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ABSTRACT: Platinum-based materials are the most widely used
catalysts in propane direct dehydrogenation, which could achieve a
balanced activity between both propane conversion and propene
formation. One of the core issues of Pt catalysts is how to
efficiently activate the strong C−H bond. It has been suggested
that adding second metal promoters could greatly solve this
problem. In the current work, first-principles calculations combined
with machine learning are performed in order to obtain the most
promising metal promoters and identify key descriptors for control
performance. The combination of three different modes of adding
metal promoters and two ratios between promoters and platinum sufficiently describes the system under investigation. The activity
of propane activation and the formation of propene are reflected by the increase or decrease of the adsorption energy and C−H
bond activation of propane and propene after the addition of promoters. The data of adsorption energy and kinetic barriers from
first-principles calculations are streamed into five machine-learning methods including gradient boosting regressor (GBR), K
neighbors regressor (KNR), random forest regressor (RFR), and AdaBoost regressor (ABR) together with the sure independence
screening and sparsifying operator (SISSO). The metrics (RMSE and R2) from different methods indicated that GBR and SISSO
have the most optimal performance. Furthermore, it is found that some descriptors derived from the intrinsic properties of metal
promoters can determine their properties. In the end, Pt3Mo is identified as the most active catalyst. The present work not only
provides a solid foundation for optimizing Pt catalysts but also provides a clear roadmap to screen metal alloy catalysts.

■ INTRODUCTION
Propene is the cornerstone of the modern chemical industry
and the main raw material for the synthesis of several key
chemicals such as acrylonitrile, acrylic, plastic, etc.1 Propene is
conventionally obtained from fluid catalytic cracking or steam
cracking of naphtha and light diesel, which has huge energy
consumption and a rather low selectivity.2 In recent years, the
production capability of propene could not match the rapidly
expanding demands, resulting in the so-called “propene gap”.3

This gap was up to 3.5 million tons in 2020. Therefore, it is
urgently needed to develop and optimize effective routes for
propene production. On the other hand, the Shale gas
revolution not only changes the landscape of worldwide
energy supply but also provides an abundant reservoir of light
alkanes including methane, ethane, and propane.4 Under this
circumstance, the on-purpose catalytic propane dehydrogen-
ation (PDH)5 appeared to be the technology that could
revolutionize propene production. Compared to conventional
methods, PDH is less energy intensive and can provide a
remarkable propene selectivity of up to 90%. Hence, PDH is
indeed a promising solution to meet the challenge of the
“propene gap”. Due to its merits, PDH has a long history of
industrial application, which is first applied in the Pacol

process.6 Nowadays, the annual propene obtained from PDH
is up to 12 million tons on a global scale. Platinum is one of the
most commonly used catalysts in PDH.7 Several industrial
PDH processes employed Pt-based materials as catalysts
including the Oleflex process,8 Catofin process,9 steam active
reforming (STAR) process10 etc. Pt has a superior ability to
activate the strong C−H bond in propane11 while keeping the
C−C bond intact simultaneously.12 Consequently, it can
guarantee high selectivity, which is pivotal to successful
industrial application.13

Adding a second metal promoter for Pt catalysts is
considered a way to achieve “two birds with one stone”. On
the one hand, the second metal will form metal alloys with Pt
and then make Pt into small ensembles, which will prevent
sintering during reaction and regeneration.14 On the other
hand, electronic interactions between Pt and metal promoters
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induce charge transfer and adjust d-band occupancy, both of
which aim to alter the catalytic properties of C−H and C−C
bond activation and the binding strength of the reactants and
product.15 Therefore, the wisely chosen metal promoter could
enhance the stability of Pt and lessen the extent of side
reactions.16 Han et al.17 applied a Pt/Al2O3 catalyst modified
by Cu in propane dehydrogenation. They concluded that
interaction between Pt and Cu increased the energy barrier for
C−C bond rupture and weakened propene adsorption; both
were beneficial to selectivity and stability. Density functional
theory (DFT) calculations carried out by Nykan̈en et al.18 also
revealed the pronounced effect of a Sn promoter for a Pt
catalyst in propane dehydrogenation. In fact, Sn is the most
studied metal promoter for Pt catalysts and PtSn catalysts; it is
also widely applied in the propane dehydrogenation industrial
process.19−21 Considering the variety of types and ratios of
metal promoters, it seems to be an endless search from an
experimental perspective for the best candidate. The above
discussions clearly demonstrate that adding second metal is an
effective way to enhance selectivity and stability for Pt catalysts
in propane dehydrogenation.22 There are various metal
promoters reported in the literature that possessed certified
activity over pure Pt including Zn,23 Cu,24 Mn,25 V,26 Ga,27

etc. The remaining questions are how to efficiently search for
the best metal promoter in a huge configuration space and
what is the viable principle behind the selection.
Great efforts have been made in the calculation to search for

highly efficient alkane dehydrogenation catalysts. Hook et al.28

defined the difference between the barrier of ethene
dehydrogenation and desorption energy as screening criteria
to search for effective ethane dehydrogenation catalysts. They
concluded that the binding energy of CH3 and CH is an
effective descriptor. After screening, they identified that Pt3Pb
and PtSb were the most promising candidates with top-layer
adding configuration, as shown in Figure 1. Wang et al.22 used

a descriptor-based microkinetic simulation to search nonpre-
cious metal alloys for propane dehydrogenation. They
identified CH3CHCH2/CH3CH2CH statistically and used it
as a descriptor for binding energy. Moreover, they created a
decision map from descriptors and found NiMo to be the most
promising catalyst for propane dehydrogenation. In a similar
way to Wang’s work, Xiao et al.16 also used descriptor-based
microkinetic analysis combined with DFT calculation to find

PDH catalysts from eight transition metals. The formation
energies of CH3CH2* on a terrace and CH* on a stepped
surface were two descriptors to characterize the energy aspects
of other reaction intermediates and transition states. They
found that Fe3Ga1 improved the selectivity and catalytic
stability of propene compared with a Pt catalyst, and the
theoretical prediction was verified by experiments.
Although great progress has been made in screening highly

effective PDH catalysts, previous studies are dependent on the
chosen descriptor and established linear relation. In some
cases, adsorption energy descriptors are not readily available to
experimentalists. It is also difficult to relate certain intrinsic
properties of metals to changes in their properties. Moreover,
the influence of the location of the metal promoter in the
catalyst is still unclear. Aiming to resolve these remaining
issues, a combined DFT calculation and machine-learning
study is performed to screen the metal promoter candidates for
Pt catalysts in propane dehydrogenation.29

As shown in Figure 1, three different methods of adding
promoters (bulk, surface, subsurface) and two promoter/Pt
ratios (1:1 and 1:3) were considered. The adsorption and
dehydrogenation capabilities of propane and propene were
investigated from first-principles calculations and different
machine-learning algorithms. Five different methods including
gradient boosting regressor (GBR), random forest regressor
(RFR), K neighbors regressor (KNR), AdaBoost regressor
(ABR), and SISSO are employed.29−31 Feature engineering is
executed to establish the relation between intrinsic properties
and activity. The performance of candidates obtained from
machine learning is further examined by microkinetic
simulation. In the end, a verified machine model is provided,
and the design principle of the metal promoter is proposed.

■ COMPUTATIONAL DETAILS
DFT. All of the calculations were carried out by periodic

density functional theory with the on-site Coulombic
interaction using the Vienna Ab initio Simulation Package
(VASP 4.5).30−36 The projected-augmented wave (PAW)
method was used to explicate electron−ion interaction.35,37

For valence electrons, a plane-wave basis set was adopted with
an energy cutoff of 400 eV. The revised Perdew−Burke−
Ernzerhof (RPBE) functional was used as the exchange−
correlation functional approximation for chemisorption en-
ergetics of molecules on transition-metal surfaces, which is
known to yield a good description of adsorption38 and energy
barrier39 on transition-metal surfaces. The Brillouin-zone
integration was carried out at a 3 × 3 × 1 Monk horst−Pack
k-point grid for Pt/M(111). A five-layer slab with a p(2 × 2)
supercell is used to model the Pt/M(111) surface, the top
three layers are allowed to fully relax in all calculations, and the
two bottom layers are fixed at the optimized bulk geometry.
The thickness of the vacuum region is 12 Å. The total energy
and band structure energy are converged to an accuracy of 1 ×
10−5 eV/atom to obtain accurate forces; a force tolerance of
0.03 eV/Å is used in all structure optimizations. Lattice
constants of the PtM alloy are obtained by fitting the Birch−
Murnaghan equation.40 The calculated lattice constants under
different doping elements are listed in Note S2.
The adsorption energy Eads was calculated as

E E E E( )ads adsorbate/slab slab adsorbate= [ + ]

Figure 1. Schematic illustration of the PtM surface, where M
represents a metal promoter. Pt is deep blue and M is orange. (a)
Uniformly bulk adding Pt/M in a 1:1 ratio (b), top-layer adding Pt/M
in a 1:1 ratio (c), sublayer adding Pt/M in a 1:1 ratio, (d) uniformly
bulk adding Pt/M in a 3:1 ratio, (e) top-layer adding Pt/M in a 3:1
ratio, and (f) sublayer adding Pt/M in a 3:1 ratio.
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where E(adsorbate/slab) is the total energy of interacting species
with the surface slab and Eslab and Eadsorbate are the individual
energy of the slab (Pt/M surface) and the adsorbate (isolated
C3H8, C3H6 molecules), respectively. The reaction pathways
and energy barriers were calculated by using the climbing
nudged elastic band (CI-NEB) method.41 The reaction barrier
was calculated as the difference between the initial state with
the highest image along the pathway.

E E EFS IS=

The EFS and EIS are the total energies of the final state (FS)
and the initial state (IS), respectively. The bonding strength is
analyzed with COHP42 (crystal orbital Hamilton population
analysis).
The microkinetic simulation was performed using the

MKMCXX.43 The Gibbs free energy with ZPE correction
was obtained from DFT frequency calculations at 800 K. The
entropy of gas molecules was calculated by ideal gas
approximation, whereas, for surface species, the entropies

were calculated in the harmonic approximation. The reaction
rates for adsorbed and desorbed species were calculated using
Hertz−Knudsen kinetics. The rate constant for the adsorption
reaction is calculated as

k
PA
MTk2ads

b

=

In the equation, P is the partial pressure of the gaseous
molecule, A is the surface area on which the molecule adsorbs,
M is the reactant mass, T is the temperature, and kb is
Boltzmann’s constant. For the surface reaction, the rate
constant for the forward reaction is calculated as

k
Q
Q

k T
h

E
k T
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b
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where “X” represents the reacting species, “≠” shows the
transition state, “kr” denotes the reaction rate for forward/

Figure 2. Comparison between PtM surfaces with pure Pt surfaces regarding propane/propene adsorption and the C−H bond activation barrier.
For adsorption energy, negative means the increased binding energy (more exothermic), while positive has the opposite meaning. For barrier, the
positive means the increased barrier, while negative has the opposite meaning. More information is listed in Table S8. (a) C3H8 adsorption, (b)
barriers of C−H bond activation in propane, (c) C3H6 adsorption, and (d) barriers of C−H bond activation in propene. Each abscissa represents
the adsorption energy/barrier on the Pt−M surface minus the adsorption energy/barrier on the pure Pt surface (eV). The central vertical line
represents the pure platinum case and is set to 0 eV. The meaning of the catalyst label is indicated in Figure 1.
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backward reaction, while “Q” and “h” represent the partition
function and Plank’s constant.
Surface Model Construction. The metal (M) promoter

candidates include Sn, Zn, In, Ga, Cu, Ag, Ge, Ni, Co, Fe, Au,
Nb, Mo, Ru, Ti, Pd, Cr, Hg, V, Tc, and Pb. Different from
previous studies15,18,28,44,45 that only considered a single
configuration of a PtM catalyst, three different geometric
configurations were considered in this work, as shown in
Figure 1, to give a more unbiased description. First, M is
uniformly mixed with Pt throughout the whole structure, as
shown in Figure 1a. Second, M is restrained to be in the first
layer of the surface, as shown in Figure 1b. In the third case, M
is placed at the sublayer of the surface, as shown in Figure 1c.
For each case, two ratios of Pt/M are examined, which are 1:1
and 1:3, respectively. For the latter two cases, only the number
of Pt atoms in the layer containing M atoms is considered,
regarding calculating the ratio.
ML Methods. All ML algorithms we adopted are

conducted by the open-source code Scikit-learn46 in the
Python3 environment. Four ML methods were employed to
predict the adsorption energy and energy barriers: gradient
boosting regressor (GBR),47 K neighbors regressor (KNR),48

random forest regressor (RFR),49 and AdaBoost regressor-
(ABR).50 Details of four algorithms are listed in Notes S3−S6.
To improve the generalization of regression models, the input
data collected from DFT computations were randomly shuffled
and divided into the training set and test set with an 8:2 ratio.

The root-mean-square error (RMSE), the coefficient of
determination values (R2 score), and leave-one-out cross-
validation were applied to evaluate the performance of the ML
models, as described in Notes S7 and S8. In order to avoid
overfitting and improve robustness, the parameters were
systematically optimized, and the best set of hyperparameters
was used in each ML method. The optimal model with
hyperparameters that yielded the lowest validation error was
further used to predict the adsorption energy and energy
barrier in the test set. Details of the parameters of all models
can be found in Table S10. Sure independence screening and
sparsifying operator (SISSO)51 training was also performed to
locate the low-dimensional descriptors to describe the catalytic
performance of catalysts. A compressed-sensing-based proce-
dure was used to select one or more most relevant candidate
features and construct a linear model of the target property.
Next, 10-fold cross-validation (CV10) was employed to test
the predictive power of obtained models.

■ RESULTS AND DISCUSSION
Adsorption and Activation of Propene and Propane.

The adsorption of propane and propene is an indicator of the
activity and selectivity of catalysts. Different adsorption
behaviors of propane and propene also reflect the problems
associated with coke formation. The typical adsorption
configurations of propane and propene are shown in Figure
S1. It is revealed that propene has stronger adsorption than

Figure 3. Pearson correlation analysis of the initial features. The meaning of the feature symbol is explained in Table S9.
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propane, as shown in Table S5. As indicated from the ELF
analysis shown in Figure S2, the origin of strong adsorption is
attributed to the formation of covalent bonds, whereas propane
is relatively weak due to physical adsorption. The crystal orbital
Hamiltonian population (COHP) analysis also indicates that
the adsorption of propene is stronger than that of propane, as
shown in Figure S3. The strong adsorption of propene
significantly increases the chance of a deep reaction and
ultimately reduces the selectivity. The complete adsorption
energy values of propane and propene from DFT calculations
are shown in Table S5. The metal promoters brought a
dramatic change in the adsorption of the reactants/products, as
shown in Figure 2a,c. Most metal promoters enhanced the
adsorption of propane, which was beneficial to its conversion;
concurrently, the adsorption of propene was largely reduced,
which facilitated its desorption. Therefore, addition of a metal
promoter is indeed an effective way to tune the interaction
between the reactant/product and Pt catalysts.
C−H bond activation in propane and propene is another key

descriptor to evaluate the catalytic performance of propane
dehydrogenation. First of all, as shown in Table S6, several

metal promoters were randomly selected, and the barriers of
propane to 2-propyl and propene to 2-propenyl were
calculated by the DFT method. Furthermore, it is found that
the calculated C−H activation barriers are consistent with the
well-established Brønsted−Evans−Polanyi relation,52 as shown
in Figure S4, which has been widely applied for metal catalysts
in alkane activation.53 Meanwhile, the reaction energy has a
linear relationship with the barrier. For the rest of the metal
promoters, the BEP relation is also applied to calculate the
activation barrier of the C−H bond. The absolute value of the
barrier is shown in Table S7, which is obtained from the linear
relation shown in Figure S4. Metal promoters have different
effects on C−H bond activation compared with pure Pt
catalysts, as shown in Figure 2b,d. Ideally, it is expected that
the C−H bond activation barriers of propane and propene are
decreased or increased after adding a metal promoter,
respectively. According to this principle, Mo, Cu, Zn, Sn, Au,
Pd, Tc, Ge, and Ti have been identified to be effective
promoters.
Feature Engineering. Generally, features should be values

that can be easily queried in a database or easily computed.

Figure 4. Comparison between DFT calculations and machine learning with metrics of RMSE and R2 of the test set. The first row shows propane
adsorption energy, the second row shows propene adsorption energy, and the third row shows the C−H bond activation barrier. (a) RFR, (b)
KNR, (c) ABR, and (d) GBR.
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Also, it might be helpful to link it to the intrinsic properties of
the metal promoter itself. In order to reduce redundancy, it is
better that there is no linear relationship between parameter
features. On the basis of these criteria, 21 physical and
chemical properties are initially selected as the features of ML
models. As shown in Table S9, these descriptors consist of four
different categories: atomic structures, physical properties of
metal, description of the electronic structure, and representa-
tion of the alloy surface. Although the above features cover a
wide range of properties of metal promoters, they still seem a
little cumbersome; moreover, some of them might be closely
correlated. Therefore, these features are further screened. The
Pearson correlation coefficient matrix is used to identify the
correlation between the random feature pairs, as shown in
Figure 3. Features that have a high correlation (|p|) with others
are removed. For example, |p| between P and M is 0.96, and
that between Hf and Mp is 0.93, both of which belong to a high
positive correlation. These features will cause large interfer-
ence. After preliminary screening, the number of primary
features is reduced to 15, with a reasonable cutoff (|p| < 0.854).
The features such as χ, Im, and ρ have a low linear correlation
with all other features, indicating that they are independent.
Performance of the ML Model. The original data

obtained from DFT calculations were normalized and
preprocessed. To reduce the risk of overfitting, the test data
set was reproduced by adding uniformly distributed random
noises on a scale of −2 to 2%, and the training procedure was
executed 500 times for each ML model. Then, the training set
of the preprocessed data was analyzed by four ML regression
algorithms including GBR, KNR, RFR, and ABR (detailed
information about parameters can be found in Table S10).
Using the aforementioned optimized features (Table S11),

the regression of adsorption energy and C−H bond activation
barriers obtained from each model are summarized in Figure 4.
The root-mean-square error (RMSE) and the coefficient of
determination values (R2 score) are determined accordingly.
From regression, RMSE and R2 scores clearly indicated that

the GBR model had a similar performance for both the training
and test data sets, with the former being less than 0.04 and the
latter being above 0.8, respectively. Other models have much
inferior metrics of the training set and the test set, as shown in
Table S13. Therefore, GBR is identified as the best model
among examined methods. Moreover, leave-one-out cross-
validation was used in order to further verify the reliability of
the GBR model, as shown in Figure S5, and there was no
significant change in the RMSE of the training set and the test
set.
From the feature importance analysis shown in Figure S6,

the most relevant features are revealed. For propane
adsorption, the foremost two factors are lattice constants (a)
and doping configuration (ST), while the most important
factors affecting the adsorption of propylene are the atomic
radius of the metal promoter (rd) and ST. For C−H bond
activation, they are transferred charges (qm) and rd. It is
assuring that the most decisive factors are related to the
intrinsic properties of metals, which are easily acquired. This
relation is not established in previous work.16,22,28

The predictions of adsorption energy and C−H activation
barriers from the GBR model are shown in Table S12. In order
to screen out highly effective second metal promoters, it
should meet the following requirements: propane adsorption
energy is larger than −0.51 eV, propene adsorption energy is
less than −1.79 eV, the energy barrier of propane to 2-propyl is
less than 0.76 eV, and propene to 2-propenyl is bigger than
1.02. The threshold values are taken from pure Pt surfaces.
Under these criteria, it can guarantee suitable conversion of
reactants and favorable selectivity, resulting in excellent yields.
It was found that the best candidate is Mo from screening. In
addition to Mo metal, several candidates with good perform-
ance were selected by the same screening method, such as Sc,
Mn, etc.
The C−H bond activation pattern is further explored by

using SISSO. A pool of candidate features is first constructed
iteratively by combining 14 low-cost primary features listed in

Figure 5. SISSO errors and their distribution for the C−H activation barrier of propane (Eb8) and propene (Eb6). (a) RMSE and the averaged
RMSE of the 10-fold cross-validation. Distribution of errors for the best models vs DFT results for (b) Eb8 and (c) Eb6.

Table 1. Identified Equation from SISSO Models for Activation of Propane and Propene
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Table S14. The performance of the SISSO method is shown in
Figure 5. RMSE, the averaged RMSE, and the distribution of
errors of the activation barriers of propane (Eb8) and propene
(Eb6) with 10-fold cross-validation (CV10) are collected as an
evaluation index of the descriptor dimension. As shown in
Figure 5a, CV10 starts to increase when the dimension is 4,
and its optimal dimension can be determined to be four
combined with the RMSE value. We employ the identified 4D
SISSO model formula, as shown in Table 1, for the high-
throughput screening of promoters. The outcome is shown in
Table S15. With the same screening conditions as mentioned
before, Zn, V, Mo, and Ti were identified as the most
promising candidates. In particular, Mo was found to have the
best performance, which is consistent with GBR model
prediction.
To further verify the predictions from ML regression, the

TOF of predicted PtM catalysts is calculated from microkinetic
simulation, as shown in Figure 6a. Indeed, Mo, Sc, Mn, Zn, Cu,
and Ni promoters obtained from machine learning do have
improved performance compared with pure Pt catalysts.
Among them, Mo has the highest TOF. Therefore, Pt3Mo,
with the configuration shown in Figure 1b and a ratio of 3:1, is
identified to be the best catalyst candidate for propane
dehydrogenation. Besides, an increased TOF of propene
formation and the reduced apparent activation energy of
Pt3Mo, as shown in Figure 6b,c, further validated its excellent
activity and selectivity over conventional Pt catalysts through
the investigated temperature range.
On the other hand, experimental reports of PtMo alloy

dehydrogenation catalysts are rare. However, a few available
experimental studies indicated the promising potential of PtMo
catalysts. Kondarides et al.55 applied a PtMo6 cluster supported
on MgO in butane, isobutane, and propane. They found that
PtMo catalysts demonstrated higher yields and better stability
than the monometallic counterparts of either Pt or Mo
catalysts. It is also noted that the selectivity of PtMo to alkene
is over 97%. Boufaden et al.56 synthesized a series of PtMo
catalysts by varying the Pt/Mo ratio and applied in
dehydrogenation of methylcyclohexane to toluene. This
study uncovered that PtMo bimetallic catalysts had an
improved activity over monometallic catalysts with the highest
reaction rate at around 9 × 10−2 mole h−1g−1. Other predicted
metal promoters such as Zn,57 Ni,58 and Cu59 are also reported

to have excellent performance from experimental studies. The
predictions from the current work will give new impetus to the
experimental exploration of a PtMo bimetallic catalyst in a
dehydrogenation reaction.

■ CONCLUSIONS
In summary, a combined first-principles calculations and
machine learning study is performed to identify the effective
metal promoter for Pt catalysts in propane dehydrogenation.
The adsorption strength of propane/propene was calculated
and compared, and the origin of deep reaction tendency was
revealed. ELF and COHP analyses showed that the bonding
properties of propane and propene were physical adsorption
and covalent chemisorption, respectively. The addition of a
metal promoter brought a significant change in adsorption. It is
found that the adsorption energy of propane is increased while
the counterpart of propene is decreased. In particular, the latter
change will lessen the probability of a deep reaction and
enhance the selectivity. The calculated dehydrogenation
barriers of propane and propene are consistent with the well-
established BEP relation. The features are mainly selected from
the intrinsic properties of the metal, which are easy to access.
Pearson correlation analysis refined the initial features and
reduced redundant parameters. Based on DFT calculated
adsorption energy and kinetic barriers, four methods including
GBR, KNR, RFR, and ABR are performed for regression. GBR
is verified to be the optimal method considering RMSE and R2

metrics. Moreover, a compressed-sensing method, SISSO, is
also applied, which draws a good agreement with the outcome
from GBR. On the other hand, properties such as lattice
constants, metal radius, and adding methods are identified as
the most relevant descriptors. TOF and apparent activation
energy are calculated to verify the performance of the chosen
candidate from machine learning. In the end, Mo with a
surface ratio of 1:3 with Pt was identified as the most effective
promoter, which outperformed pure Pt catalysts. Besides, Sc,
Mn, Zn, and Cu also exceeded the performance of Pt. Overall,
the current work supplied several concrete metal promoter
candidates and lay out an effective model for screening metal
alloy catalysts for propane dehydrogenation.

Figure 6. (a) Calculated TOF of propane conversion of PtM (M = Mo, Sc, Mn, Zn, Cu, Ni, Ga). The dashed line represents the case of pure Pt.
(b) TOF of C3H6 formation of Pt and Pt3Mo. (c) Apparent activation energy of Pt and Pt3Mo.
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