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Applications of single-cell technologies
in drug discovery for tumor treatment

Bingyu Liu,1 Shunfeng Hu,1,2,* and Xin Wang1,2,3,*
SUMMARY

Single-cell technologies have been known as advanced and powerful tools to study tumor biological sys-
tems at the single-cell resolution and are playing increasingly critical roles in multiple stages of drug dis-
covery and development. Specifically, single-cell technologies can promote the discovery of drug targets,
help high-throughput screening at single-cell level, and contribute to pharmacokinetic studies of anti-tu-
mor drugs. Emerging single-cell analysis technologies have been developed to further integrating multi-
dimensional single-cell molecular features, expanding the scale of single-cell data, profiling phenotypic
impact of genes in single cell, and providing full-length coverage single-cell sequencing. In this review,
we systematically summarized the applications of single-cell technologies in various sections of drug
discovery for tumor treatment, including target identification, high-throughput drug screening, and phar-
macokinetic evaluation and highlighted emerging single-cell technologies in providing in-depth under-
standing of tumor biology. Single-cell-technology-based drug discovery is expected to further optimize
therapeutic strategies and improve clinical outcomes of tumor patients.

INTRODUCTION

Single-cell technologies refer to a group of cutting-edge technologies that allow researchers to explore biological systems with single-cell

resolution and have played mountingly critical roles in the researches of various diseases.1 As a complement to the averaging of large cell

populations, single-cell technologies, including single-cell transcriptomic, proteomic, epigenomic, and genomic technologies, provide a

more detailed picture of complex biology and reveal the heterogeneity that exists in tumor tissues.2,3 Bulk genomic and transcriptomic an-

alyses have significantly improved our understanding of the biological mechanisms within tumors and their microenvironment. However, the

averaging of signals from large numbers of cells by these methods may obscure specific cell subpopulations and states that play important

roles in tumor progression and therapeutic response, which might impede the development of anti-tumor drugs.4 Conversely, single-cell

technologies can probe the cellular state, interactions, and regulatory mechanisms of tumor cells and their microenvironment at the sin-

gle-cell level, providing insights into key issues in development of anti-tumor drugs, including tumor evolution, acquisition of therapeutic

resistance, and mechanisms of metastasis.5,6

Recently, single-cell technologies have accomplished significant achievements in the diagnosis and treatment of various tumors, including

breast tumor, lung tumor, and glioma.7 Themain types and platforms of single-cell technologies have been summarized in Table 1. Single-cell

technologies have been used to declare tumor heterogeneity and molecular subtypes; explore underlying mechanisms of tumor metastasis,

recurrence, and drug resistance; identify rare subpopulations, such as tumor stem cells and circulating tumor cells; and analyze the compo-

sition of tumor microenvironment.8 Single-cell analysis techniques provide new methods to examine intercellular variation and biological

mechanisms in tumor cells, which contributes to identifying potential therapeutic targets for drug candidates and combination therapeutic

targets to overcome drug resistance in tumor treatment.

Moreover, single-cell technologies also offer advanced insights into tumor biology and provide information about drug perturbation and

pharmacokinetic effects in cells with different genetic backgrounds, which will help researchers understand the different responses and

ADME (absorption, distribution, metabolism, excretion) mechanisms of drugs at cellular level.

Especially, more detailed maps of cell subtypes and physical locations in tumor tissues have been developed, as microfluidics, electro-

physiological measurements, high-resolution imaging, deep sequencing, and mass spectrometry platforms become increasingly sophisti-

cated.4 In preclinical studies, single-cell technologies can be used to screen perturbations in cellular function and phenotype, evaluate

drug toxicology and specific pharmacodynamic markers, and promote the optimization of drug candidates for tumor treatment. In clinical

studies, single-cell technologies are applicable inmonitoring the response to therapy in tumor patients and further exploring themechanisms

of drug resistance. In particular, the emerging VASA-seq technique enables high-throughput capture of non-coding RNAs, completing
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Table 1. Summary of main types and platforms for single-cell technologies

Technology types Characteristics Platforms Year Reference

Single-cell genome Detecting single-cell SNV,

CNV and other genomic

sequence or structure variations

DOP-PCR 2011 Navin et al.9

MALBAC 2012 Zong et al.10

LIANTI 2017 Chen et al.11

MDA 2002 Dean et al.12

META-CS 2021 Xing et al.13

Refresh-seq 2024 Wang et al.14

Single-cell transcriptome Detecting mRNA expression

in single cells

STRT-seq 2011 Islam et al.15

Smart-seq 2012 Ramskold et al.16

CEL-seq 2012 Hashimshony et al.17

InDrop 2015 Klein et al.18

Drop-seq 2015 Macosko et al.19

MARS-seq 2019 Keren-Shaul et al.20

Seq-Well 2017 Gierahn et al.21

Microwell-seq 2018 Han et al.22

SPLit-seq 2018 Rosenberg et al.23

Quartz-seq 2013 Sasagawa et al.24

RamDa-seq 2018 Hayashi et al.25

SCAN-seq2 2023 Liao et al.26

Seq-Well S3 2020 Hughes et al.27

SMART-seq3 2020 Hagemann-Jensen et al.28

Smart-seq3xpress 2022 Hagemann-Jensen et al.29

VASA-seq 2022 Salmen et al.30

Single-cell epigenome Detecting the epigenomic status of cells,

such as DNA methylation, histone

modification, and chromatin states

scRRBS 2016 Clark et al.31

WGBS 2015 Farlik et al.32

CGI-seq 2017 Han et al.33

ATAC-seq 2015 Litzenburger et al.34

DNase-seq 2010 Song and Crawford35

ChIP-seq 2019 Park et al.36

Drop-ChIP 2015 Rotem et al.37

scBS-seq 2020 Kashima et al.38

scAba-seq 2016 Mooijman et al.39

CUT&Tag 2019 Kaya-Okur et al.40

Single-cell Hi-C 2013 Nagano et al.41

Single-cell proteome Detecting the protein quantification

in single cells

SCoPE-MS 2018 Budnik et al.42

SCoPE2 2021 Specht et al.43

sc-CyTOF 2022 Iyer et al.44
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transcriptome bioinformation at the single-cell level.30 The NEAT-seq technique facilitates simultaneous measurement of nuclear protein

abundance, chromatin accessibility, and the transcriptome in single cells, allowing for the interrogation of regulatory mechanisms that

transcend central dogma.45 In addition, although there are no mainstream non-targeted assays for single-cell proteomics, the emerging

SCoPE-MS holds the promise of bridging the technology gap.46 Furthermore, single-cell sequencing and single-cell multi-omics analyses

that preserve spatial information will provide a comprehensive approach to parse the biological mechanisms of tumor development, whereas
2 iScience 27, 110486, August 16, 2024



ll
OPEN ACCESS

iScience
Review
advanced integrationmethods for single-cell data and single-cell sequencing technologies for formalin-fixed and parraffin-embedded (FFPE)

samples will further expand the scale of single-cell data. Single-cell clustered regularly interspaced short palindromic repeats (scCRISPRs) and

single-cell third-generation sequencing (TGS) technologies will further elucidate gene function and the cellular genomic and transcriptomic

landscape.

Collectively, single-cell technologies are revolutionizing the field of drug discovery and development for tumor treatment. Applying sin-

gle-cell technologies markedly contributed to drug discovery process, including target identification, high-throughput screening, and phar-

macokinetic evaluation. In this review, we systematically summarized the applications of single-cell technologies across various processes in

drug discovery and development for tumor treatment (Table 2), introduced advanced single-cell technologies, and outlined their cutting-

edge questions in drug discovery and development. The application of single-cell technologies has great potential in reducing the time

cost and improving the success rate and development efficiency for anti-tumor drugs, which will ultimately provide tumor patients with opti-

mized treatment strategies to improve clinical prognosis.
SINGLE-CELL TECHNOLOGIES IN THE DISCOVERY OF THERAPEUTIC TARGETS

Target identification is the first andmost important process in the development of new drugs, especially in the era of precision medicine. The

application of single-cell technologies can provide in-depth insights in analyzing the clonal evolutionary subpopulation characteristics of tu-

mor cells, the metastatic mechanism of tumor circulating cells, and the immune escape mechanism and interaction network in tumor micro-

environment, which can provide the theoretical foundation for the identification of anti-tumor drug targets (Figure 1).
Identification of anti-tumor targets in clonal evolution using single-cell technologies

Tumor development was pioneeringly described as a clonal evolution process by Nowell in 1976, which has been extensively supported in

recent era.88 Malignant cell populations have the property of undergoing further genetic diversification during progression, leading to a shift

in clonal structure, genotype, and phenotype over time, which has been known as clonal evolution of tumor. The heterogeneity derived from

clonal evolution has been intimately related to tumor progression and the acquisition of drug resistance.89 Recent advances in single-cell

technologies have offered unprecedented opportunities for identifying clonal subpopulations, interpretingmutational patterns, and predict-

ing evolutionary tendencies.90,91 Utilizing the latest single-cell DNA sequencing (scDNA-seq) technologies and data analysis methods helps

researchers identify single-nucleotide variants (SNVs) and copy-number aberrations (CNAs) in tumor cells, on the basis of which cell lineage

trees can be inferred.92 Algorithms including inferCNV and CopyKAT are also available for extrapolating CNAs and cell development trajec-

tories from single-cell RNA sequencing (scRNA-seq) results.90,92,93 Targeting clonal events to block the evolution of intra-tumor heterogeneity

or disrupt the balance of interaction network would provide new therapeutic strategies for tumor treatment.94 Next, we will discuss the appli-

cation and cutting-edge issues of single-cell technologies in identifying drug-resistant subpopulations of tumor cells and cancer-stem-cell-

related therapeutic targets in detail.

Drug-resistant subpopulations

Although current anti-tumor therapies may eradicate the majority of tumor cell populations, they also obviously facilitate clonal evolution in

tumor development through exerting selection pressure or inducing secondary mutations beyond the pharmaceutical target, which ulti-

mately results in the emergence of therapeutic resistance in tumor patients.95 Existing studies have demonstrated that exogenous treatment

could induce a rapid adaptation and alteration of functional mechanisms in tumor cells, such as stress-induced mutagenesis, the downregu-

lation of DNA repair genes, the expression of error-prone polymerase, and enhanced plasticity.96 Single-cell technologies quantitatively

analyze oncogenic signaling pathways and characterize drug-resistant subpopulations by identifyingmajor cellular components and defining

individual genomic and molecular status, which provides potential targets for synthetic lethal therapies in tumor treatment.97

Combining lineage tracing and scRNA-seq, Eyler et al. discovered that the copy-number amplification of insulin receptor substrate-1 and

substrate-2 (IRS1 and IRS2) in a small subset of dasatinib-resistant clones activated the insulin and AKT signaling programs and permitted a

growth predominance, indicating the promising effective therapy to overcome glioblastoma drug resistance.47 Besides, Zhao et al. identified

a drug-resistant subpopulation with unique dominant metabolic pattern by scRNA-seq in liver organoid, where accelerated glucose meta-

bolism initiated hypoxia-induced HIF-1 signaling, the upregulation of NEAT1 in CD44-high cells, and the overactivation of Jak-STAT

signaling, which could provide new targets for overcoming drug resistance in hepatobiliary tumor.48 In the study of drug resistance mecha-

nisms in refractory multiple myeloma (MM) patients, peptidylprolyl isomerase A (PPIA) was identified to be a signature and potential inter-

fering target of drug resistance to DARA-KRD treatment by longitudinal scRNA-seq, and the inhibition of PPIA could induce the restoration

of sensitivity to proteasome inhibitors in MM tumor cells.49

Moreover, epigenetic plasticity can provide homogeneous tumor populations with the selective advantage required to survive under the

pressure of drug therapy, thereby promoting drug resistance in tumor cells.98 Sharma et al. used scRNA-seq to profile the transcriptional dy-

namics of distinct stages in cell evolution under the selective pressure of cisplatin in oral squamous cell carcinomas (OSCCs). It was revealed

that H3K27 acetylation induced the upregulation of SOX9 expression and the evolution of tumor cells toward drug resistance, and targeting

JQ1, a validated inhibitor of histone acetyltransferase BRD4, could revert the sensitivity of cisplatin-resistant cells.50 Another study integrating

scRNA-seq and scATAC-seq demonstrated enhanced transcriptional activation of primitive cells to other lineages besides myeloid in resis-

tant and relapsedpediatric acutemyeloid leukemia, whichmight offer a promising combination therapy strategy for drug-resistant patients.51
iScience 27, 110486, August 16, 2024 3



Table 2. Application of single-cell technologies in drug discovery for tumor treatment

Process Sample source Tumor types

Detecting

technologies Application and findings Drugs Reference

Target identification Neurosphere

cultures

Glioblastoma scRNA-seq Discovered the copy-number amplification of

IRS1 and IRS2 in dasatinib-resistant clones

– Eyler et al.47

Target identification Organoid Hepatobiliary tumor scRNA-seq Identified a drug-resistant subpopulation with

unique dominant metabolic pattern and

NEAT1 as a potential therapeutic target

– Zhao et al.48

Target identification Clinical tumor

sample

Multiple myeloma scRNA-seq Identified PPIA as a potential novel target of

drug-resistance to Dara-KRd treatment

Ciclosporin

(targeting PPIA)

Cohen et al.49

Target identification Primary cell Oral squamous

cell carcinomas

scRNA-seq Revealed that H3K27 acetylation induced the

drug resistance, and BRD4 was a therapeutic

target

JQ1 (targeting

BRD4)

Sharma et al.50

Target identification Clinical tumor

sample

Pediatric acute

myeloid leukemia

scRNA-seq

and scATAC-seq

Demonstrated enhanced transcriptional

activation of primitive cells to other lineages

besides myeloid in resistant and relapsed

samples and revealed MEF2C as a potential

therapeutic target

– Lambo et al.51

Target identification Mouse model Lung tumor scRNA-seq Discovered high expression of TIGIT in stem

cells and identified TIGIT as a potential

therapeutic target

– Marjanovic et al.52

Target identification Primary cell Gastric

adenocarcinoma

scRNA-seq Revealed that SOX9 was associated

with the maintenance of stemness

in CSCs

EC359 (targeting

LIF/LIFR)

Fan et al.53

Target identification Clinical tumor

sample

Glioblastoma scRNA-seq Targeting Wnt could eliminate refractory

cells and block CTC-mediated

recolonization

XAV939

(targeting Wnt)

Liu et al.54

Target identification Mouse model Pancreatic ductal

adenocarcinoma

scRNA-seq Revealed that CTCs displayed

upregulated survivin expression

YM155 (targeting

survivin)

Dimitrov-Markov

et al.55

Target identification Clinical tumor

sample

Hepatocellular

carcinoma

scRNA-seq and

multi-regional

sampling

CTCs modulated CCL5 through

p38-MAX signaling axis to

enable immune escape

Antihuman CCL5-

neutralizing

antibody (targeting

CCL5)

Sun et al.56

Target identification Clinical tumor

sample

Colorectal tumor Single-cell

metabolic

fingerprints

Developed a molecular typing

system to predict metastasis

potential based on the metabolic

fingerprints of single CTCs

– Zhang et al.57

Target identification Clinical tumor

sample

Lung tumor CTC-race Enabled concurrent biophysical and

biochemical characterization of

migrating CTCs

– Liu et al.58

(Continued on next page)
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Table 2. Continued

Process Sample source Tumor types

Detecting

technologies Application and findings Drugs Reference

Target identification Clinical tumor

sample

Breast tumor scRNA-seq Plakoglobin induced the generation

of CTC clusters and the development

of lung metastasis and was a potential

therapeutic target

– Aceto et al.59

Target identification Clinical tumor

sample and mouse

model

Breast tumor scRNA-seq Found the association between

neutrophils and CTCs derived

the metastatic potential and

identified Vcam1 as a potential

therapeutic target

– Szczerba et al.60

Target identification Mouse model Breast tumor scRNA-seq ICAM1 induced CTCs cluster

formation and lung metastasis

Anti-ICAM1

neutralizing

antibody (targeting

ICAM1)

Taftaf et al.61

Target identification Coculture cell line Lung tumor scRNA-seq Developed an algorithm to quantify

mitochondrial transfer from T cells

to tumor cells based on scRNA-seq

data and identified TNF-a pathway

as a potential target

– Zhang et al.62

Target identification Clinical tumor

sample

Breast tumor scRNA-seq and imaging

mass cytometry

Analyzed molecular characterization

of depletion-like T cells and identified

IL-15 as a potential therapeutic target

– Tietscher et al.63

Target identification Clinical tumor

sample

Prostate tumor scRNA-seq Elevated PTGER4 expression levels in

T cells correlated with an exhaustion

phenotype marked by impaired

cytotoxicity

YY001 (targeting

PTGER4)

Peng et al.64

Target identification Clinical tumor

sample

Nasopharyngeal

tumor

scRNA-seq CD70�CD27 interactions enhanced

the development of regulatory

T cells and suppressed T cell activity

Cusatuzumab

(targeting

CD70)

Gong et al.65

Target identification Mouse model Lung tumor scRNA-seq Discovered upregulation of VEGF

and CCR2-signaling-related genes

in Treg-cell-deficient samples

RS-504393

(targeting CCR2)

Glasner et al.66

Target identification Naive Treg cells

from human cord

blood

scRNA-seq CYP1A1 was an important regulator

of Tregs stability, and CYP1A1 knockdown

could diminish the immunosuppressive

activity of Tregs

Alizarin (targeting

CYP1A1)

Yi et al.67

Target identification Mouse model Lung tumor scRNA-seq Discovered enhanced CCR8 expression

in activated Tregs

Anti-CCR8 mAb

(targeting CCR8)

Van Damme et al.68

(Continued on next page)
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Table 2. Continued

Process Sample source Tumor types

Detecting

technologies Application and findings Drugs Reference

Target identification Clinical tumor

sample

Glioblastoma Mass cytometry

and scRNA-seq

Identified a subpopulation of CD73-high

macrophages with an immunosuppressive

phenotype and CD73 as a potential

therapeutic target

– Goswami et al.69

Target identification Clinical tumor

sample

Clear cell renal

cell carcinoma

scRNA-seq and

multi-regional

sampling

Higher level of the epithelial–mesenchymal

transition program was localized in the

tumor-normal interface, which was

accompanied by the infiltration of

macrophage subpopulations with

high IL1B expression, representing

a potential therapeutic target

– Li et al.70

Target identification Clinical tumor

sample

Colorectal tumor scRNA-seq and spatial

transcriptomics

FAP+ CAFs and SPP1+ macrophages

were positively correlated and were

potential therapeutic targets

– Qi et al.71

Target identification Clinical tumor

sample

Esophageal squamous

cell carcinoma

scRNA-seq and

bulk RNA-seq

Identified the druggable target CCL18

that mediated macrophage chemotaxis

Peptide Pep3

(targeting CCL18)

Sui et al.72

Target identification Mouse model – scRNA-seq Recognized the DC-related pathway

involved in the response to PD-1 therapy

based on scRNA-seq and accordingly

developed a bispecific antibody that

promoted PD-1+ T cell-DC interactions

for improving the efficacy of PD-1 therapy

BiCE (targeting

T cell-DC

interaction)

Shapir Itai et al.73

Target identification Mouse model Melanoma scRNA-seq The specific inactivation of NF-KB or IFN

regulatory factor 1 (IRF1) in conventional

DCS 1 (CDC1S) led to impaired expression

of IFN-g-responsive genes, defective

recruitment, and activation of anti-tumor

CD8+ T cells and were potential

therapeutic targets

– Ghislat et al.74

Target identification Mouse model Pancreatic ductal

adenocarcinoma

scRNA-seq and

bulk RNA-seq

Identified a population of CAFs with

high LRRC15 expression programmed

by TGFB, which was associated with

adverse responses to anti-PD-L1

therapy and was a potential therapeutic

target

– Dominguez et al.75

(Continued on next page)
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Table 2. Continued

Process Sample source Tumor types

Detecting

technologies Application and findings Drugs Reference

Target identification Clinical tumor

sample

Gastric tumor scRNA-seq Identified a population of CAFs with

high expression of POSTN and

exhibiting pro-carcinogenic phenotype,

which represented potential therapeutic

targets

– Li et al.76

Target identification Clinical tumor

sample

– scRNA-seq and spatial

transcriptomics

Discovered the matrix CAFs and

inflammatory CAFs associated

with tumor angiogenesis and the

immunosuppressive microenvironment

– Ma et al.77

HTS Cell line Glioblastoma mHTS Identified the migration inhibitory

potential of AZD-6244

AZD-6244 Shen et al.78

HTS Cell line – Cgg-sca Achieved concentration gradient

dilution of nanomedicines and

real-time response monitoring

at the single-cell level

– Liu et al.79

HTS Cell line – FALCOscope Quantified the response of protein

kinase A to different concentrations

of isoprenaline, cAMP responses of

endogenous GPCR to GPCR agonists

and antagonists, and effects of GRP68

on cAMP at different PH in living cells

Ogerin Greenwald et al.80

HTS Primary cell – FLECSplate Quantified the effect of different asthma

pro-contractile agonists on the

contractility of cells

CAL-101 Pushkarsky et al.81

HTS Cell line – Sci-plex Screened three tumor cell lines exposed

to 188 compounds and found that

proliferation was inhibited with

HDACi by limiting the ability of

cells to extract acetic acid from

chromatin

– Srivatsan et al.82

(Continued on next page)
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Table 2. Continued

Process Sample source Tumor types

Detecting

technologies Application and findings Drugs Reference

HST HESC – Microwell-seq 2.0 Analyzed the effect of small

molecule combinations on

the HESC differentiation process

– Chen et al.83

HTS Human embryonic

stem cells

CP-seq Analyzed the effects of drug

combinations on cells after

random pairing

– Xie et al.84

Pharmacokinetics evaluation Epithelial cell from

organ donor

scRNA-seq Found that levels of target genes

and metabolizing enzymes were

associated with gastrointestinal

side effects

– Burclaff et al.85

Pharmacokinetics evaluation Mouse model – CATCH Allowed the observation of

drug-target interactions at

subcellular resolution in vivo

Cisplatin Pang et al.86

Pharmacokinetics evaluation Cell line – Confocal microscopy

and mass spectrometry

Measured concentrations of

amiodarone and its metabolites

at the single-cell level

AMIO Pedro et al.87

CAF, cancer-associated fibroblasts; CSC, cancer stem cell; CTC, circulating tumor cell; DC, dendritic cell; HCC, hepatocellular carcinoma; HDACi, histone deacetylase inhibitor; HESC, human embryonic stem

cell; HTS, high-throughput screening; Treg, regulatory T cell.
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Figure 1. Single-cell technologies facilitate the identification of drug targets related to clonal evolution, circulating tumor cells, and tumor

microenvironment

Single-cell technologies have revolutionized the field of target identification in anti-tumor drug discovery through providing insights into the molecular

mechanisms underlying tumor biology, including clonal evolution, circulating tumor cells, and tumor microenvironment at single-cell level. In clonal

evolution, single-cell technologies have been used to identify molecular signatures of drug-resistant subpopulations and stem cell subpopulations. In CTCs,

single-cell technologies have been used to characterize molecular features and interactions of single CTC and CTC cluster. In TME, single-cell technologies

have been used to explore the regulatory network of T cells, Treg, macrophage, DC, CAF, and tumor cells. CAF, cancer-associated fibroblasts; CSC, cancer

stem cell; CTC, circulating tumor cell; DC, dendritic cell; EMT, epithelial-mesenchymal transition; TME, tumor microenvironment; Treg, regulatory T cell.
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Taken together, resistance to tumor therapies has been attributed to the presence of variations associated with genetic, epigenetic, tran-

scriptomic, and proteomic modifications.99 Comparing resistant and non-resistant cell lines, samples from relapsed refractory patients and

newly diagnosed patients, and longitudinal time point samples collected before and after treatment using scRNA-seq can facilitate the un-

raveling of drug-resistant mechanisms and the formulation of targeted combination therapies.100 Recently, single-cell multi-omics combining

proteomics andmetabolomics and single-cell imaging technologies have remarkably enriched the detecting dimension in single-cell studies.

Considering that scRNA-seq can only provide the transcriptome status of cells at a specific time point, single-cell multi-omics are anticipated

to further illuminate the multidimensional molecular details in drug-resistant tumor cells.101

Cancer stem cells

In the evolution of tumor, cancer stem cells (CSCs) with extensive reproductive capacity have been considered as the main unit of evolutional

selection102 and closely associated with a variety of biological phenotypes in tumor malignancies, including recurrence, metastasis, hetero-

geneity, and radiation resistance.103 In particular, CSCs have generally considered to bemulti-drug resistant andmay represent one source of

drug-resistant subpopulations. Therefore, signaling pathways involved in regulating the maintenance and survival of CSCs have emerged as

promising targets for tumor therapy, and the application of single-cell technologies to the characterization of CSCs has provided unprece-

dented opportunities to identify new targetable molecular pathways and thus design new strategies for the eradication of CSCs.104

Nemanja et al. captured a high-plasticity cell subpopulation with stem cell characteristics and significantly high expression of TIGIT, which

was found to be an essential driver of tumor progression and heterogeneity in lung tumor, providing a rationale for targeting these highly

plastic cells in the clinical treatment of tumor patients.52 A study on gastric adenocarcinoma (GAC) utilizing scRNA-seq revealed that

SOX9, a vital transcription factor for stem cells, was significantly enriched in tumor cells and associated with the maintenance of stemness

in CSCs. The study also found that targeting LIF/LIFR, the most abundantly secreted molecule regulated by SOX9, had great potential in

eliminating CSCs. This new combination therapy strategy offered a promising approach for the treatment of advanced GAC.53 Besides, a

comprehensive analysis of 34 scRNA-seq datasets by bulk sequencing and clustered regularly interspaced short palindromic repeats
iScience 27, 110486, August 16, 2024 9
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(CRISPR) screening developed a pan-tumor stemness gene signature and identified its correlation with immunotherapy response, which sug-

gested the significance of single-cell technologies in identifying targets to overcome resistance to immunotherapy.105

Although single-cell technologies are uniquely qualified in revealing the characteristics of cancer stem cell clusters and recognizing rele-

vant targets for tumor treatment, present studies have focused exclusively on the CSCs of specific time cross-section, while the dynamic evo-

lution of CSCs during tumor progression still requires further investigation. Furthermore, howmutant heterogeneous cells of different clones

in tumor entity transform to the CSC phenotype through intrinsic or acquired plasticity, especially the influence of epigenetic plasticity and

signals from tumor microenvironment, remains to be further investigated.104

Continuously expanding malignancy populations are genetically diverse during clonal evolutionary processes, leading to tumor progres-

sion and resistance to treatment.106 Mapping the heterogeneity and evolution of tumor cells at single-cell resolution contributes to the iden-

tification of relevant therapeutic targets for tumor treatment, and technological innovations, including longitudinal sampling, preclinical

models, and new computational tools for evaluating phylogeny, provide additional assistance in the clonal deconstruction of tumor

evolution.107 However, relevant studies to date have predominantly relied on scRNA-seq, and the intercellular variation promoting evolu-

tionary selection is also manifested in other dimensions of tumor cells such as epigenetic profiles, spatial distribution, and interactions

with themicroenvironment. The utilization ofmulti-omics technologies, including epigenomics, proteomics,metabolomics, and spatial omics

at single-cell resolution might promisingly further enhance the understanding of tumor cell evolutionary landscape and the comprehensive

identification of targets for early tumor intervention or combinational therapy.108,109

Identification of anti-tumor targets in circulating tumor cells using single-cell technologies

Circulating tumor cells (CTCs) represent one of the essentialmechanisms of tumormetastasis, and targeting the regulatorymechanisms asso-

ciated with CTCs has emerged as a promising anti-tumor strategy. In this section, we systematically discussed the application of single-cell

technologies to investigate the molecular characterization and relevant targets of single CTC, homotypic, and heterotypic CTC clusters.

Single CTC

CTCs, which refer to cell populations migrating from primary or metastatic tumors into peripheral blood,110 have been found to be closely

associated with the metastasis tumors.111 Accumulating evidence indicates that the in-depth understanding of CTCs can be of great help in

identifying therapeutic targets and building individualized treatment for tumor metastasis.112 Conventional CTC detection relies on the iden-

tification of classical CTC markers, including E-cadherin, vimentin, and Twist, and has decreased sensitivity because of the heterogeneity in

tumor cells.113 However, the application of single-cell technologies can facilitate further unbiased identification of typical and atypical CTCs

populations and provide a more comprehensive insight into the status of CTCs and the interaction with blood microenvironment.114,115

Using scRNA-seq, Liu et al. discovered the correlation between Wnt pathway activation and the establishment of CTC stemness in glio-

blastoma (GBM) drug-resistant circulating subpopulations, indicating that targeting Wnt had the potential to eliminate refractory cells and

block CTC-mediated recolonization.54 Besides, the establishment of xenograft models of CTCs could provide new opportunities for the

exploration in the mechanisms of tumor metastasis and drug resistance. In the scRNA-seq analysis of CTCs isolated from a highly metastatic

pancreatic ductal adenocarcinoma (PDAC) patient-derived xenograft (PDX) mouse model, researchers revealed that CTCs displayed upre-

gulated expression of survivin, a key regulator of mitosis and apoptosis, and the combination of YM155 (survivin inhibitor) with chemotherapy

was effective in preventing tumor metastasis in the PDX model.55 Furthermore, emerging evidence has indicated that CTCs exhibit spatial

heterogeneity during hematogenous metastasis in response to stresses in blood microenvironment.115 Sun et al. performed multisite sam-

pling from hepatocellular carcinoma (HCC) patients and scRNA-seq to probe the spatiotemporal dynamics of the transcriptome in CTCs dur-

ing blood transport and found that CTCs modulated the expression of CCL5 through p38-MAX signaling axis to enable the recruitment of

regulatory T cells (Tregs) and immune escape, indicating new targets to inhibit the metastasis of HCC tumor.56 Besides scRNA-seq, novel

analysis platform, including single-cell metabolic fingerprints and CTC-Race, have also been developed to further profile the metabolic, bio-

physical, and biochemical characterization of single CTC.57,58

Homotypic and heterotypic clusters of CTCs

During the process of migration in blood, CTCs have been found to interact with other tumor cells, immune cells, and blood components and

induce the formationofCTCclusters, including tumorcell-tumorcell homotypic clustersand tumorcell-bloodcell heterotypic clusters, promoting

the blood dissemination andmetastatic potential of CTCs.116,117 Understanding the characterization and formation mechanisms of CTC cluster

will contribute to the development of therapeutic strategies targeting this biological process, which could inhibit the progression of metastatic

tumors and improve the survival of tumor patients. In a study using single-cell RNA sequencing, CTC clusters derived from oligoclonal primary

tumor cells were found to possess enhanced metastatic potential over individual CTCs. Knockdown of plakoglobin, a cell-linkage component

significantly upregulated in CTC clusters, inhibited the generation of CTC clusters and the development of lungmetastasis in breast tumor, indi-

cating a potential therapeutic target for breast tumor.59 Other adhesionmolecules, including VCAM1 and ICAM1, were also found to be associ-

ated with the formation of CTCs clusters based on single-cell analysis, and blocking these molecules inhibited CTCs clustering.60,61

Technologies that allow for in-depth characterization of the single-cell features of CTCs are now providing high-resolution molecular de-

tails about the mechanisms of tumor metastasis and treatment resistance. In future research, the generation of CTC cell lines, CTC-derived

xenografts, appropriate in vitro CTCs expansion for molecular analysis, and drug screening may help further understand the relationship be-

tweenCTCs and treatment selection.118 Additionally, the combination of single-cell technologies with artificial intelligence (AI) has been used
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to identify and analyze CTCs, and AI-based cell identification technology, ‘‘Deepcell,’’ can be used for morphological identification of live

cells. Furthermore, MagRC, a new AI technology, can distinguish CTCs from all blood cells and classify heterogeneous CTCs.119 Therefore,

the combination of single-cell technologies and AI can provide a more comprehensive analysis of CTCs that is not affected by interference

between operators, making it a promising tool for identifying metastasis-related biomarkers and treatment targets.
Identification of anti-tumor targets in tumor microenvironment using single-cell technologies

Tumor progression is not only driven by genes within tumor cells but also modulated by the surrounding tumor microenvironment (TME).120

The main explanation for the failure of many therapeutic approaches directly targeting tumor cells in the clinical practice includes the high

heterogeneity and immune escape phenotype of TME. Accordingly, understanding the dynamic functions and interactions of TME will pro-

vide critical insights for the development of potent anti-tumor strategies.121,122 The accelerated development of single-cell technologies pro-

vides compelling opportunities to profile the composition, heterogeneity, dynamics, and regulation of TME components, which is essential to

further advance existing immunotherapeutic approaches and develop new therapeutic approaches for tumor treatment.123,124 As immuno-

therapy has emerged as a promising anti-tumor strategy, the anti-tumor effects of TME immune cells and their regulatorymechanisms require

growing concern. Using single-cell technologies to uncover characteristic molecules and functional regulatory pathways of critical immune

cell subpopulations, especially T cells, regulatory T cells, macrophages, dendritic cells, and cancer-associated fibroblasts in TME will provide

new targets for the development of immunotherapy.

T cells

T cells are critical mediators in both orchestrating the overall immune response and directly killing damaged cells, and the unprecedented

success of T cell therapies includingChimeric antigen receptor (CAR)-T cell therapy has demonstrated the tremendous potential of anti-tumor

strategies that modulate T cells.125 Through scRNA-seq analysis, Peng et al. demonstrated that elevated expression levels of PTGER4 in

T cells were associatedwith an exhausted phenotypemarked by impaired cytotoxicity. Its antagonist YY001 inhibited the immunosuppressive

function of myeloid-derived suppressor cells (MDSCs), promoted the proliferation and anti-tumor function of T cells, and restored the infil-

tration levels of MDSCs and T cells in TME through chemokines, which can be employed as a combination therapeutic agent to overcome the

resistance to PD-1 antibodies in prostate tumor.64 scRNA-seq and receptor-ligand analysis have also been used to probe the regulatory

mechanisms and potential therapeutic targets of T cell in GBM and head and neck cancer. In addition, recent studies have shown that mito-

chondrial transfer fromT cells to tumor cells serves in immune escape. A study developed an algorithm to quantifymitochondrial transfer from

T cells to tumor cells based on scRNA-seq data and identified regulatory mechanisms associated with the transfer, which provided the theo-

retical basis for therapeutic strategies targeting this process.62 Although scRNA-seq plays an important role in revealing the mechanisms

regulating T cell depletion and activity, the processing prior to sequencing has caused the samples to lose the spatial information of

TME, which is intimately associated with T cell and tumor cell interactions. Combining scRNA-seq with imaging techniques such as imaging

mass cytometry can facilitate the systematic elucidation of regulatorymechanisms and therapeutic targets involved in the anti-tumor effects of

T cells.63

Treg

Treg represents a unique subpopulation of T cell, which harbors lower proliferative capacity. Recent evidence has demonstrated that Treg

subpopulations in tumors exhibited a high degree of heterogeneity, which resulted in their complex biological roles.124 Profiles at single-

cell resolution to clarify their effect in the anti-tumor response network are necessary for the exploration of novel drug targets on Treg cells.

Helena et al. utilized scRNA-seq to identify a Tregs subpopulation that transitioned from immunosuppressive state to an effector-like T cell

state after stimulation by interleukin-6 (IL-6) pro-inflammatory therapy. The study demonstrated that CYP1A1 was an important regulator of

Tregs stability, and CYP1A1 knockdown could diminish the immunosuppressive activity of Tregs, providing a potential new target for tumor

treatment.67 Another study identified an activated Tregs subpopulation with enhanced CCR8 expression in an NSCLC mouse model using

scRNA-seq. Further analysis revealed that the depletion of CCR8+ Tregs by natural killer (NK) cells using anti-CCR8 nanobody-Fc fusions

significantly inhibited tumor growth, which could serve as a potential treatment strategy for non-small cell lung cancer (NSCLC) patients.68

Moreover, based on scRNA-seq, CD70-CD27 interactions and vascular endothelial growth factor (VEGF) as well as CCR2 signaling were found

to be correlated with the activation of Tregs, respectively, which could be considered as immunotherapeutic targets.65,66

Macrophages

Tumor-associated macrophages (TAMs) are derived from circulating monocytes that infiltrate the tumor site and tissue-resident

macrophages. Recent evidence suggested that crosstalk andmetabolic changes in TAMs and Tregs significantly affected their pro/anti-tumor

functions by modulating signaling cascades and epigenetic reprogramming.126 TAMs are generally associated with tumor-promoting activ-

ities such as angiogenesis, immunosuppression, and tissue remodeling, making TAMs a promising target for the development of anti-tumor

therapies.127 In this regard, single-cell technologies have emerged as a powerful tool to explore the heterogeneity and plasticity of TAMs.

Applyingmass cytometry and scRNA-seq, Goswami et al. identified a subpopulation of CD73-highmacrophages with an immunosuppressive

phenotype that persisted after anti-PD-1 treatment, which was associated with deficient T cell infiltration and worse prognosis in GBM. These

results suggested that targeting CD73may improve the anti-tumor response to immune checkpoint therapy in GBM, which could serve as an
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attractive therapeutic target for tumor treatment.69 Another study in esophageal squamous cell carcinoma identified the drug target CCL18

that mediated macrophage chemotaxis by integrating scRNA-seq and bulk RNA-seq.72 Furthermore, single-cell technologies incorporating

spatial information can provide further insight into cellular cross-talk in TME and its spatial heterogeneity.109 In a study conducted by Li et al.,

multi-regional sampling and scRNA-seqwere applied to characterize the spatial heterogeneity of themicroenvironment in clear cell renal cell

carcinoma (ccRCC). It was observed that higher levels of the epithelial–mesenchymal transition (EMT) program were localized in the tumor-

normal interface, which was accompanied by the infiltration of macrophage subpopulations with high IL1B expression. Further in vivo results

found that IL1B inhibition induced tumor regression in mouse models, indicating a promising therapeutic target for ccRCC.70 Another study

integrating scRNA-seq and spatial transcriptomics found that tumor-specific FAP+ fibroblasts and SPP1+macrophages were positively corre-

lated with spatial distribution in colorectal cancer, and the interaction promoted the remodeling of extracellularmatrix and immune escape in

TME, representing a potential target for interference.71 Future exploration of the spatial and temporal evolution of TAMdiversity could further

provide theoretical foundation for the identification of TAMs-related targets.

Dendritic cells

Dendritic cells (DCs) are essential participants in recognizing tumor antigens and initiating the anti-tumor activity of T cells and have emerged

as a promising target for tumor immunotherapy.128 Recent studies have used single-cell technologies to identify unrevealed DCs subpopu-

lations and molecular mechanisms associated with anti-tumor immunity. A deeper understanding of the regulatory mechanisms of DCs in

tumor microenvironment can provide opportunities to reverse the immunosuppressive phenotype of tumors with deficient T cell infiltra-

tion.129 Ghislat et al. analyzed the distinct activation states of DCs associated with tumor immunogenicity by scRNA-seq. The major pathways

associatedwith DCsmaturation included nuclear factor kB (NF-kB) and interferon (IFN) pathways, and the specific inactivation of NF-kB or IFN

regulatory factor 1 (IRF1) in conventional DCs 1 (cDC1s) led to impaired expression of IFN-g-responsive genes, defective recruitment, and

activation of anti-tumor CD8+ T cells. It was also found that the reactivation of NF-kB/IRF1 axis was associated with improved clinical out-

comes in melanoma, which may provide a theoretical foundation for the development of new therapeutic targets for tumor treatment.74

An scRNA-seq study in B cell acute lymphoblastic leukemia (B-ALL) found that TMEM173 was associated with functional activation of NK

cells and DCs in TME, which is expected to be a feasible strategy for improving therapeutic efficiency of B-ALL.130 Yuval et al. recognized

the DC-related pathway involved in the response to PD-1 therapy based on scRNA-seq and accordingly developed a bispecific antibody

that promoted PD-1+ T-cell-DC interactions and improved the efficacy of PD-1 therapy.73 Moreover, single-cell technologies hold promises

for integrating DC maps across species, which can deepen our understanding of the correspondence between DC subtypes in human and

mouse and promote the development of preclinical drug research for tumor treatment.

Cancer-associated fibroblasts

Besides immune cells, stromal cells are essential components of TME. Cancer-associated fibroblasts (CAFs) are derived from the tumor-driven

transformation of a variety of precursor cells, includingmesenchymal stem cells and fibroblasts, and can contribute to the regulation of tumor

cell plasticity and TME heterogeneity.109 CAFs interacted with tumor-infiltrating immune cells and modulated their antitumor effects by

secreting various cytokines, growth factors, chemokines, exosomes, and other effector molecules. As the promotion of CAFs on the acqui-

sition of therapy resistance, the positive effect of modulating CAFs in combination with immunotherapies has been demonstrated in preclin-

ical tumor models of pancreas and lung tumors.131 In animal models of pancreatic ductal adenocarcinoma, a population of tumor-associated

CAFs with high LRRC15 expression programmed by transforming growth factor b (TGF-b) was identified by the combination of bulk and

scRNA-seq. The LRRC15+ CAF signature was found to be associated with adverse responses to anti-PD-L1 therapy in multiple immune-resis-

tant tumors, which could provide a combination therapeutic target for tumor immunotherapy.75 Li et al. identified a subpopulation of CAFs in

gastric tumor characterized by high expression of POSTN using scRNA-seq, which was an important component of the pro-carcinogenic

phenotype TMEand closely involved in the remodeling of tumor extracellularmatrix.76 AlthoughCAFs have long been studied as an attractive

therapeutic target, several therapeutic strategies targeting CAFs or related components have failed to improve clinical outcomes in tumor

patients, indicating that CAF heterogeneity and regulatory pathways based on different subsets need to be further explored.132 By inte-

grating spatial information and scRNA-seq, researchers discovered thematrix CAFs and inflammatory CAFs associatedwith tumor angiogen-

esis and the immunosuppressive microenvironment, as targeting the relevant pathways may contribute to improving the immunotherapy

response in tumor patients.77

Overall, single-cell transcriptome has revolutionized the research methods in analyzing highly complex TME,133 and the improvements in

single-cell technologies, as well as the integration with other high-throughput technologies such as bulk sequencing, in situ sequencing, in

situ molecular imaging, and CRISPR screening have provided a powerful toolkit for understanding various immune cell populations and the

interaction between TME and malignant cells.134,135 However, due to the low sensitivity of most single-cell technologies to sample quality,

limitations in cell throughput, and high cost, only a small portion of tumor tissue samples from a few patients can be analyzed to explore rele-

vant anti-tumor targets and improve the efficacy of anti-tumor treatment.136 The application of single-cell technologies to dissect the TME

composition of tumor and develop relevant therapeutic strategies still depends on technological advances. Therefore, new advances in sin-

gle-cell technologies, including spatial single-cell sequencing, single-cell proteomics, and single-cell epigenomics, will provide clues for un-

derstanding the coordinated organization, and interaction between tumor and immune cells in the spatial coordinate system, which could

propose new treatment strategies for tumor patients.
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SINGLE-CELL ANALYSIS IN HIGH-THROUGHPUT DRUG SCREENING

High-throughput screening (HTS) is an essential component of the drug development pipeline, which allows rapid and efficient assessment of

the effects of numerous drug candidates in tumor treatment.137 Given the diversity in genetic backgrounds and states of cells within tumors,

which reflect varying sensitivities to drug perturbations, it is essential to conduct single-cell phenotypic observations and screenings. Single-

cell HTS is crucial for elucidating the differential responses to candidate drugs and for uncovering the underlying mechanisms within distinct

subpopulations of tumor cells. Currently, the single-cell technologies integrated into the HTS platformmainly involve imaging-based single-

cell technologies and single-cell sequencing technologies.
HTS with imaging-based single-cell technologies

Imaging-based single-cell technologies represent a group of high-resolution cellular imaging technologies that can be used to observe the

structure, morphology, function, andmetabolism of a single cell. The advantages of imaging-based single-cell HTS include rapidity, low cost,

and availability of temporal and spatial information.138 Shen et al. developed a platform by combining microchannel technology and single-

cell imaging that could quantify the anti-migratory and anti-survival effects of drugs at the single-cell level for HTS of migratory cancer cells.78

The microfluidic platform developed by Liu et al. could achieve concentration gradient dilution of nanomedicines and real-time response

monitoring of tumor cells at the single-cell level, providing an automated platform for HTS of nanomedicines.79 The FLECSplate technology

has achieved high-throughput quantification of cell contractility at the single-cell level.81 Moreover, FALCOscope was developed as a high-

throughput platform integrating automated drug processing, fluorescence imaging, and single-cell analysis for drug screening in living

cells.80
HTS with single-cell sequencing technologies

Moreover, combining drug screening with single-cell sequencing helps to reveal deeper pharmacological information, including off-target

effects and drug initiationmechanisms, which could in turn interpret the complex physiological responses induced by drugs in biological sys-

tems. The technical hurdles in applying single-cell transcriptome sequencing to high-throughput screening mainly include how to index the

perturbation information into sequencing results while considering the cost.

In this regard, researchers have developed a single-cell transcriptomics-based high-throughput screening platform that allows for the

simultaneous detection of single-cell RNA at low cost by transiently transfecting single-stranded oligonucleotide (SBO)-labeled tumor cells

treated with different drugs to explore the explanation for the different response of tumor cells to drugs.82 Haide et al. reported a high-

throughput screening and single-cell sequencing platform that used labeled reverse transcription primers and TN5 transposase to pre-la-

bel the transcriptome or genome in tumor cells and captured cells using microtiter plates, followed by a second round of labeling cells

using labeled magnetic beads after single-cell sequencing. Then, the transcriptome of individual cells was assembled by combining reads

containing the same two barcode combinations and enabling more cost-effective single-cell high-throughput drug screening.83 Further-

more, combination drug therapy is an effective strategy to reduce tumor resistance and recurrence, and single-cell technologies are ad-

vantageous for investigating combinatorial therapeutic regimens for precisely targeting tumor cells and the mechanism of combination

drugs.139,140 In a recent study, Xie et al. employed oligonucleotides to encode drugs, which were then encapsulated along with cells in

separate droplets. These droplets were randomly paired on a microwell array chip to complete combinatorial drug treatment and barcode

labeling. Subsequent single-cell RNA sequencing enabled simultaneous detection of the single-cell transcriptome and drug barcodes,

thereby facilitating the examination of drug efficacy. This high-throughput approach holds significant promise for identifying efficacious

drug combinations.84

In conclusion, the application of single-cell technologies in high-throughput drug screening has shown great potential to provide a more

comprehensive understanding of drugmechanisms and enable the efficient discovery of new drug combinations in tumor treatment.With the

development of innovative platforms and decreasing sequencing costs, single-cell transcriptome sequencing is becoming amore cost-effec-

tive and accessible option for high-throughput drug screening for tumor therapy. By combining the advantages of both high-throughput

screening and single-cell technologies, researchers can accelerate the drug development process and ultimately bring more effective treat-

ments to tumor patients.
SINGLE-CELL ANALYSIS IN PHARMACOKINETICS EVALUATION

Verification of drug molecule-target interactions and investigation of drug absorption, excretion, distribution, and metabolism patterns in

biological systems represent a major challenge in drug development following target identification. Traditional pharmacokinetic studies usu-

ally quantify the drug concentration or drug-target interactions in homogenized organs, and combining single-cell technologies in this regard

could facilitate the precise identification of pharmacokinetic effects at single-cell resolution.141 Advanced single-cell sequencing technolo-

gies are available to help characterize the physiological mechanisms of drug absorption and excretion organs. In a single-cell sequencing

study of comprehensive cellular profiles of the intestinal epithelium for healthy adults, different levels of selected drug target genes and

drug metabolizing enzymes between cell subpopulations were found to be associated with gastrointestinal side effects of the drug.85,142

Single-cell technologies combining spectroscopic or mass spectrometric imaging have enabled the analysis of drug distribution at the

individual living cell or even subcellular level.87,143,144 However, in situ imaging of small molecule drugs in vivo at high resolution remained

challenging due to the effect of additional labeling on the chemical properties of exogenous small molecule drugs. The CATCH method
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Figure 2. Advances in single-cell analysis technologies for drug discovery and development

(1) The emergence of single-cell technologies with spatial information, including in situ sequencing and spatial information barcode, have provided researchers

with powerful tools to investigate the complex and heterogeneous nature of tumor development. (2) Single-cell multi-omics analysis allows for the simultaneous

measurement of multiple types of biological information at the single-cell level, including epigenomics, genomics, transcriptomics, and proteomics. (3)

Integration of single-cell data, including sequencing data from different technology platforms of the same samples and multi-model single-cell data from

different samples, contributes to the expansion of sample size for single-cell analysis and enhances the availability of multi-dimensional single-cell analysis.

(4) Single-cell sequencing technologies applicable to FFPE samples facilitate the utilization of clinical samples and promote the clinical application of single-

cell technologies. (5) ScCRISPR provides insights into the effect of genes on single-cell phenotypes. (6) Single-cell TGS allows to obtain more intact genomic

and transcriptomic information at single-cell level. Abbreviations: CRISPR, clustered regularly interspaced short palindromic repeats; FFPE, formalin-fixed

and paraffin-embedded; TGS, third-generation sequencing.
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developed by Pang et al. integrating click chemistry with tissue clearing allowed the observation of drug-target interactions at subcellular

resolution in vivo, providing a platform for the in vivo assessment of small molecule drug pharmacokinetics.86 A newly developed method

for high-precision three-dimensional (3D) visualization of tumor structures based on a micro-optical slice tomography (MOST) system and

a fluorescence MOST (fMOST) system can be used to explore the correlation between tumor structure and nanoparticle distribution at

high resolution and help to assess the efficacy, distribution of nanoparticle drug delivery system (NDDS).145

Collectively, these advanced single-cell technologies hold the promise to further improve the comprehension of mechanisms related to

drug absorption, distribution, metabolism, and excretion on cellular level and promote the optimization of drug structures for better thera-

peutic effects.

ADVANCES IN SINGLE-CELL ANALYSIS TECHNOLOGIES

Emerging single-cell technologies in drug discovery and development focus on single-cell analysis preserving spatial information, single-cell

multi-omics, single-cell data integration, FFPE single-cell sequencing, single-cell CRISPR, and single-cell third-generation sequencing

(Figure 2). Table 3 summarized the characteristics and relevant cutting-edge questions of advanced single-cell technologies.

Single-cell analysis with preservation of spatial information

In contrast to traditional single-cell sequencing methods, preservation of high-resolution spatial data allows the discovery of new cell types,

cell interactions, and tissue structures in an unbiasedmanner, thereby facilitating the understanding of tumor structure andmicroenvironment

and promoting the development of new drugs. Moreover, single-cell sequencing that preserves spatial information relies heavily on
14 iScience 27, 110486, August 16, 2024
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in situ sequencing and spatial barcoding. In situ sequencing technologies, including Stereo-seq, could enable single-cell even subcellular

localization of sequencing reads across the entire slide. Spatial barcoding allows the identification of cell origin by barcoding cells with spatial

information prior to sequencing.199 Meanwhile, some researchers have developed high-resolution tissue separation technologies to enable

single-cell sequencing of specific spatial locations.200,201

In addition, traditional scRNA-seq and SpatialOmics can be integrated through deconvolution and mapping methods. Deconvolution re-

fers to the identification of discrete cell subpopulations from a mixture of mRNA transcripts at each capture site based on single-cell data,

whereas mapping method localizes each cell to a specific ecological niche or tissue region.202

Overall, the large-scale application of single-cell technologies integrating spatial information needs to be further investigated, and map-

ping spatially complete single-cell atlases of tumors is still expected. Further integration of metabolomics, proteomics, and epigenomics in-

formation can greatly complement the findings at transcript level, and the integration of three-dimensional and time-series information is

expected to enable researchers to probe the biological features of tumor from a new perspective.

Integrating multi-omics for multidimensional single-cell analysis

Integrating multi-omics single-cell resolution analysis will provide a platform for multi-level and all-encompassing understanding of tumor

heterogeneity and dynamic progression. In recent studies, multi-omics sequencing at the single-cell level has become a reality. For

example, the sci-L3-RNA/DNA method developed by Yin et al. could simultaneously detect single-cell DNA and RNA.203 Furthermore,

recent studies have developed various methods for simultaneous detection of genomic, transcriptomic, and epigenetic features at sin-

gle-cell resolution.204–206 The latest CUT&Tag technology has enabled high-throughput and efficient single-cell chromatin characteriza-

tion.207 More importantly, the integration of single-cell protein detection techniques, such as the analysis of single-cell secretory factors205

and metabolome,109 can significantly enhance the utilization of single-cell technology for studying cell interactions and drug response.

Overall, although innovative technologies can incorporate multidimensional biology into the assay, the specificity and sensitivity of

each dimension of detection still needs further improvement, and further technological advances will mainly focus on improving

throughput, reducing costs, and simultaneously detecting more dimensions of information.201,208 The application of multi-omics tech-

niques to the continuous measurement of living cells is also expected based on the versatility and transient nature of cellular molecular

features.209,210

Single-cell data integration

Althoughmulti-omics single-cell technologies have facilitated the simultaneous detection ofmulti-dimensional single-cell resolution informa-

tion, single-dimensional data still constitute the vast majority of single-cell data. Consequently, new data integration methods are necessary

to achieve the amalgamation of multi-dimensional information across different experiments. Furthermore, with the expeditious expansion in

size and accessibility of single-cell datasets, new computational methods are required for normalization and joint analysis across samples.

Currently, several algorithms have been designed for integrating scRNA-seq data generated by different techniques to realize the ampli-

fication of sample sizes.206,211 Furthermore, the integration and analysis of distinct single-cell dimensional data can facilitate comprehensive

insights into the heterogeneity and regulatory mechanisms of tumor, thereby providing a theoretical basis for identifying drug intervention

targets.212

The growing scale and accessibility of single-cell data necessitated more computational methods to satisfy the requirements for the inte-

gration of single-cell data in different contexts.213 However, in this area, enhancing the stability and fidelity of integrated data, improving the

efficiency of data processing and reducing hardware requirements, and preserving high-dimensional data for downstreambiological analysis

still remained formidable technical challenges. Furthermore, the accelerated development of artificial intelligence has led to a gradual in-

crease of its impact in the field of single-cell biology computing, which is expected to introduce new solutions for single-cell data integration.

FFPE samples

The extensive reliance ofmost high-throughput single-cell technologies on the cellular activity of specimens under examination curtailed their

usage to samples other than fresh tissues. Therefore, single-cell technologies that are applicable for non-fresh samples, particularly FFPE

samples, hold immense potential in elucidating tumor biological mechanisms and associated drug targets.

The technical obstacles in applying scRNA-seq in FFPE samples mostly comprise chemical cross-linking, extraction of intact cells or nuclei

from damaged structures, severely degraded RNA, differences in FFPE sample preparation and storage conditions, and changes in gene

expression of cells during fixation. Recently, FFPE single-cell sequencing platforms including Smart-3SEQ, snPATHO-seq, snRandom-seq,

and Arc-well have been developed.169,168 The integration of FFPE single-cell analysis with multiplexed antibody imaging, bulk RNA

sequencing, and spatial transcriptome sequencing will provide a more comprehensive understanding for the heterogeneity of tumor in clin-

ical samples.

Single-cell CRISPR

Gene screening based on clustered regularly interspaced short palindromic repeats (CRISPR) has been proved to be a powerful approach for

unbiased functional genomics studies.214 Positive selection using CRISPR libraries allows detection of surviving cells under specific conditions

and further elucidation of drug resistance mechanisms, whereas negative selection allows for the identification of drug targets by detecting
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Table 3. Characteristics and cutting-edge questions of new single-cell technologies in drug discovery

Technology types Platforms Characteristics Year Questions

Single-cell analysis with

spatial information

Phenocycler146 Detecting RNA and protein based on Ab 2018 1. Integrate three-dimensional and
time-series information

2. Improve feasibility in FFPE samples
3. Improve resolution and throughputDBiT-seq147 Detecting RNA and protein based on NGS 2020

Stereo-seq148 Detecting RNA based on NGS 2021

ExSeq149 Detecting RNA based on NGS 2021

Cell DIVE150 Detecting protein based on Ab 2021

Seq-scope151 Detecting RNA based on NGS 2021

MOSAICA152 Detecting RNA based on mFISH 2022

MICS153 Detecting protein based on Ab 2022

Single-cell multi-omics Trio-seq154 Combining analyses of genome, epigenome

and transcriptome

2016 1. Improve throughput
2. Reduce cost
3. Incorporate more modalities

in a single assay
4. Improve the sensitivity and

specificity in each modality
5. Enable continuous measurement

of living cells

CITE-seq155 Combining surface proteins with transcriptome 2017

REAP-seq156 Combining surface proteins with transcriptome 2017

G&T-seq157 Combining genome with transcriptome 2015

DR-seq158 Combining genome with transcriptome 2015

scM&T-seq159 Combining DNA methylation with transcriptome 2016

scDam&T-seq160 Combining protein-DNA contacts with

transcriptome

2019

T-ATAC-seq161 Combining open chromatin with TCR 2018

SNARE-seq162 Combining open chromatin with transcriptome 2019

scCAT-seq163 Combining open chromatin with transcriptome 2019

FFPE single-cell

sequencing

Pick-seq164 Detecting single-cell nuclear poly-A RNA 2021 1. Avoid negative impact of the
molecular cross-linking

2. Remove of excessive tissue debris
3. Maximize RNA protection and

minimize degradation during
FFPE sample preparation

Smart-3SEQ165 Detecting single-cell nuclear poly-A RNA 2019

snFFPE-Seq166 Detecting single-cell nuclear poly-A RNA 2022

snPATHO-seq167 Detecting single-cell nuclear Target mRNA 2022

snRandom-seq168 Detecting single-cell nuclear total RNA 2023

Arc-well169 Detecting single-cell DNA 2023

(Continued on next page)
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Table 3. Continued

Technology types Platforms Characteristics Year Questions

Single-cell CRISPR Perturb-seq170 Combining CRISPRi/CRISPRko screening and

detecting single-cell RNA

2016 1. Improve feasibility of in vivo screening
2. Avoid negative impact of

off-target effects
3. Develop scCRISPR with metabolomics

readout
4. Add spatial dimension

CROP-seq171 Combining CRISPRko screening and detecting

single-cell RNA

2017

crisprQTL mapping172 Combining CRISPRi screening and detecting

single-cell RNA

2017

SLICE173 Combining CRISPRko screening and detecting

single-cell RNA

2018

In vivo Perturb-seq174 Combining CRISPRi screening and detecting

single-cell RNA

2020

scCRISPRa screening175 Combining CRISPRa screening and detecting

single-cell RNA

2020

STING-seq176 Combining CRISPRi screening and detecting

single-cell RNA + protein

2021

CRISPRa Perturb-seq177 Combining CRISPRa screening and detecting

single-cell RNA

2022

Perturb-ATAC178 Combining CRISPRi/CRISPRko screening and

detecting single-cell DNA

2019

Spear-ATAC179 Combining CRISPRi/CRISPRko screening and

detecting single-cell DNA

2021

CRISPR-sciATAC180 Combining CRISPRko screening and detecting

single-cell DNA

2021

Pro-Codes181 Combining CRISPRko screening and detecting

single-cell Protein

2016

Perturb-map135 Combining CRISPRko screening and detecting single-cell

Protein+RNA+imaging

2022

ECCITE-seq182 Combining CRISPRko screening and detecting

single-cell Protein+RNA

2019

Perturb-CITE-seq183 Combining CRISPRko screening and detecting

single-cell Protein+RNA

2021

CaRPool-seq184 Combining CRISPR RNA knockdown screening and detecting

single-cell Protein+RNA

2022

imaging-based

CRISPR screen185
Combining CRISPRko screening and detecting

single-cell imaging

2019

Optical Pooled

Screen186
Combining CRISPRa/CRISPRko screening and detecting

single-cell Imaging

2019

CRaft-ID187 Combining CRISPRko screening and detecting single-cell Imaging 2020

MIC-Drop188 Combining CRISPRko screening and detecting single-cell Imaging 2021

Raft-seq189 Combining CRISPRko screening and detecting single-cell Imaging 2022

(Continued on next page)
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Table 3. Continued

Technology types Platforms Characteristics Year Questions

Single-cell TGS Smart-seq2190 Single-cell full-length RNA sequencing method that amplifies

full-length cDNA from individual cells

2014 1. Improve throughput and accuracy
2. Improve sequencing depth
3. Reduce cost
4. Improve compatibility with commonly

used scRNA-seq platforms
ScISOr-seq191 UMI and TSO to capture full-length transcripts and identify

barcodes for individual cells

2018

RAGE-seq192 Incorporates a 30-adapter to capture the 30-end of transcripts,

which allows for full-length transcript reconstruction

2019

scCOLOR-seq193 Enables the correction of barcode and unique molecular

identifier oligonucleotide sequences and permits standalone

cDNA nanopore

sequencing of single cells

2021

LR-Split-seq194 Combinatorial barcoding to sequence single cells with

long reads and accurately assign them to their cellular origin

2021

scNanoATAC-seq195 Investigating the relationship between chromatin accessibility

and genome structure combining single-cell ATAC-seq with

Nanopore third-generation genome sequencing

2023

scNanoCOOL-seq196 Enables joint analysis of CNVs, DNA methylome, chromatin

accessibility, and transcriptome in the same individual cell

2023

scNanoHi-C197 Explore genome-wide proximal high-order chromatin

contacts within individual cells

2023

scGTP-seq198 Single-cell parallel genome and transcriptome

sequencing

2023

Ab, antibody; ATAC-seq, assay for transposase-accessible chromatin sequencing; CNVs, copy-number variations; CRISPR, clustered regularly interspaced short palindromic repeats; CRISPRko, CRISPR

knockout; CRISPRi, CRISPR interference; CRISPRa, CRISPR activation; NGS, next-generation sequencing; TCR, T cell receptor.
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Figure 3. Applications of scCRISPR in drug discovery for tumor treatment

Based on the integrated single-cell technologies, scCRISPR can be categorized into scCRISPR with RNA-seq, scCRISPR with ATAC-seq, scCRISPR with proteome

probing and imaged-based scCRISPR. (1) ScCRISPR with RNA-seq. Take Perturb-seq for example: tumor cells are transduced with lentiviral library in which

lentivirus carries sgRNA with specific barcode, polyadenylated region, or capture sequence. Perturbed tumor cells are eventually used for microfluidic-based

scRNA-seq. (2) ScCRISPR with ATAC-seq. Take Spear-ATAC for example: the perturbed tumor cells are used for scATAC-seq after nuclear isolation and

transposition. (3) scCRISPR with proteome probing. Take Pro-Codes for example: the perturbed tumor cells are used for mass cytometry after being tagged

by linear epitope combinations. (4) Imaging-based scCRISPR. The perturbed tumor cells are used for single-cell imaging after capturing optical barcodes or

in situ sequencing. scCRISPR may facilitate drug target identification, drug resistance mechanism research, and the discovery of combinational therapy

strategies, thereby promoting anti-tumor drug discovery and development. ATAC-seq, assay for transposase-accessible chromatin sequencing; RNA-seq,

RNA sequencing; scCRISPR, single-cell clustered regularly interspaced short palindromic repeats.
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dead cells and recognizing essential survival genes.215 In addition, CRISPR screening can be applied to the study of synthetic lethal mecha-

nisms, which are critical for determining the optimal combination of targeted drugs. However, pooled CRISPR screening is limited to low con-

tent readout and cannot satisfy the needs of complex mechanism studies.216

Different from traditional CRISPR screening, scCRISPR enables multi-omics analysis with single-cell resolution and provides in-depth

comprehension of regulatory mechanisms in tumor biology, which is technically accomplished by annotating cells with single guide RNA

(sgRNA)-specific barcodes or directly detectable sgRNA.217 Based on the integrated single-cell technologies, scCRISPR can be categorized

into scCRISPR with RNA-seq, scCRISPR with ATAC-seq, scCRISPR with proteomics, and imaged-based scCRISPR (Figure 3). Up to now,

scCRISPR has been used to investigate critical complex regulating anti-tumor T cell function, mechanisms of drug resistance in tumor, onco-

gene interactions, and immune checkpoint regulatory network.218 The most recent cutting-edge research focuses on exploring the applica-

tion of in vivo scCRISPR in tumor biology research. Through constructingmousemodels using tumor or immune cells after transferringCRISPR

library and cell barcode, gene functions that affect tumor morphology, histological features, and immune cell recruitment can be further
iScience 27, 110486, August 16, 2024 19
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revealed.219 Meanwhile, CRISPR technologies that integrate non-invasive single-cell transcriptomics and use single-cell metabolomics

readout may open new avenues for research in tumor biology.

Single-cell third-generation sequencing

ScRNA-seq has revealed gene expression levels in individual cells at an unprecedented resolution, providing valuable insights into cellular

state and functional regulation of tumor. However, current scRNA-seq is mainly based on detecting read counts of 30 or 50 ends in polyade-

nylated transcripts, which fails to provide sufficient coverage of mRNA splicing.220 TGS, also known as long-read sequencing, is a real-time

molecular sequencing technology that has overcome this limitation through detecting full-length of cDNA and RNA. Compared to NGS tech-

nologies, TGS has the capability to identify complex DNA structural variants, whole transcript selective splicing events, and cell-type-specific

mRNA isoform expression.221 Some of the TGS technologies, such as single-molecule real-time (SMRT) sequencing and nanopore

sequencing, have been utilized in scRNA-seq analysis to provide further insights into selective splicing regulation, transcriptome complexity,

and isoform diversity of tumor cells at the single-cell level.222

In breast cancer, the single-cell TGS technology RAGE-Seq was used to reveal complete antigen-receptor sequences with high

accuracy and sensitivity for inferring the clonal evolution of tumor-associated B cells.192 In another study, simultaneous single-cell genomic

and transcriptomic detection was performed on HCC samples based on the scGTP-seq platform to identify tumor-cell-associated structural

variants and extrachromosomal DNA.198 In patients with acute myeloid leukemia, researchers utilized the newly developed single-cell TGS

technology, Nanoranger, to improve the resolution of leukemia and immune cell phenotypes.223 Another recently developed technology has

integrated CRISPR and single-cell TGS to perform functional characterization of genes.224 However, one of the challenges in single-cell TGS

analysis is that lower sequencing depth decreases its ability to accurately quantify the expression level of isoforms, which leads to data sparsity

and negatively affects the accuracy of results.221 Although advanced computational tools, such as scNanoGPS, have been developed to opti-

mize the accuracy of single-cell nanopore TGS results and overcome the dependence on short-read sequencing results,225 it remains neces-

sary for more research to focus on addressing common errors in single-cell TGS.

CONCLUSIONS AND FUTURE PERSPECTIVES

Collectively, single-cell technologies have greatly expanded our understanding of the complexity and heterogeneity of tumor tissue and pro-

vided new insights into themechanisms of tumor evolution, metastasis, drug resistance, andmicroenvironment regulation. The application of

single-cell technologies has greatly contributed to drug discovery for tumor treatment, thus promoting the development of more effective

treatment strategies for tumor patients. During the identification of new therapeutic targets, single-cell technologies have provided further

insights into the molecular features of specific clonal subpopulations, CTCs, and regulatory network in TME. Single-cell technologies have

also enriched the readout of HTS and facilitated the detection of pharmacokinetics at the single-cell level. However, their application in

drug development still has numerous limitations, including the sensitivity to sample quality, the limited cell throughput, and the high cost.

Additionally, a unidimensional single-cell analysis is not sufficient to define exact cell subtypes or lineages due to the dynamic nature of

gene expression and cell transformation in tumor development. Future research should focus on integrating multi-omics data and spatial

information to comprehensively understand tumor biology and develop new treatment strategies.

The application of single-cell technologies in drug development has compelling clinical significance. By identifying the heterogeneity

and drug resistance mechanisms of tumor cells, single-cell technologies can promote the development of more effective therapies targeting

specific cell populations or pathways. High-throughput drug screening at the single-cell resolution can improve the efficiency of drug devel-

opment by shortening the development cycle and reducing development costs. Using single-cell technologies for pharmacokinetics research

can help optimize lead compounds and increase the success rate of drug development. Additionally, applying single-cell technologies in the

regular monitoring of patients in clinical trial, including identifying drug resistancemechanisms, analyzing clone evolution, and screening bio-

markers for treatment response, has the potential to further increase the efficiency of drug development and improve the survival of tumor

patients.

In conclusion, single-cell technologies are powerful tools that fundamentally change our understanding of tumor biology and have enor-

mous potential in drug development for tumor treatment. The continuous advancement of single-cell technologies and their integration with

other high-throughput methods will pave the way to further insights into tumor biology at single-cell level and the development of relevant

drugs.

Limitations of the study

The application of single-cell technologies in drug discovery and development has several limitations, including the sensitivity to sample

quality, the limited cell throughput, and the high cost. Moreover, a unidimensional single-cell analysis is not sufficient to define exact cell sub-

types or lineages due to the dynamic nature of gene expression and cell transformation in tumor development. Future research is required on

integrating multi-omics data and spatial information to comprehensively understand tumor biology and develop new therapeutic strategies.
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