) Differential properties of intrafibrillar and
perinuclear mitochondria

Selective mitochondrial autophagy, or mitophagy, removes
worn-out and damaged mitochondria with a half-life of
approximately 17 days in healthy rat hearts [34], and it is
closely linked to mitochondrial biogenesis, which permits cel-
lular replenishment with healthy organelles. By measuring
mitochondria and lysosomal co-localization as an index of
where mitochondrial turnover is occurring in live cardiomyo-
cytes, Lu et al. [26] demonstrated that unfit mitochondria
were delivered from intramyofibrillar or SSL regions to the
PN area, where they fused with lysosomes to be degraded.
If the PN region is the active site for mitochondrial clearance
for both IF and PN mitochondria, a concentration of mito-
chondria with distinct structural and functional properties
could be expected in these subcellular spaces in healthy myo-
cytes. In agreement with previous work in rabbit ventricular
myocytes [26], we found smaller dimensions, more spherical
shape and slower kinetics of mitochondrial [Ca2+] rise in PN
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Figure 6. Effect of impaired perinuclear mitochondria Ca2+ uptake on nucleoplasmic CaTs in failing mouse cardiomyocytes. Frequency-dependent changes in (a)
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mitochondria (figures 1 and 4) when compared with
IF mitochondria in isolated mouse cardiomyocytes and
myocardium. A prolonged (12 day) inhibition of autophagy
with 3-methyladenine in cultured neonatal rat cardio-
myocytes resulted in preferential accumulation of smaller
and less elongated mitochondria especially in the PN regions,
suggesting that small mitochondria normally turn over
at a higher rate and, therefore, preferentially accumulate
following the blockade of autophagy [35]. This may imply
that reduction in mitochondrial size and elongation is an
important trigger for their trafficking to the PN region and,
eventually, the process of recycling.

Impaired mitochondrial removal via mitophagy is a
common feature of both compensated myocardial hypertro-
phy and end-stage HF, suggesting that defective organelle
turnover is an early event in cardiac remodelling [21,36].
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Under pathological conditions, slower mitochondrial
removal would cause their prolonged retention in the IF
space, but also potentially lead to a phenotypic shift of IF
mitochondria more towards that of a ready-to-be-degraded
PN subpopulation. Indeed, our quantitative analysis of ultra-
structural mitochondrial morphology and density showed
that IF mitochondria from cardiomyocytes isolated from fail-
ing hearts appeared more spherical and smaller as compared
with controls, making the difference between the two mito-
chondrial populations less pronounced (figure 1). The
longevity of newly formed mitochondria is a key factor to
consider in regard to mitochondrial density. Accumulating
evidence shows that the absolute abundance of mitochondria
is increased in hypertrophic and failing cardiomyocytes,
while the autophagy is decreased as early as day 7 post-
TAC intervention [37]. This would imply that existing
mitochondria have an extended lifespan during cardiac
remodelling, a phenomenon also observed in cardiomyocytes
from aged rats [34]. Unfortunately, owing to the challenging
methodological approach required, direct measurements of
the mitochondrial half-life in various organisms and tissue
types are scarce, and to our knowledge, no data are available
in experimental models of HF or from HF patients.

If true, such extended retention and delayed degradation
of IF mitochondria may initially be an adaptive process to
compensate for increased energetic demand in hypertrophied
cells with myofibrillar volume progressively expanding in
response to mechanical overload [23]. In conditions of fast
myofibrillar growth, slowing the mitophagy process may pre-
vent depletion of the mitochondrial pool, which if it falls
below the required level for cardiac contractile activity or
maintenance of cellular integrity will lead to deterioration
in cardiac function and eventually to the death of individual
cardiomyocytes [38]. In support of this possible compensa-
tory scenario, we found that the mean relative cross-
sectional area populated by both IF and PN mitochondria
was reduced in hypertrophic and failing cells when com-
pared with controls (figure 2), despite the increase in
number of organelles per cellular area and absolute mito-
chondrial content. When proliferation of new mitochondria
is not enough to prevent their dilution by the growing
myofibrillar elements, their slower degradation may help, at
least in the short-term, by alleviating the energetic deficit of
beating cardiomyocytes.

(b) Reduced mitochondrial function in heart failure,
especially perinuclear Ca2+ uptake

IF mitochondria retained beyond their regular turnover rate
would be expected to show slightly decreased functional
properties and be especially vulnerable to stress in hyper-
trophic and failing cardiomyocytes. In addition, those sent
to be recycled in PN spaces would show more pronounced
signs of functional exhaustion, with potential consequences
to overall cardiomyocyte vulnerability including functional
and structural outcomes. Pressure overload-induced HF has
been shown to result in increased mitochondrial oxidative
stress and ROS generation and reduced ΔΨm, Ca

2+ uptake
and ATP production [21,39], observations that are consistent
with HF development in the current study. More specifically,
our recent data from the same animal model [21] demon-
strated that ATP generation and total mitochondrial reserve
capacity were severely reduced in TAC versus sham
cardiomyocytes. We monitored mitochondrial redox poten-
tial by FAD/FADH2 autofluorescence under conditions of
increased cell work induced by high-frequency pacing. Quan-
titative analysis in TAC cardiomyocytes revealed nearly
maximal FAD/FADH2 ratio (oxidized) at basal conditions,
and the TAC cardiomyocytes were significantly more
oxidized than sham cardiomyocytes. In addition, it has
recently been demonstrated that pressure overload induced
by TAC resulted in a significant increase in the expression
of Nox2 oxidase subunits and a more oxidized state overall
as assessed by the GSH/GSSG ratio [40]. It is abundantly
clear that cardiac mitochondrial ROS emission is dynamically
regulated by Na+, Ca2+ and the mitochondrial redox environ-
ment, a concept comprehensively elaborated upon by
Cortassa et al. [41]. This concept postulates that healthy car-
diac mitochondria are fine-tuned to an intermediate redox
state that prevents excessive ROS generation under highly
reduced conditions, while also maintaining an anti-oxidative
capacity under highly oxidized conditions. Our data support
this concept, as the intermediate basal FAD/FADH2 ratio
with minimal ROS generation in sham cardiomyocytes
shifted to depressed Ca2+ uptake, and severely oxidized
FAD/FADH2, with a concordant increase in ROS generation
in TAC mice.

The most novel finding here is that, while IF mitochondria
showed signs of exhaustion mostly under stress, PN mito-
chondria from failing myocytes showed signs of functional
deterioration already at baseline and high frequency of
pacing pushed them into even more oxidative stress and
functional decline (figures 3 and 4). This is in agreement
with our working hypothesis that in HF, mitochondria are
over-worked before they undergo the process of recycling
and that PN regions contain a population of especially vul-
nerable mitochondria which are at the terminal stage of
their life cycle. Excessive ROS generation by exhausted mito-
chondria may damage proteins, lipids and mitochondrial
DNA, leading to further loss in their bioenergetic capacity,
fusion and fission disbalance, and decreased mitophagy.
Over time, this leads to the accumulation of depolarized
and ROS-hyperproducing mitochondria, contributing to the
development of cardiovascular diseases [42]. Taken together,
although potentially beneficial against energetic deficit in the
initial phase of hypertrophy, slowing the removal of IF mito-
chondria could cause excessive ROS generation by unfit
organelles. Finally, as mitochondria become more damaged
and more ROS are generated, they may induce cell death
and functional decay in an enlarged myocardium [43].

Another important parameter of mitochondrial fitness
with implications in a variety of cellular functions is their
ability to take up Ca2+, especially at higher cytoplasmic
Ca2+ levels. In HF, diminished SR Ca2+ release and increased
intracellular Na+ levels depress mitochondrial Ca2+ uptake,
which impairs their capacity for sustaining optimal matrix
NAD(P)H redox potential. This in turn boosts oxidative
stress, especially upon increased workload. Here, we found
severely diminished IF mitochondrial Ca2+ uptake in failing
cardiomyocytes, and notably, even more depressed Ca2+

uptake by PN mitochondria (figure 4). Although enhancing
mitochondrial Ca2+ uptake could potentially increase the
chances of Ca2+ overload and opening of the mitochondrial
permeability transition pore as described in conditions of
acute ischaemia/reperfusion [44], recent studies described a
plethora of beneficial effects it has on cardiomyocyte
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homeostasis under physiological and pathophysiological
conditions. For example, work by Liu et al. [24] showed
that moderate overexpression of MCU in a guinea pig
model of pressure overload-induced HF inhibited mitochon-
drial oxidative stress, enhanced contractility and responses to
β-adrenergic stimulation, and inhibited arrhythmias. Along
the same lines, preventing the TAC-induced reduction in
mitochondrial Ca2+ uptake by cardiac-specific deletion of
the translocator protein of the outer mitochondrial membrane
(TSPO) protected mice from developing a full-blown HF
phenotype [21]. In addition to genetic manipulations,
pharmacological approaches to inhibit or stimulate mitochon-
drial Ca2+ uptake had clear whole-cell functional outcomes in
isolated rabbit atrial myocytes [45]. Specifically, exposure
of cardiomyocytes to Ru360 propelled the occurrence of
pacing-induced CaT alternans, while the opposite was true
for pharmacological stimulation of mitochondrial Ca2+

uptake with the polyamine compound spermine.

(c) Perinuclear Ca2+ buffering by perinuclear
mitochondria limits nuclear Ca2+ signalling

One unexplored mechanism for the efficacy of therapeutic
approaches targeted to increase mitochondrial Ca2+ uptake
in preventing cardiac remodelling and its transition to HF
could be their ability to specifically influence (peri)nuclear
Ca2+. This idea is supported by the prominent mitochondrial
accumulation in PN regions and the space between the two
nuclei in characteristically binucleated ventricular cells
(figure 1). To explore the possibility that the lack of mitochon-
drial Ca2+ uptake in the PN regions could result in the fast
and robust propagation of a Ca2+ signal toward the nucleus,
we blocked MCU via acute Ru360 application. In the
presence of Ru360, cytoplasmic CaTs remained fast and unal-
tered, suggesting that even if there is some mitochondrial
Ca2+ uptake on a beat-to-beat basis, it is too low to substan-
tially alter global cytosolic CaTs. However, propagation
through the PN region was significantly enhanced when
mitochondrial Ca2+ uptake was blocked (figure 5). Further-
more, in the presence of Ru360, nucleoplasmic CaTs were
larger, and slower to decline, resulting in elevated diastolic
[Ca2+] levels, effects consistently observed over a range of
increasing pacing frequencies (figure 6). The data suggest
that rapidly propagating cytoplasmic CaTs are not appreci-
ably affected by mitochondrial Ca2+ sequestration, but that
nucleoplasmic CaTs are significantly shaped by the Ca2+ buf-
fering effect of PN mitochondria. This normal ability of PN
mitochondria to protect the nucleus from pacing-induced
Ca2+ loading is lost in failing myocytes, and that loss may
contribute significantly to elevated nuclear Ca2+ loading
and signalling to nuclear transcription. Furthermore, our
data are in agreement with a previous study in atrial myo-
cytes which found that centrally located mitochondria can
modulate Ca2+ wave propagation in the central region of
isolated atrial myocytes [31].

The increase in (peri)nuclear Ca2+ levels due to the
reduction in mitochondrial Ca2+ uptake especially around
the nucleus may promote activation of Ca2+-mediated hyper-
trophic signalling and gene transcription. Indeed, our recent
work showed that the PN region is a fine-tuned microdomain
for local Ca2+-mediated transcriptional regulation [46]. For
example, enhanced nucleoplasmic Ca2+ levels may activate
nuclear Ca2+-calmodulin-dependent protein kinase II
(CaMKII), which can phosphorylate histone deacetylase 4
(HDAC4) and drive its nuclear export. This process mediates
the de-repression of Mef2-dependent transcription, impli-
cated in the development of HF [47]. Increased PN Ca2+

levels may, on the other hand, ensure a pool of active PN
CaMKII which will keep rephosphorylating any exported
HDAC4 that becomes dephosphorylated after leaving the
nucleus. This could prevent HDAC4 from reentering the
nucleus and reinforce the transcriptional signalling of
activated CaMKII.

One important aspect to consider when interpreting the
present data is the variety of HF phenotypes in regard to
left ventricular ejection fraction, pathophysiology, underlying
triggers (e.g. myocardial infarction, hypertension and toxic
agents), mechanisms of progression and response to treat-
ment. The development of powerful techniques for
comparative transcriptome analysis of cardiomyocytes and
non-myocytes on a single cell level identified numerous
aetiology-specific alterations in gene expression, pointing to
different underlying mechanisms of the disease progression
[48]. This highlights the importance of careful interpretation
of data from a particular experimental animal model, and
the need to exercise caution when embedding results in the
context of human disease. For example, rapid introduction
of strong stressors such as TAC in young animals tends to
lead to an HF phenotype with reduced ejection fraction.
While beyond our present scope, observations documented
here could also be involved in mediating cardiac remodelling
in HF subtypes that differ in terms of aetiology. For example,
it would be interesting to see if similar alterations in cyto-
plasmic/mitochondrial/nucleoplasmic Ca2+ crosstalk occur
in the slower disease progression observed in animal
models and patients who suffer from HF with preserved
ejection fraction.

Taken together, the present study implicates fitness and
functionality of PN mitochondria as an important determi-
nant of cardiac remodelling that may—via shaping
nucleoplasmic Ca2+ levels—contribute to the development
and progression of hypertrophy and HF. Normalization of
mitochondrial Ca2+ regulation may therefore be a novel
therapeutic approach to restore altered Ca2+-mediated
transcription and prevent adverse cardiac remodelling.
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