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and comparison of mutant
screening methods in piwil2 KO
founder Nile tilapia produced
by CRISPR/Cas9 system
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The application of genome engineering techniques to understand the mechanisms that regulate germ
cell development opens promising new avenues to develop methods to control sexual maturation and
mitigate associated detrimental effects in fish. In this study, the functional role of piwil2 in primordial
germ cells (PGCs) was investigated in Nile tilapia using CRISPR/Cas9 and the resultant genotypes were
further explored. piwil2 is a gonad-specific and maternally deposited gene in Nile tilapia eggs which is
known to play a role in repression of transposon elements and is therefore thought to be important for
maintaining germline cell fate. A functional domain of piwil2, PIWI domain, was targeted by injecting
Cas9 mRNA and sgRNAs into Nile tilapia embryos at 1 cell stage. Results showed 54% of injected
mutant larvae had no or less putative PGCs compared to control fish, suggesting an essential role of
piwil2 in survival of PGCs. The genotypic features of the different phenotypic groups were explored by
next generation sequencing (NGS) and other mutant screening methods including T7 endonuclease

1 (T7E1), CRISPR/Cas-derived RNA-guided engineered nuclease (RGEN), high resolution melt curve
analysis (HRMA) and fragment analysis. Linking phenotypes to genotypes in FO was hindered by

the complex mosacism and wide indel spectrum revealed by NGS and fragment analysis. This study
strongly suggests the functional importance of piwil2 in PGCs survival. Further studies should focus on
reducing mosaicism when using CRISPR/Cas9 system to facilitate direct functional analysis in FO.

Nile tilapia (Oreochromis niloticus) is one of the fastest growing farmed finfish species with >120% increase in
production volume over the last decade, such that global production has exceeded 4.1 million tonnes, worth USD
7.6 billion in 2017" making it the second largest (by volume) farmed finfish globally. While Nile tilapia is native
to Northern Africa and Israel, it is now farmed widely out with its native range in many countries, contributing
significantly to global food security particularly for poor rural communities®. A significant hurdle that limited
production potential of the species is precocious maturation where individuals direct energy towards sexual
maturation to the detriment of somatic growth, which also results in the overproduction of unmarketable fry>.
This challenge has largely been overcome with the production of all male stocks which result in a more efficient
production of tilapia with increased harvest weight*. While this has had a significant beneficial impact on produc-
tion of the species, contributing to its rapid expansion globally, the farming of reproductively competent animals
has also resulted in widespread environmental impacts. Nile tilapia is considered to be an established invasive
species in Asia® as well as Australia and North and South America, with reported impacts on native species and
ecosystems®. Therefore, there remains a need to develop methodologies to induce sterility and reduce produc-
tion losses associated with precocious maturation while also mitigating the potential environmental impacts of
farming across the globe.
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There has been a recent rise in the application of gene editing approaches using CRISPR/Cas9 to induce
KO-mutations associated with a range of phenotypes in tilapia’! including work directed towards the disrup-
tion of primordial germ cells (PGCs) to both better understand the regulation of germline cells and explore the
feasibility of creating sterile fish'>!*. We have previously screened 11 candidate genes and identified 5 putative
targets (nanos3, piwill, piwil2, dndl and vasa) for gene KO to induce sterility in Nile tilapia'*. To date only
nanos2 and nanos3 have been investigated in this context with CRISPR/Cas9 KO larvae showing an apparent
lack of PGCs at the hatching stage'®. In the present study, we have selected the piwi-like 2 (piwil2) gene based
on its gonad-specificity and maternal deposition in Nile tilapia'* in addtion to its association with early stages
of gametogenesis in mice'®. The piwi gene family has two distinct domains, the PAZ domain, an RNA binding
motif, and the PIWI domain, a similar structure to the RNase H catalytic domain'’. The PIWI domain is known
to act as a catalytic engine in RNA-induced silencing complexes (RISC) for RNA interference'® and for that
reason was targeted in this study through the injection of CRISPR/Cas9 constructs into the embryonic cell of
Nile tilapia zygote at the 1-cell stage. The subsequent physiological impact of piwil2 KO on PGCs was evaluated
histologically in hatched larvae.

One of the challenges of applying CRISPR/Cas9 methodologies in poikilothermic species like fish is that
temperature conditions in vivo will be suboptimal for Streptococcus pyogenes Cas9 (SpCas9) activity which is
optimal at 37 °C". Although editing activity with the CRISPR/Cas9 has been reported in tropical species like
zebrafish, medaka and Nile tilapia at 26-28 °C!>!>2, the apparent diversity in resultant individual genotypes
requires careful analysis and interpretation. To date, CRISPR/Cas9-mediated sterility studies have lacked a
comprehensive screening and understanding of genotypes generated in FO animals due to biased mutant screen-
ing methods, lack of standardisation and/or methodological details. The lack of understanding of the resultant
mutations including the level of mosaicism and the indel spectrum hinders the direct functional analysis in the
injected animals. The most frequently used screening methods in gonad-related gene functional studies have been
restriction enzyme digestion (RED) and Sanger sequencing of a limited number of cloned sequences®131521-23,
with a few studies adopting high resolution melt curve analysis (HRMA) or SURVEYOR techniques***. Such
approaches have a number of potential limitations in their accuracy to describe KO effects on target genotypes,
which are further confounded by the pooling of samples which ultimately provides a biased interpretation of the
efficacy of CRISPR/Cas9 gene editing in this field. Therefore, this study was also designed to compare and validate
the different mutant screening methods in individual FO fish using targeted next generation sequencing (NGS)
as a reference compared to T7 endonuclease I (T7EI), CRISPR/Cas-derived RNA-guided engineered nuclease
(RGEN) assay, HRMA and fragment analysis to validate approriate and informative assessment methods.

Here we have applied an iterative approach to optimise the CRISPR/Cas9 KO of piwil2 in Nile tilapia. The phe-
notypic impact was analysed histologically and the resultant genotypes were described by NGS, and the accuracy
of the mutant screening was compared using a range of methods reported in the literature. A wide indel diversity
and high mosaicism was reported in piwil2 KO F0 animals produced by CRISPR/Cas9 and non-homologous
end joining (NHE]) and microhomology-mediated end joining (MME]) DNA repairs were revealed by deep
sequencing. Overall, the result reported in the present study provides new insights into the functional impor-
tance of piwil2 in PGC survival as well as the indel diversity and the level of mosaicism produced by CRISPR/
Cas9 that are important for the selection of suitable mutant screening methods in future gene editing studies.

Results

Mutation frequency of piwil2 sgRNA1 and sgRNA2 at three different concentrations. In tila-
pia, varied concentrations of gRNAs (50-250 ng/uL) have been used to date'>?"*?, but there is a lack of data on
the optimal ratio of sgRNA to Cas9 to ensure high mutagenesis efficiency and low treatment mortality. We tested
three different concentrations of sgRNA (100, 150 and 250 ng/pL) with a constant concentration of Cas9 mRNA
(500 ng/pL), with molar ratios of Cas9:sgRNA being 1:9.0, 1:13.4 and 1:22.4, respectively. A single dose of Cas9
was chosen based on previously published results where 500 ng/uL resulted in a higher mutation frequency but
alower survival rate compared to 100 or 300 ng/uL of Cas9 in Nile tilapia'®. There were no significant differences
in treatment mortality in relation to piwil2 guide RNA design or sgRNA dose (Fig. 1). Mutation frequencies were
initially assesed by qPCR melt curve analysis®®. Mutation frequencies of sgRNA2 were significantly higher than
sgRNALI at all three concentrations tested (Fig. 1). There was no significant difference in mutation frequency
between 100, 150 and 250 ng/pL in sgRNA2 embryos (91.6+10.2, 98.2+ 3 and 97.0 + 5.2%, respectively). In con-
trast, sgRNA1 showed highly inefficient mutation frequencies for all sgRNA1 concentrations (1.7 £2.9, 5.0+8.7
and 3.3+5.8% for 100, 150 and 250 ng/uL sgRNALI, respectively).

Impact of piwil2 KO on PGCs survival.  piwil2 KO larvae were produced using 150 ng/uL of sgRNA2 and
500 ng/uL of Cas9 mRNAs and its physiological impact on PGCs was investigated through histological observa-
tion of PGCs at an early larval stage (pre-first feeding) in Nile tilapia, identified by their location and morpho-
logical features”. Mutation frequency (initially identified by qPCR melt curve analysis) was 95.8 +4.3% and sur-
vival rate to 3 days post fertilisation (dpf) (37.8+18.6%) was comparable to uninjected controls (42.5+10.8%).
A total of 52 piwil2 mutant larvae (identified initially by gPCR melt curve analysis) were subjected to histo-
logical observation of PGCs using serial transverse sections of the body cavity stained with H&E. As confirmed
in uninjected control larvae in the current study (Supplementary Fig. S1), at 3 dah, PGCs were found in the
gonadal anlagen located in the dorsal peritoneal wall after the formation of the coelomic cavity in the lateral plate
mesoderm, and soon after PGCs started to proliferate?’~?°. The individual mutant phenotypes were subsequently
classified based on the histological findings (Fig. 2). There were three apparent phenotypes observed: type A, no
gonadal anlagen with putative PGCs observed (15/52, 29%); type B, putative PGCs morphologically atrophic
and/or locally restricted (13/52, 25%); and type C, putative PGCs similar to the control (24/52, 46%). As these
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Figure 1. Treatment mortality and mutation frequency in embryos injected with different concentrations of
sgRNAs. (A) Treatment mortality and (B) mutation frequency induced by different concentrations of piwil2
sgRNA1 or sgRNA2 together with 500 ng/uL of Cas9 mRNAs. Data were collected from three independent egg
batches and the treatment mortality was recorded at 3 dpf. Putative mutants were screened by qPCR melt curve
analysis using individual larvae (3-6 dpf). Cas9 injected control (0 ng/uL of sgRNA) was included (n=4 per
batch). Data are presented as mean + SEM with #n =3 batches, 10-20 larvae per treatment per batch. Superscripts
denote statistically significant difference between sgRNAs.
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Figure 2. Histological observation of gonadal anlagen and PGCs in serial transverse sections of 3 dah piwil2
mutants induced by CRISPR/Cas9. Three different phenotypes are shown: (A,B) type A, no gonadal anlagen and
PGCs; (C,D) type B, morphologically atrophic and/or locally restricted PGCs; and (E,F) type C, gonadal anlagen
and PGCs similar to control. Arrowheads indicate gonadal anlagen. Scale bar =50 um.

were all identified as mutants based on initial screening by qPCR melt curve analysis, the diversity in individual
mutant genotypes was further studied using NGS.

Genotyping by NGS.  With an average read depth of 10,943 +203 per individual analysed using the CRIS-
PResso analysis suite®, it was evident that complex mosaic genotypes had been generated in all mutants analysed.
The average mutation rates determined by NGS [100 —frequency of WT(%)] were not significantly different
between mutant phenotype groups (97.9+1.2,85.9+7.7 and 97.4 £1.0% in phenotypes A, B and C, respectively)
(Fig. 3A). Both the frame-shift mutation rates (78.3+ 1.8, 73.8+4.0 and 74.0£4.1% in phenotype A, B, and C,
respectively) (Fig. 3B) and the potential splice site mutation rates (0.5+0.3, 0.3+0.2 and 0.4+0.2%, respec-
tively) were comparable among mutant phenotype groups. The average number of different alleles detected was
significantly higher in phenotype A than B and C (28+6, 19+7 and 23 +6, respectively) (Fig. 3C). The mean
proportion of deletions greater than 5 bp was significantly higher in phenotype A than B and C (Fig. 3D). The
most frequent mutant allele was a 4 bp deletion which comprised 8, 7.2 and 8.4% in phenotype A, B and C and
putative indels generated by MME] made up 25, 16 and 13% of the total indels in each group, respectively (Sup-
plementary Table S2). The frequency of deletion, insertion and substitution events in the 52 mutants was highest
at the predicted cleavage position showing 75.5+3.4, 12.6+1.7 and 12.5+1.7%, respectively (Supplementary
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Figure 3. Mutation rates of piwil2 KO larvae grouped by observed phenotype A, B, and C as well as WT
control. (A) The average mutation rate assessed by NGS, (B) the average frame-shift mutation rate assessed by
NGS, (C) the average number of different alleles per larva detected by NGS and (D) the mean proportion of
indel sizes in phenotype A, B and C (n=15, 13 and 24, respectively) assessed by NGS using the representative
sequences. Data are shown as mean + SEM. Superscripts denote a statistically significant difference between
groups at each indel size (p <0.05). WT wild type sequence, WT length WT & WT length mutant, WT length
mut WT length mutant, del deletion, ins insertion.

Fig. S2). Deletion activity in phenotype A was significantly higher than phenotype B at positions 114, 117 and
120-122 while insertion activity in phenotype A was significantly lower than phenotype C at position 122 (Sup-
plementary Fig. S2). There was no apparent difference in substitution activity between any of the phenotypic
groups (Supplementary Fig. S2F). Overall, the frequency of 3-19 bp deletion was higher in phenotype A than B
and C with the 50th percentile of indel size was 7 bp deletion in phenotype A while being 5 bp deletion in B and
C (Supplementary Table S3 and Fig. S3).

Comparison of mutation screening methods including fragment analysis, T7E1, RGEN and
HRMA. The genotype of all 52 mutant larvae were further analysed using methods commonly reported in
the literature to screen CRISPR/Cas9 efficacy. Regression analysis between mutation rates determined by NGS
and the arbitrary gene modification rates assessed by T7E1, RGEN and fragment analysis, revealed a weak cor-
relation with T7E1 (#*=0.10), a moderate correlation with RGEN (r*=0.59) and a high correlation with frag-
ment analysis (r*=0.72) (Fig. 4). Both T7E1 and RGEN are cleavage assays while T7E1 detected mismatches
and RGEN detected unmodified alleles®*. Fragment analysis showed that 35 out of 52 mutants had a WT size
fragment (Supplementary Fig. S2C) which included both genuine WT and mutant fragments of WT length. The
latter was the case for four outliers (Fig. 4A) in which gene modification rate analysed by fragment analysis was
underestimated in comparison to NGS due to the presence of 12 to 51.8% of WT length mutant sequences (Sup-
plementary Table S4). In general, the average proportion of indel size assessed by fragment analysis was similar
to the NGS result (Supplementary Fig. S5 and Fig. 3D), showing 70.2 +2.2% of alleles identified by NGS (n=52)
were captured by fragment analysis with a tendency to overlook low abundance fragments (<2%) (see typical
examples in Supplementary Fig. S6). HRM analysis showed that melt curves of all mutants were clearly distin-
guishable from the control melt curves but there was no clear difference in melting temperature (Tm) between
phenotypic groups (Supplementary Fig. S7).
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Figure 4. Scatter plot and linear regression between the mutation rate determined by NGS and the arbitrary
mutation frequency calculated by (A) fragment analysis, (B) T7E1 or (C) RGEN in 52 mutant samples. Each
resulting regression is drawn with its confidence interval at 95% (dotted line).

Discussion

The current study analysed functional impact of piwil2 KO on PGC development and characterised genotypes of
founder Nile tilapia, one of the most cultured aquaculture species worldwide!. CRISPR/Cas9 system efficiently
edited PIWI domain of piwil2, a novel target gene to induce sterility, which is a prerequisite for a direct pheno-
typing of such sterility-related genes in KO animals. In the current study, there was no significant differences
in mutation frequency and mortality in relation to sgRNA concentrations however sgRNA sequence did have a
significant impact on the efficacy of the treatment. In zebrafish, increasing concentration of sgRNAs to a constant
Cas9 mRNA amount resulted in sgRNA dose-dependent gene editing efficiency®. This discrepancy might be
caused by the different range of the tested ratios. In the present study, three different molar ratios of Cas9:sgRNA
(1:9, 13.4 and 22.4) were above the range tested in zebrafish (i.e. 1:0.3, 1.8 and 9), suggesting that all three ratios
tested in this study may, in essence, be at a saturation level, and result in maximum potential mutation frequency.
Even though both sgRNAs were designed to target PIWI domain of piwil2, there was a significant difference
in mutation frequencies between piwil2 sgRNA1 and sgRNAZ2. It is possible that the intrinsic properties of the
target sites in terms of epigenetic states, transcription activities and high GC-content, could have been the main
drivers behind the variable mutation rates observed******. The dramatic difference in mutation efficacy between
the two sgRNAs implies there is a caveat in sgRNA designing tools as the criteria for computational prediction
of sgRNA efficiency are derived from limited data®. Thus, the pragmatic approach to design sgRNA would be
to test multiple sgRNAs for each target gene to accommodate for unknown influences of the intrinsic properties
of the target regions.

Importantly, mutants in PIWI domain of piwil2 gene produced by CRISPR/Cas9 showed different degrees of
phenotypic impacts on PGC assessed by histological observation, and resulting in more than half of the mutants
showing either an apparent absence or morphologically atrophic and locally restricted PGCs in agreement with
the suggested role of piwil2 in the maintenance of PGCs in various species'®**-*°. Although the histological
observation of PGCs at the early larval stage has been widely used in various teleost species'***** including Nile
tilapia?’~%, the results based on histological assessment should be interpreted with caution. Clearly, confirma-
tion of phenotype stability (i.e. functional sterility) is required in adult mutants but unfortunately experimental
regulation restricted such a confirmation in the present study.

The current study is the first to report deep sequencing data in sterility-related gene functional analysis in a
teleost using CRISPR/Cas9 and subsequent NHE] and MME] repairs, and it revealed a high level of mosaicism in
FO animals, with 23 + 1 different alleles per larva. In addition, in contrast to previous findings showing dominant
indels produced by CRISPR/Cas9 were 1 bp insertion (54.1%)*, 1-3 bp deletions (49.2%)* or 1 bp deletion
(67%)%, in this study, 1 bp insertion (3.4%) or 1 and 4 bp deletion (9.8 and 9.6%, respectively) were much less
frequent in comparrison to wider indel sizes (i.e. > 5 bp deletion) which correspond to more than 40% of observed
mutations. Even though NGS analysis revealed that 26 out of 52 piwil2 KO larvae (50%) showed 100% biallelic
mutation rate, the phenotypic impact was variable. There was no significant difference in the average mutation
rates between phenotypic groups which contrasts with previous findings**-*° in which a higher degree of mutation
appeared to be related to the severity of the phenotypic response. In addition to total mutation rate, the frame-
shift mutation rates were investigated as the different proportions of in-frame mutation existing in mutants can
generate partial loss-of-function in proteins and impacts on the severity of the phenotype®® as shown for pax2a
edited zebrafish®! and igfbp-2b2 edited rainbow trout®®. However, frame-shift mutation rates were not apparently
correlated with the phenotypes in the present study. No clear correlation between frame-shift mutation rates
and the severity of the phenotypes was also reported in red sea bream (Pagrus major)>. Given that the target
area was located towards the 3’ end of piwil2 (21st exon out of a total of 24 exons), the frame-shift mutation may
not make an apparent difference in the phenotype in this case. Since a conserved sequence of PTWI domain was
targeted in this study, the phenotypic impact may be more related to the size of deletion at the target site rather
than frame-shift rate. This is tentatively supported by a significantly higher proportion of >5 bp deletions in
phenotype A than in B and C which could support a potential link between the severity of mutation effects and
the degree of phenotypic response in piwil2 KO larvae. However, specific genotypic features that can reliably
predict the phenotypic response in piwil2 KO tilapia larvae were not apparent.

The accuracy of the most frequently used mutation screening methods (T7E1, RGEN, HRMA, fragment
analysis) were compared to resolve the individual mosaic genotypes observed. Fragment analysis competently
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detected mutants in FO animals in a high throughput fashion. This analysis had previously been validated in
mutant cell lines generated by CRISPR/Cas9, showing that small indel can be detected with 1 bp resolution and
the proportion of mutant fragments can be determined®>**. This assay was used in FO zebrafish to determine edit-
ing efficiency of sgRNA and it showed a strong correlation with germline transmission efficiency®. As opposed
to T7E1, RGENs and HRMA, this analysis was not restricted to the detection of mutants and the estimation of
mutation rate, but also provided insight into the diversity and composition of various indel sizes in mutant FO
animals. It was also shown in rainbow trout (Oncorhynchus mykiss) that fragment analysis reflected the relative
abundance of major indels in FO*°. Compared to NGS, 70% of indel variants detected by NGS were matched with
fragment analysis and the arbitrary gene modification rate calculated by fragment analysis showed the highest
correlation with the mutation rate measured by NGS. However, it was noted that the total number of fragments
detected by fragment analysis was significantly lower than NGS due to a lower sensitivity and it was unable to
detect mutant sequences that had not changed in physical length (i.e. WT length mutated sequences). Therefore,
in the context of CRISPR/Cas9 studies, data obtained by fragment analysis are not suitable to assess frame-shift
mutation rates or determine the total number of different alleles on target site due to the resolution error of this
assay. Overall, fragment analysis offers an overview of the indel size variants, but the wide application of this
method in mutant screening is hampered by the inability to provide sequence information.

Although T7E1 and RGENs were easy to operate, they cannot be easily applied for large-scale screening. In
addition, the mutation frequencies detected by T7E1 were consistently lower than the mutation rate determined
by NGS in accordance with previous reports®">* due to the inefficient heteroduplex formation, overlooking of
homoduplexes for the mutation rate estimation and possible incomplete digestion of nucleases®”. Being based on
enzyme reactions, incomplete digestion due to suboptimal reaction conditions can cause false negative results
in T7E1 assay or false positive results in RGENs. While HRMA detected the existence of mutation, it was unable
to provide further information on genotypes of piwil2 KO FO0 generated by CRISPR/Cas9. It was also shown in
FO zebrafish induced by CRISPR/Cas9, TALEN or ZFN that HRMA is rapid and capable of high throughput
screening for mutation detection®¢-*%, but no further genotypic information could be obtained. Therefore, melt
curve analyses could be used as an initial screening for FO generation prior to sequencing. All methods tested
here reliably identified the mutants, but T7E1, RGENs and HRMA could not clarify the complexity of the mosaic
genotypes. Fragment analysis could capture and map indel size spectrum and the estimated mutation rate was
the closest to the actual mutation rate analysed by NGS among all methods tested. However, the limited resolu-
tion of size for detection and the lack of sequence details hinder the clear depiction of the mutation diversity in
mutants. Certainly, NGS was the most informative, accurate and high throughput screening method of all five
methods tested. As demonstrated in this study it is possible to access the power of NGS genotyping in a cost-
effective manner if low volume sequencing libraries can be multiplexed into other sequencing experiments. It is
therefore essential that going forward in order to understand and resolve the complexity of FO genotypes, NGS
sequencing should be used as a suitable methodological approach®>>°.

In summary, the functional importance of PIWI domain of piwil2 gene on PGCs was revealed in Nile tilapia,
showing that piwil2 KO can result in PGC deficient phenotypes at the early larval stage. Among various mutant
detection methods NGS was the most informative and reliable assay to genotype the KO individuals. The deep
sequencing analysis of the resultant genotypes suggested that while the total mutation and frame-shift mutation
rates did not clearly correlate with the observed phenotypes, the indel size distribution showed that the PGC
deficient phenotype had significantly higher proportion of > 5 bp large deletions. However, high mosaicism and
wide indel spectrum prevented the elucidation of a clear link between genotype and phenotype. Thus, future
studies should focus on reducing mosaicism which could include usage of Cas ribonucleoproteins and machine
learning models to predict genotype of gRNAs and editing of germline cells**!. This will facilitate direct func-
tional analysis in FO.

Methods

Handling of gametes, in vitro fertilisation and microinjection. Zygotes were produced from mature
female (XX) and supermale (YY) tilapia (O. niloticus L.) held in the tropical aquarium of the Institute of Aqua-
culture at the University of Stirling. Eggs were washed with water from the aquarium system and keptat 25+ 1 °C
for up to 2.5 h (hrs) before fertilisation. The milt was collected by glass capillary and stored in a sterile test tube
over ice for up to 2.5 h before fertilisation. Approximately 400-500 eggs were fertilised in a single Petri dish by
adding 4 pL of milt and activating the milt by adding fresh aquarium water. The fertilised eggs were rinsed 3 min
after fertilisation. The fertilised eggs were kept at 21+ 1 °C to extend the 1 cell stage for up to 2.5 h®2. Each 1
cell stage embryo was held by the holding pipette and the Cas9 RNA and sgRNAs mixture was injected into the
embryonic cell. The control and injected eggs were incubated according to standard practice for tilapia in round
bottom recirculating tanks at 27 + 1 °C under 12L:12D photoperiod.

Design and off-target search for piwil2 sgRNAs. Two sgRNAs were designed using CRISPR RGEN
tool (https://www.rgenome.net/) and Benchling (https://benchling.com) and the potential off-target sites were
checked by in silico off-target analysis using NCBI BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi) and Cas-
OFFinder (https://www.rgenome.net/cas-offinder/). Any sgRNAs containing potential off-targets which had
more than 12 nt identical to the seed sequences adjacent to the protospacer adjacent motif (PAM), out of the 20
nt sgRNAs, were excluded®*** (Supplementary Table S1). Two sgRNAs were selected which were located in exon
24 (sgRNA1) and 21 (sgRNA2) on the conserved domain of PIWL

Preparation of sgRNAs and Cas9 mRNAs. sgRNA template was produced by a PCR approach® using
pT7-gRNA plasmid as sgRNA scaffold template, which was supplied by Wenbiao Chen (Addgene plasmid
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Primer pair Forward primer (5'-3') Reverse primer (5'-3') Annealing temp (°C) | Purpose
sgRNA scaffold GTTTTAGAGCTAGAAATAGCAAG AARAGCACCGACTCGGTG 53.7 Template of sgRNA scaffold
GATCACTAATACGACTCACTATAGGGC
piwil2 T7 sgRNA1 TGGAACACGAATGGTGCCGTTTTA é‘ii@g;gggii?CGGTGCCACTTTTT 71.6 Template of piwil2 sgRNA1
GAGCTAGAAAT
GATCACTAATACGACTCACTATAGGAC
piwil2 T7 sgRNA2 GGATCAGTTCCTCATTGGGTTTTA | AAAAGCACCGACTCGGTGCCACTT 179 Template of piwil2 sgRNA2
GAGCTAGAAAT
MI3 universal GTAAAACGACGGCCAGT AACAGCTATGACCATG 58 I‘(’:Zgﬁlif” OREF of Cas? from pT3TS-
piwil2 sgRNAL AACAGGTAACTGCTGTCTGCAT TTGGTTTCTTGCCAGGTTGACTT 56.5 qPCR melt curve analysis
piwil2 sgRNA2 TAGGTGAGAATTAGGTGTGGTTT TGCACAATGCATGAGTCCTAC 55.5 qPCR melt curve analysis, HRMA,
piwil2 gRNA2_2 ACCTGTGCCGTAAGGCTGGA AGTGTGCAGAAAACACTGACTTCAC | 67.5 Eé%\?s:szy
piwil2 gRNA2_CAG | €281c888egtcatcaTAGGTGAGAATTAGG | G0 CAATGCATGAGTCCTAC 56.7 Fragment analysis
TGTGGTTT
TCGTCGGCAGCGTCAGATGTGTAT | GTCTCGTGGGCTCGGAGATGTGTA
piwil2 gRNA2NGS | AAGAGACAGTAGGTGAGAATTAGG | TAAGAGACAGTGCACAATGCATGA | 55.5 NGS
TGTGGTT*T GTCCTA*C

Table 1. Primer list used for piwil2 sgRNA production, screening of piwil2 mutants. Italic, T7 promoter;
underline, target sequence of Nile tilapia piwil2; bold lowercase, CAG tailing sequence; boxed sequences,
Ilumina overhang adapter sequences. The primer pair for HRMA and NGS were purified by HPLC. NGS
primer pair has 3’ modification. Asterix (*) denotes a phosphorothioate (PTO) bond.

#46759)% and gRNA specific primer added with a T7 promoter sequence (Table 1). The purified PCR product
was subsequently used as template for RNA synthesis using HiScribe T7 High Yield RNA Synthesis Kit (NEB).
Then, they were purified using RNeasy Mini Kit (Qiagen) and quantified by spectrophotometry (NanoDrop).
The size and integrity of purified sgRNAs were checked by gel electrophoresis with Low Range ssRNA ladder
(NEB) before storage at —20 °C until use. Cas9 mRNAs (S. pyogenes) were prepared using pT3TS-nCas9n, sup-
plied from Wenbiao Chen (Addgene plasmid #46757)%. The Cas9 ORF template was amplified by PCR and the
purified PCR product was subsequently used as a template for RNA synthesis using mMESSAGE mMACHINE
T3 Transcription kit (Thermo Fisher). The transcribed capped Cas9 mRNA were purified using RNeasy Mini Kit
(Qiagen) and quantified by spectrophotometer. The size and integrity of purified Cas9 mRNA were checked by
gel electrophoresis with ssRNA ladder (NEB) before storage at —20 °C until use.

Microinjection of different ratios of Cas9 and sgRNA. Three different sgRNA concentrations (100,
150 and 250 ng/uL) combined with a single concentration of Cas9 (500 ng/uL) were tested for each sgRNA.
Data were collected from three independent Nile tilapia egg batches for a given molar ratio. The total injected
embryo numbers were 530, 381 and 422 for 100, 150 and 250 ng/pL of sgRNALI, respectively, and 405, 368 and
456 for 100, 150 and 250 ng/uL of sgRNA2, respectively (total number was divided between three independent
egg batches for each concentration of sgRNA). Each egg batch included two control sub-groups: a non-injected
control and a 500 ng/uL Cas9 injected control (n=2,377 and 786, respectively). The survival rate was recorded
at 3 dpf and the treatment mortality was calculated against the mortality rate of control using the Schneider-
Orelli’s formula. The larvae from the injected group and controls were sampled before the first feeding stage
(3 dah) after euthanasia using 60 ppm benzocaine for subsequent analysis.

gDNA extraction and gPCR melt curve analysis. gDNAs from individual larvae were extracted by
lysing at 55 °C using 200 pL of SSTNE (0.5 mM spermidine, 0.15 mM spermine, 50 mM Tris, 0.3 M NaCl and
0.2 mM EGTA) buffer, 20 pL of 10% SDS (sodium dodecyl sulphate-anionic detergent) and 5 uL of Proteinase
K (10 mg/pL) followed by 5 pL of RNase A (2 mg/uL) treatment and salt precipitation. Briefly, 161 uL of 5 M
NaCl was added and centrifuged to precipitate proteins. Then, 250 pL of each supernatant was collected and the
same volume of isopropanol was used to precipitate gDNA. gDNA pellets were washed twice with 75% ethanol
and resuspended in 10-20 pL of 5 mM Tris (pH 8.0) depending on the size of the pellet. Two primer pairs were
designed to amplify DNA fragment including target area of piwil2 sgRNA1 and sgRNA2 and used for gPCR
melt curve analysis®® (Table 1). Each qPCR reaction was of a total volume of 10 pL containing 1 pL of gDNA
(70-350 ng), 5 pL of SYBR green mix (Luminaris Color HiGreen qPCR Master Mix, Thermo Fisher), 0.7 uM of
each forward and reverse primer and MiliQ water up to 10 puL. Mastercycler ep realplex (Eppendorf) was used
and the qPCR thermal cycling protocol was: 50 °C for 2 min, 95 °C for 10 min, followed by 40 cycles of 95 °C
for 15 s, 56.5 (sgRNA1) or 55.5 °C (sgRNA2) for 15 s and 72 °C for 20 s. It was followed by melt curve analysis
0f 95 °C for 15 s, 60 °C for 15 s, a ramp increment at 0.023 °C/s from 60 to 95 °C with a continuous fluorescence
detection and 95 °C for 15 s. All samples were analysed in duplicate together with non-template controls. The
total number of the injected larvae subjected to mutant screening was 60 (20, 20, 20), 52 (12, 20, 20) and 49 (10,
19, 20) for 100, 150 and 250 ng/pL of sgRNA1 and 59 (20, 20, 19), 50 (19, 11, 20) and 51 (20, 11, 20) for 100,
150 and 250 ng/pL of sgRNA2, respectively (three batches for each concentration of sgRNA). The number of
both Cas9 injected control (0 ng/pL of sgRNA) and uninjected control subjected to mutant screening was four
per treatment per batch. Presence of mutations in the target site of each sample was assessed by the shape of its
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derivative of fluorescence with respect to the temperature (dF/dT) dissociation curves using Mastercycler ep
realplex (Eppendorf) Software.

H&E staining for histological observation of PGCs in piwil2 KO individuals. The fixed tissues
were dehydrated in an ascending ethanol series, cleared in xylene and then infiltrated with paraffin wax. Every
trunk tissue was embedded in paraffin with an anterior-posterior presentation for transverse section using a
histoembedder and sectioned using a Rotary microtome. Based on the preliminary screening of PGCs to locate
precisely the gonadal anlagen in 3 dah control larvae (1 =5), the histological analysis of the piwil2 sgRNA2/Cas9
injected larvae was conducted in the regions A-D where PGCs were reliably detected using the serial transverse
section of body cavity stained with H&E (Supplementary Fig. S1). The six consecutive serial sections at 5 um
thickness collected at every 150 pum interval in the area from A to D were analysed for every sample and the
presence of PGCs with its location and appearance was recorded in the confirmed 52 piwil2 mutant larvae by
qPCR melt curve analysis.

NGS. Sequencing libraries of the target region of piwil2 sgRNA2 from both control and putative mutants
gDNA samples were prepared according to the Illumina MiSeq system instructions. The target region was ampli-
fied and indexed by 20 cycle and 10 cycle of PCR, respectively. Each amplicon was purified using AxyPrep Mag
PCR Clean-up Kit (Axygen), quantified by using the Qubit 2.0 Fluorometer and dsDNA HS Assay Kit (Thermo
Fisher) and added into the library at the final concentration of 1 nM. The library was quantified by using the
Qubit 2.0 Fluorometer and dsDNA HS Assay Kit (Thermo Fisher) and normalised to the final concentration
of 10 nM. The double-indexed library was combined with an existing MiSeq sequencing run. Libraries were
sequenced on an Illumina MiSeq instrument using a MiSeq Reagent Kit V2 of 250 bp paired-end reads with the
piwil2 CRISPR library representing 2.5% of the total sequencing run, along with a 6% phiX library (control). In
total 20.5 M paired-end reads were produced of which 0.66 M paired-end reads belonged to the CRISPR study
with the average number of reads per sample being 10,943 £203 per sample. FASTQ files generated by Illumina
sequencing were analysed with CRISPResso®. The analysis settings of CRISPResso were as follow: (1) minimum
average read quality, >99.9% confidence (phred33>30) per read; minimum single base pair quality, >90% con-
fidence (phred33>10) per base pair, (2) mutation was quantified within a window of 81 bp upstream and 70 bp
downstream from the canonical cleavage site, between third and fourth nucleotide upstream of preceding PAM
sequence. Then the trimmed reads were merged to be paired-end sequences, aligned to a reference amplicon and
the proportion of indel was quantified®’. Each mutation rate (%) was calculated by substracting the percentage
of NGS reads of WT (%) from 100 (%). In addition, frame-shift mutation rate (%) was calculated by dividing
frame-shift mutation reads (No.) by Xtotal reads (No.) and multiplying by 100. Sequences with MME]-mediated
repair were predicted by Microhomology-Predictor (https://www.rgenome.net/mich-calculator/)®.

T7 endonuclease 1 (T7E1). Prior to T7E1 digestion, 100 ng of each purified amplicon was hybridised to
form heteroduplex in 10 pL reaction volume containing 1 pL of NEBuffer 2 (NEB). The thermocycler condi-
tion for hybridisation was as follows: initial denaturation at 95 °C for 5 min, annealing from 95 °C to 85 °C at
-2 °C/s ramp rate and 85 °C to 25 °C at —0.1 °C/s ramp rate and termination at 20 °C. The hybridised product
was digested by 0.5 uL of T7EI (NEB) at 37 °C for 15 min and terminated by adding 1 pL of 0.25 M EDTA. The
fragmented PCR products were then run on the agarose gel and the percent of nuclease-specific cleavage prod-
ucts were determined by GeneTools (Syngene). The cleavage efficiency of T7E1 was calculated®” and used as the
estimated arbitrary gene modification rate. The intra- and inter-assay CV's were 1.98 and 3.95%, respectively.

CRISPR/Cas-derived RNA-guided engineered nuclease (RGEN) assay. The piwil2 sgRNA2 and
Cas9 nuclease protein (S. pyogenes) (NEB) were used to examine the mutation efficiency of piwil2 sgRNA2
mutants, according to the manufacturer’s protocol. 50 nM of piwil2 sgRNA2 and 50 nM of Cas9 nuclease were
incubated at 25 °C for 10 min to assemble the Cas9/sgRNA complex. Then, the purified amplicons were added
at the final concentration of 4.5 nM as the substrate DNAs and incubated at 37 °C for 16 h. The assay included
eight positive controls of WT samples and three negative controls of no DNA substrates. Molar ratio of Cas9 and
sgRNA per target site was maintained at 11:11:1 in a total reaction volume of 10 L. The cleavage reaction was
terminated by incubating at 80 °C for 5 min. The fragmented PCR products were then resolved with 1% agarose
gel electrophoresis. The proportion of nuclease-specific cleavage products were determined by measuring each
band intensity using GeneTools (Syngene) to allow the estimation of arbitrary gene modification rate*.. The
intra- and inter-assay CVs were 1.96 and 3.50%, respectively.

HRMA. The PCR reaction for HRMA contained 5 pL of 2X LightCycler 480 High Resolution Melting Master
Mix (Roche), 1.2 pL of 25 mM MgCl2, 0.3 pL each 10 uM primer (Table 1), 25 ng of gDNA and Milli-Q water
up to 10 pL. Each mutant and control sample was tested in triplicate. The PCR program was: pre-incubation at
95 °C for 10 min, 45 cycles of denaturation at 95 °C for 15 s, touchdown annealing (62 °C to 57 °C with 0.5 °C
decrement/cycle) for 15 s and extension at 72 °C for 15 s. Followed by HRMA program: 95 °C for 1 min, 40 °C
for 1 min, 70 °C to 95 °C with 25 acquisitions per degree centigrade. The result was analysed by Gene Scanning
and Tm calling analyses in LightCycler 480 Software. The intra- and inter-assay CVs of melt temperature (Tm)
were 0.02 and 0.08%, respectively.

Fragment analysis. PCR was performed using a fluorescent labelled tailed primer method®. In this study,
CAG_green (5'Dye-CAGTCGGGCGTCATCA-3') (Sigma-Aldrich) was used to detect the mutations created
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by piwil2 sgRNA2. This dye sequence was added to the 5’ prime end of the forward primer and paired with
non-tailed reverse primer (Table 1). The PCR reactions (8 puL total volume) consisted of 4 pL of Q5 Hot Start
High-Fidelity 2X Master Mix (NEB), 0.15 pL of 1 uM tailed forward primer, 0.25 uL of 10 pM non-tailed reverse
primer and 0.25 pL of 10 uM fluorescent dye labelled primer, 25 ng of gDNA and Milli-Q water. PCR program
was: 98 °C for 30 s, followed by 33 cycles of 98 °C for 10 s, 62 °C for 20 s and 72 °C for 20 s, with a final extension
at 72 °C for 2 min. The size determination was performed using a Beckman Coulter CEQ8000 Sequencer (Beck-
man Coulter). All the obtained fragment lengths from the module were standardised based on the WT fragment
length in controls of 227.69 £0.04 nt (n =8) with indel size thereafter being described as + WT length with the
indel size values being rounded off to the nearest whole nucleotide number. The proportion of each fragment
within the mosaic genotype was calculated based on the height of the fragment®. The estimated arbitrary gene
modification rate (%) assessed by fragment analysis was calculated by substracting the proportional height of
zero indel fragment (%) from 100 (%).

Statistics. Statistical analysis was performed using Minitab 17 (Minitab Inc.). Data are presented as
mean = SEM. Significant differences between group mean were tested by one-way ANOVA, followed by Tukey’s
HSD test (p<0.05) for arbitrary gene modification rate by T7E1, number of different size fragments detected
by fragment analysis, frame-shift mutation rate, number of different alleles and different size fragment analysed
by NGS, proportion of indel size between phenotype groups analysed by fragment analysis and NGS, detected
fragment number between fragment analysis and NGS, positional differences in deletion, insertion or substi-
tution frequencies between the different phenotype groups around the canonical cut site. All percentage data
were arcsine transformed and normality and homogeneity of variance were confirmed through examination
of the model residuals and fits and Levene’s test, and where necessary data was further square root or logl0
transformed.

When control samples were all registered as 0 or 1 (arbitrary gene modification rate by T7E1, and mutation
rate, frame-shift mutation rate, number of different alleles and different size fragment analysed by NGS), they
were excluded from statistical analysis. Significant differences between group mean which did not meet the
normality of variance for arbitrary gene modification rates by RGEN and fragment analysis and mutation rate
by NGS were assessed by Kruskal-Wallis test, followed by Mann-Whitney test (p <0.05). The linear regression
was performed by using GraphPad Prism v7.03 (GraphPad Software) between the mutation rate determined by
NGS and the arbitrary gene modification rates calculated by T7E1, RGEN and Fragment analyses.

Ethics statement. All working procedures were carried out in accordance with the United Kingdom Ani-
mals (Scientific Procedures) Act 1986 and were approved by the ethics committee and the GM committee of the
University of Stirling.
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