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Background
Cloud computing has recently become more popular as a plat-
form for genomic data analysis and collaboration.1 One such 
cloud platform for cancer research is the Cancer Genomics 
Cloud (CGC),2 powered by Seven Bridges Genomics (SBG). 
This is a secure platform to access data, analysis tools, and 
computing resources. This platform enables developers to build 
programs and tools that guide users from data preparation to 
downstream analysis. The cloud environment of this platform 
enables collaborators from different institutions to work 
together on the same project without needing to locally down-
load and manage the datasets. This reduces the cost of data 
transfer, organization, and storage. To study complex biological 
processes, it is important to combine multi-omics datasets to 

find interrelationships between biomolecules and their  
functions.3 For disease subtyping, there are many multi-omics 
data integration methods, such as the approach for transform-
ing multi-omics data into gene similarity networks via self-
organizing maps4 or the model based on uniform manifold 
approximation and projection (UMAP) and convolutional 
neural networks (CNNs),5 and a tool called Multivariate Single 
Sample Gene Set Analysis (MOGSA). MOGSA integrates 
omics data sets to find the most variant biomolecules, and to 
generate gene-set scores for each sample,6 which are useful for 
finding the distinct pathways for each subgroup. Our team has 
recently used MOGSA to integrate transcriptome sequencing 
with copy number alteration at the gene level derived from the 
segment mean and to thereby identify distinct pathways in a 
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ABSTRACT

Introduction: In the era of big data, gene-set pathway analyses derived from multi-omics are exceptionally powerful. When preparing 
and analyzing high-dimensional multi-omics data, the installation process and programing skills required to use existing tools can be chal-
lenging. This is especially the case for those who are not familiar with coding. In addition, implementation with high performance computing 
solutions is required to run these tools efficiently.

Methods: We introduce an automatic multi-omics pathway workflow, a point and click graphical user interface to Multivariate Single Sam-
ple Gene Set Analysis (MOGSA), hosted on the Cancer Genomics Cloud by Seven Bridges Genomics. This workflow leverages the combi-
nation of different tools to perform data preparation for each given data types, dimensionality reduction, and MOGSA pathway analysis. The 
Omics data includes copy number alteration, transcriptomics data, proteomics and phosphoproteomics data. We have also provided an 
additional workflow to help with downloading data from The Cancer Genome Atlas and Clinical Proteomic Tumor Analysis Consortium and 
preprocessing these data to be used for this multi-omics pathway workflow.

Results: The main outputs of this workflow are the distinct pathways for subgroups of interest provided by users, which are displayed in 
heatmaps if identified. In addition to this, graphs and tables are provided to users for reviewing.

Conclusion: Multi-omics Pathway Workflow requires no coding experience. Users can bring their own data or download and preprocess 
public datasets from The Cancer Genome Atlas and Clinical Proteomic Tumor Analysis Consortium using our additional workflow based on 
the samples of interest. Distinct overactivated or deactivated pathways for groups of interest can be found. This useful information is impor-
tant in effective therapeutic targeting.
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high-risk subgroup of adults with Acute Myeloid Leukemia 
using The Cancer Genome Atlas (TCGA)  
datasets.7 An example of applying MOGSA comes from a 
project by the Applied Proteogenomics OrganizationaL 
Learning and Outcomes (APOLLO) network, in which we 
integrated transcriptome sequencing, and proteomics, and 
phosphoproteomics using MOGSA to identify distinct path-
ways in subtypes from 87 lung adenocarcinoma cases.8 There is 
a need for a uniform framework that can process and analyze 
multi-omics data in an end-to-end manner. To meet that need, 
we implemented a workflow pipeline that extends from pro-
cessing data to pathway analysis for disease subtyping. This 
pipeline is automated with a graphical user interface (GUI) in 
Multi-omics Pathway Workflow (MOPAW). There are several 
advantages of this MOPAW, implemented on CGC over other 
platform such as CBioPortal.9 First, MOPAW allows users to 
easily bring their own datasets to analyze. Second, if users wish 
to use public datasets, they can use our additional available 
workflow. Third, through the implementation of this workflow 
on CGC, users can invite other collaborators to easily join a 
project. As soon as the run task is finished, all the members 
receive a notification to review and interpret results. In addi-
tion, users can access over 600 analytical and bioinformatics 
tools and workflow on the CGC platform. Finally, MOPAW 
allows users to do analyses based on the integration of different 
datatypes at the beginning.

Implementation
The Multi-omics Pathways Workflow (MOPAW) 
on CGC

To implement the automatic GUI MOPAW on CGC, we first 
created a docker image which included all required libraries, 
the docker image was then pushed to the CGC docker reposi-
tory. Apps running the workflow wrapped in Common 
Workflow Language (CWL) were then created by pulling the 
docker image to the CGC tool visual editor and filling out the 
GUI template with parameters and scripts (Figure 1). Interested 
readers can refer to the online documentations for details 
(https://docs.cancergenomicscloud.org/page/bring-your-own-
tools-to-the-cancer-genomics-cloud). The automatic 
MOPAW currently accepts 3 expression datatypes given by 
users to performs data preparation, multi-factorial analysis 
(MFA), and pathway analysis. The metadata file contains at 
least 2 columns, sample names and groups of interest. The for-
mat of expression data types should have rows as genes and 
columns as sample names. The sample names should have the 
same format as the metadata file. These datatypes should be 2 
or 3 of the following types: RNA-seq (raw or normalized), 
copy number alteration, normalized phosphoproteomics, and 
normalized proteomics data (Figure 2). The automatic 
MOPAW starts with appropriate data preparation for each 
given data types, dimensionality reduction is then applied, and 

Figure 1.  Diagram of multi-omics pathways workflow (MOPAW). This diagram illustrates the overall design of multi-omics pathways workflow

https://docs.cancergenomicscloud.org/page/bring-your-own-tools-to-the-cancer-genomics-cloud
https://docs.cancergenomicscloud.org/page/bring-your-own-tools-to-the-cancer-genomics-cloud
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finally pathway analysis is performed based on the group of 
interest. Below is the detail how these steps are implemented at 
the back end:

Data preparation and MFA analysis

Data preparation: This includes the removal of low-expressed 
genes, data normalization, transformation, and imputation. 
The following steps are applied as needed depending on user’s 
chosen app settings:

Copy number alteration (CNA): The Copy number altera-
tion should contain the gene names with their corresponding 
segment mean from the segmentation file. Only genes with a 
sum of CNA values across samples greater than zero are 
retained for further analysis.

RNA-seq transcriptome: Only genes with greater than one 
count-per-million reads in at least 50% of the total common 
samples are retained for the further analysis. The RNA-seq 
matrix should be either raw count or normalized. In case of raw 
count, the matrix is normalized and then log2 transformed. In 
case of normalized data, the matrix is log2 transformation only.

Normalized proteomics and phosphoproteomics data: the 
proteomics and phosphoproteomics should be normalized 
before feeding to the workflow. There are many tools available 
to do normalization10 depending on user’s preference. In the 
matrices, some samples do not have abundance values available 
for all proteins, so we have provided an option to perform 
imputation. When a protein has missing abundance values for 
more than 50% of samples, that protein is not further consid-
ered. However, if the protein is missing abundance values for 
less than 50% of samples, the value for each missing sample of 
that protein is imputed with a k-nearest neighbor (k-NN) 
strategy adapted from Lazar et  al.11 This is done using the 
DreamAI function,12 an algorithm for the imputation of prot-
eomics data, used with the default parameters (Supplemental 
Table 1).

MFA analysis.  Dimensionality reduction is a crucial step in 
many multi-omics analyses. Within our workflow, this is done 
with MFA analysis and is executed with the moa function of 

MOGSA.6 In the output of this MFA step, users can see how 
much variation within their types of interest can be explained 
with various numbers of principal components (PCs) (Supple-
mental Figure 1). This allows the user to evaluate and decide 
the number of PCs they want to use for the pathway analysis 
step.

Pathway analysis

This step of the analysis identifies the gene set scores (GSS) for 
databases selected by the user. MSigDB databases, version of 
7.1,13 are preloaded into the application. Users can download 
the newest version at http://www.gsea-msigdb.org/gsea/
msigdb/collections.jsp. The MOGSA function, Integrative 
Single Sample Gene-set Analysis of Multiple Omics,6 is used 
for this step with the default parameters (Supplemental Table 
1). The number of PC’s is specified by users at runtime.

To determine what pathways are enriched in each subtype 
or subgroup, we first selected the pathways resulting from the 
MOGSA function with GSS false discovery rate (FDR) values 
smaller than 0.01 in 50% or more of all samples. We then used 
cut-off FDR < 0.01 to select the significant pathways based on 
t.test function for 2 groups comparison or ANOVA function 
for at least 3 group comparison.

Lastly, we used generalized linear models (GLM) to calcu-
late the difference of GSS in each subgroup versus that in the 
rest and selected the top 5 and bottom 5 significant representa-
tive pathways ranked by GLM T values with P < .05.

MOPAW generates 2 heatmaps to visualize these resulting 
representative enriched pathways if found. With these, users 
can visualize the z-score scaled single gene-set normalized 
enrichment scores across all samples (Supplemental Figure 4 
for case use) and z-score scaled median GSS from data types as 
well as the contribution of each data type (Figure 4) to the 
interesting subgroups.

Results
We developed a web-based GUI application called automated 
MOPAW on Cloud Analysis Platforms. Our web-based work-
flow, built on the CGC, requires no coding or command line 

A. B.

Format of Expression file

Data type Descrip�on Format
Two or three of the following expressions:

- RNA-seq (raw or normalized)
- Copy number altera�on at Gene level
- Normalized phospho-proteomics
- Normalized global proteomics data

Sample Names and Subgroup Informa�onMeta data

Dataset 3

Dataset 2

Dataset 1

Figure 2.  Detail of data inputs provided by users.

http://www.gsea-msigdb.org/gsea/msigdb/collections.jsp
http://www.gsea-msigdb.org/gsea/msigdb/collections.jsp
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experience (Figure 3). With this web-based GUI application, 
users simply upload the input data files, and then choose 
desired app settings from the drop-box, and finally run their 
tasks solely by mouse-clicks. We encourage users to review the 
results from data preparation and MFA analysis before run-
ning pathway analysis module. For more detailed information 
how to use and run the workflow, please refer to the user man-
ual (MOPAW User Guide).

To show the capabilities of our automated MOPAW in 
action, we performed an example analysis using a subset of 
TCGA Ovarian cancer cohort with transcriptomic data gener-
ated by the TCGA Research Network: https://www.cancer.gov/
tcga and proteomics data by the Clinical Proteomic Tumor 
Analysis Consortium (NCI/NIH). We integrated RNA-seq and 
global protein datasets from 62 common TCGA samples. For 
RNA-seq, we used normalized version of fragments per kilobase 
of exon per million mapped fragments (FPKM). For Global 
protein, we used shared log ratio values of iTRAQTM Protein 
Quantitation from Pacific Northwest National Laboratory.14 
Discovery subtypes were downloaded from Verhaak et al.15 For 
the molecular pathways, we used the gmt file of MSigDB hall-
mark version 7.1 from https://www.gsea-msigdb.org/gsea/
msigdb/collections.jsp for annotation. This example utilizes data 
preparation, MFA analysis, and the pathway analysis applica-
tions of our workflow. The results include a Venn diagram show-
ing the number of common samples across data types and groups 
of interests (Supplemental Figure 2), distribution graphs for the 
given datatypes (Supplemental Figure 3), z-score scaled median 
gene set scores in a heatmap (Figure 4), and the z-score scaled 
single gene-set normalized enrichment scores across all samples 
(Supplemental Figure 4). These 2 heatmaps show any signifi-
cantly differentially expressed pathways resulting from both data 
types as well as the contribution of each data type to the 

discovery subtypes. The total running time on SBG was 7 min-
utes, which costs about $0.05.

Additional workflow for downloading and 
processing public data

The availability of public datasets generated by the TCGA 
Research Network: https://www.cancer.gov/tcga, and the 
Clinical Proteomic Tumor Analysis Consortium (CPTAC), 
has given researchers access to omics expression data in a 
wide range of different cancers. Users can access, download 
the desired datasets, and then analyzed them with automated 
MOPAW, all within the CGC platform. However, this can 
be tedious for those who are not familiar with TCGA and 
CPTAC. To improve the ease of use, we also implemented a 
workflow (Figure 5) and its corresponding GUI interface 
(Figure 6) on CGC platform to help with the data down-
loading and preprocessing steps. The required metadata file 
contains at least 2 columns, sample names and groups of 
interest. This workflow will only download the samples pro-
vided in this required metadata file. All the final matrices 
contain the gene names as rows and the sample names as 
column. The sample names have the same format with the 
interest samples provided by users. The final matrices gener-
ated from this workflow can be used as input for multi-omics 
pathway workflow. Currently, this workflow will download 
and process RNA-seq and copy number segmentation data-
sets from TCGA for all available cancer types. Due to the 
current CPTAC limits of phosphoproteomics and global 
protein data, we have pre-downloaded and then processed 
data for TCGA Ovarian and TCGA Breast cancers. 
Depending on the desired app settings, the following might 
be applied as below:

Figure 3.  User Interface of automated multi-omics workflow. This illustrates the corresponding user interface of MOPAW workflow: (a) data preparation 

and MFA analysis and (b) pathway analysis of the multi omics pathways analysis.

https://www.cancer.gov/tcga
https://www.cancer.gov/tcga
https://www.gsea-msigdb.org/gsea/msigdb/collections.jsp
https://www.gsea-msigdb.org/gsea/msigdb/collections.jsp
https://www.cancer.gov/tcga
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Figure 4.  Signal based data types. An example of the unique significant Hallmark pathways for each discovery subtype within the Ovarian samples, 

showing the overall of both datatypes and contribution of RNA and protein signals with cut-off FDR < 0.01 across these discovery subgroups. The 

pathways were highlighted with the squares for their corresponding subgroups. Red represents positive scores while blue represents negative scores. 

The top 2 pathways have highest scores compared with the other subgroups, suggesting that these 2 enriched in the differentiated subgroup while the 

last 4 pathways have highest scores compared with the remaining subgroups, suggesting that these pathways enriched in the proliferation subgroup.

RNA-seq: We used Genomic Data Commons (GDC) 
query from TCGAbiolinks,16 An R/Bioconductor package for 
integrative analysis with GDC, to obtain gene expression with 
these parameters setting: data.category = “Transcriptome 
Profiling”, data.type = “Gene Expression Quantification”, sam-
ple.type = “Primary Tumor”, workflow.type = “STAR – Counts.” 
Raw RNA seq as well as different normalized methods, FPKM, 
TPM, and FPKMUQ, along with the gene symbols generated 
by GDC were reported. This allows users to make decision 
which type they would like to use for their project.

Copy number alteration (CNA) segmentation: For copy 
number alteration segmentation, we used GDC query function 
with these parameters setting: data.category = “Copy Number 
Variation”, data.type = “Copy Number Segment”. We only 
selected primary samples ending with “01A” and “01B.” We 
estimated gene level CNA as the segment mean of copy num-
bers of the genomic region of a gene by using TCGA-
Assembler 2,17 downloaded from https://github.com/
compgenome365/TCGAAssembler-2 (version 2.0.6). Degree 
of CNA was calculated as log2 (tumor values/normal values). 
Hg38 “ensemble” was used to obtain gene position.

Global and phospho datasets: We downloaded gene-level 
iTRAQ log-ratios reported the *.itraq.tsv files from The 
Proteomic Data Commons (PDC) for these 2 cancer types: 
Ovarian cancer from Pacific Northwest National Laboratory 
(PNNL) study and Breast invasive (BI) Proteome study. Only 
the samples ending with “-01A Log Ratio” were kept for the 
final matrices.18 The purpose of this workflow is to provide 

expression matrix for integration with other types such as 
RNA-seq. Therefore, the sites from phosphoproteomics data-
set would not be included in the final matrix.

Discussion
The automated MOPAW enables users to search for unique 
molecular pathways for subgroups of interest using various 
combinations of data types. By combining multiple types of 
data, missing or unreliable information in any single data can be 
compensated for, and gene sets that cannot be detected by single 
omics data analysis, might be found. Also, the contribution of 
datasets and individual biomolecules from these datasets can be 
observed. Users can perform analyses using databases down-
loaded from http://www.gsea-msigdb.org/gsea/msigdb/collec-
tions.jsp such as Hallmark, GO Biological Process, and 
Canonical database. Using example data, we demonstrate that 
this workflow was able to identify distinct pathways for each 
discovery subtype in ovarian cancer (Figure 4). For instance, the 
molecular characteristics of proliferative subgroup include the 
highly overactivated pathways in the categories of cell prolifera-
tion. We have pushed this project to public, users can copy and 
run it to get familiar with the workflow before using their own 
data. Moreover, there is no requirement of writing complex 
codes for multi-omics analysis, which is especially useful for 
researchers who do not have coding experience. Therefore, this 
workflow offers a bridge to cross the gap between bioinformati-
cians and clinicians. The automated MOPAW was built on the 
cloud platform, which enables users to access not only this 

https://github.com/compgenome365/TCGAAssembler-2
https://github.com/compgenome365/TCGAAssembler-2
http://www.gsea-msigdb.org/gsea/msigdb/collections.jsp
http://www.gsea-msigdb.org/gsea/msigdb/collections.jsp
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workflow but also many existing workflows, and to share data 
with other collaborators. Besides, there is additional workflow 
for downloading and processing public datasets if user wish to 
use public data for either validation purpose or research ques-
tion on learning about disease subtyping. The limitation of this 
workflow is at least 2 and up to 3 datatypes. Also, we limit only 
RNA-seq, CNA, and proteomics, and phosphoproteomics. In 
the future, we aim to add more datatypes such as methylation 
and metabolites data. Also, because this workflow is imple-
mented on the cloud, users must pay for the cost of running the 
workflow and the storage of data. However, the CGC platform 
is funded by the National Cancer Institute, new users are 

provided a $300 credit for use of their cloud platform if they are 
coming from a non-profit, academic and government institu-
tion. For members of the National Institute of Health commu-
nity, these task charges for the any workflow on SBG which 
allow access to high performance cloud compute nodes, are fully 
covered. New users can also send an email to CGC support 
group through cgc@sbgenomics.com to request this pilot fund 
for their new account. Finally, to ensure a smooth experience, if 
users encounter issues with our MOPAW workflow, they can 
get technical support from the CGC team as well as our team 
(Computational Genomics and Bioinformatics Branch at the 
National Cancer Institute).

Figure 5.  Diagram Of downloading and processing public data from TCGA and CPTAC. This diagram illustrates the overall design of downloading and 

processing public data from TCGA and CPTAC. Metadata is provided by users.

mailto:cgc@sbgenomics.com
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Conclusions
The automatic MOPAW was built to provide a complete, 
multi-omics data analysis pipeline that is accessible to users 
without programing experience. The current version of the pro-
gram contains a suite of tools that help users through every step 
of this bioinformatic analysis. Additional workflow for down-
loading and processing public data is also provided. Over time, 
more tools and features will be added to further expand its capa-
bilities. To use this workflow, users should have computer with 
access to the internet and web browser installed such as Chrome. 
Users can reach out to SBG and CGC for technical support, 
and questions or to request additional needed figures.
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